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Exercise 1. Dirac δ function reminder

1.1. Representations

We find α as a function of σ in order for the three functions to be normalised and then take the
limit as σ → 0 to check the values of the function for x 6= 0:

(a) The Gaussian integral is a standard integral, giving us:∫ ∞
−∞

αe−(x/σ)
2
dx = ασ

√
π = 1 ⇒ lim

σ→0

e−(x/σ)
2

σ
√
π

= δ(x)

(b) The Lorentzian is also a standard integral, giving us:∫ ∞
−∞

ασ

x2 + σ2
dx = απ = 1 ⇒ lim

σ→0

σ

π

1

x2 + σ2
= δ(x)

(c) The sinusoidal integral is more tricky. First we use a trigonometric identity and write it
as the real part of a complex valued function:

∫ ∞
−∞

ασ
sin2(x/σ)

x2
dx =

∫ ∞
−∞

ασ
1− cos(2x/σ)

2x2
dx = Re

∫ ∞
−∞

ασ
1− e2ix/σ

2x2
dx

Now we may close the contour in the upper half of the complex plane and take half the
residue at x = 0:

Re

∫ ∞
−∞

ασ
1− e2ix/σ

2x2
dx = Re 2πiα

−2i

4
= απ = 1 ⇒ lim

σ→0

σ

π

sin2(x/σ)

x2
= δ(x)

All three of these functions are 0 for x 6= 0 and are normalised to 1, therefore they are all
representations of the δ function.

1.2. Properties

As the δ function is 0 everywhere except when f = 0 we may concentrate on the region around
the roots xi of f(x) and expand f(x) = (x−xi)f ′(xi). Note that higher order roots are not well
defined.

∫ ∞
−∞

δ(f(x))dx =
∑
xi

∫ xi+ε

xi−ε
δ(f(x))dx =

∑
xi

∫ xi+ε

xi−ε
δ((x− xi)f ′(xi))dx

Next we use a substitution y = f ′(xi)(x− xi) to get:
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∑
xi

∫ xi+ε

xi−ε
δ((x− xi)f ′(xi))dx =

∑
xi

1

f ′(xi)

∫ f ′(xi)ε

−f ′(xi)ε
δ(y)dy =

∑
xi

sgn(f ′(xi))

f ′(xi)
=

∑
xi

1

|f ′(xi)|

Evaluating it explicitly for the two cases we obtain:

(a) 1
|a| (b) 1

|x0|

Exercise 2. Fourier transforms reminder

Physical examples may be:

(a) A small crystal

(b) A string of length L

(c) The bulk of a very large crystal

(d) Vacuum

2.1. More representations of δ

We concentrate on Xm we have two cases, first m = lN with l some integer:

XlN =
1

N

N/2−1∑
n=−N/2

ei2πnlL/L =
1

N

N/2−1∑
n=−N/2

1 =
N

N
= 1

We then have the second case with all other m. Here we use the fact that the sum of evenly
spaced numbers on the unit circle in the complex plane is 0:

Xm 6=lN =
1

N

N/2−1∑
n=−N/2

ei2πnma/L =
1

N

N/2−1∑
n=−N/2

ei2πnm/N = 0

Thus we know both Xm and Kn:

Xm =
∑
l

δm,lN = δm,0 and Kn =
∑
l

δn,lN = δn,0

As both n and m have a restricted range the terms with |l| > 0 are truncated.

We can now extend this to the other cases. For (b) we have:

Xm =
1

N

N/2−1∑
n=−N/2

eiknxm → X(x) = α

∞∑
n=−∞

eiknx

Where α is some normalisation we will determine. For x = lL this sum is clearly infinite while
for any other x it will be 0. This reminds us of a sum of δ functions. We will now check the
normalisation:∫ L/2

−L/2
dx

∞∑
n=−∞

eiknx = L+
−1∑

n=−∞

∫ L/2

−L/2
dxeiknx +

∞∑
n=1

∫ L/2

−L/2
dxeiknx
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= L+
−1∑

n=−∞

eiπn − e−iπn

ikn
+
∞∑
n=1

eiπn − e−iπn

ikn
= L

We now know what the normalisation should be and can write down our final solution:

X(x) =
1

L

∞∑
n=−∞

eiknx =
∑
l

δ(x− lL) = δ(x)

The other sum becomes an integral with dx = a and remains properly normalised:

Kn =
1

N

N/2−1∑
m=−N/2

e−iknxm → Kn =
1

N

N

L

∫ L/2

−L/2
dxe−iknx =

1

L

∫ L/2

−L/2
dxe−iknx

For kn = 0 this is integral is simply unity while in all other cases it is 0:

1

L

∫ L/2

−L/2
dxe−i2πnx/L =

e−iπn − eiπn

ikn
= 0

Giving us the final result:

Kn =
1

L

∫ L/2

−L/2
dxe−iknx = δn,0

For (c) we go through the same steps to obtain:

Xm =
a

2π

∫ π/a

−π/a
dkeikxm = δm,0

K(k) =
a

2π

∞∑
m=−∞

e−ikxm =
∑
l

δ(k − 2πl/L) = δ(k)

For (d)we obtain two integrals:

X(x) = α

∫ ∞
−∞

dkeikx and K(k) = α

∫ ∞
−∞

dxe−ikx

Both of them will obviously give the same result so we will concentrate on X(x), we see that for
x = 0 it is infinite while everywhere else it is 0 again reminding us of a delta function. To check
we perform the integral from −R to R and take the limit as R goes to infinity.

X(x) = lim
R→∞

α

∫ R

−R
dkeikx = α lim

R→∞

2sin(kR)

k
= 2παδ(x)

We are now in a position to write down the final two terms:

X(x) =
1

2π

∫ ∞
−∞

dkeikx = δ(x) and K(k) =
1

2π

∫ ∞
−∞

dxe−ikx = δ(k)

Each time we had an integral we obtained a single δ, when we had a sum we obtained a sum of
δs which was truncated by the finite size or the discrete nature of the system. These truncated
terms are similar to the ones used in proving the Poisson summation formula. In k space
the range outside of [−π/a, π/a] where these extra terms appear is useful when dealing with
properties of solids, and will be called Brillouin zones.
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2.2. Fourier transforms and their inverse

We simply write f̂ = F−1[F [f ]] in each case and check that f̂ = f :

(a)

f̂(xl) =

N/2−1∑
m=−N/2

f(xm)
1

N

N/2−1∑
n=−N/2

eikn(xl−xm) =

N/2−1∑
m=−N/2

f(xm)δm,l = f(xl)

(b)

f̂(x) =

∫ L/2

−L/2
dx′f(x′)

1

L

∞∑
n=−∞

eikn(x−x
′) =

∫ L/2

−L/2
dx′f(x′)δ(x′ − x) = f(x)

(c)

f̂(xl) =
∞∑

m=−∞
f(xm)

a

2π

∫ π/a

−π/a
dkeik(xl−xm) =

∞∑
m=−∞

f(xm)δm,l = f(xl)

(d)

f̂(x) =

∫ ∞
−∞

dx′f(x′)
1

2π

∫ ∞
−∞

dkeik(x−x
′) =

∫ ∞
−∞

dx′f(x′)δ(x′ − x) = f(x)

Exercise 3. Green’s function reminder

3.1. 1 The Green’s function is given by (∂2x − k20)G(x) = δ(x). We can Fourier transform
this to obtain:

−(k2 + k20)G̃(k) = 1

And therefore

G(x) =
1

2π

∫ ∞
−∞

eikx

−(k2 + k20)

Which when we evaluate it in turn gives

G(x) =
e−k0|x|

−2k0

3.2. 1 We now have the differential equation (∂2x − k20)f(x) = S(x) for some source S(x).
We proceed as in the previous section:

−(k2 + k20)f̃(k) = S̃(k)

f̃(k) = − S̃(k)

k2 + k20

f(x) = − 1

2π

∫ ∞
−∞

S̃(k)eikx

k2 + k20
dk = − 1

2π

∫ ∞
−∞

∫ ∞
−∞

S(x′)eik(x−x
′)

k2 + k20
dkdx′
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3.3. 1

By simply using the substitution k0 → ik0 we obtain:

G(x) = i
e−ik0|x|

2k0

Which is waves being excited at x = 0 and propagating outwards.

Exercise 4. Physics III reminder

We start with the de Broglie hypothesis p = h/λ and first use the dispersion relation of a
massless particle:

Ekin = pc ⇒ λ =
hc

E

We now repeat the same process for a massive particle:

Ekin =
p2

2m
⇒ λ =

h√
2mE

With these two expressions we now evaluate explicitly for various objects with Ekin = 1eV

(a) λγ = 1.2 · 10−6m

(b) λe = 1.2 · 10−9m

(c) λH2O = 6.7 · 10−12m

(d) λfootball = 1.2 · 10−24m

We see that larger masses lead to smaller wavelengths a football is clearly not to be considered
as behaving quantum mechanically as we will never be able to resolve it on such a small scale.

Exercise 5. Physics III reminder

The Hamiltonian for a hydrogen atom and the uncertainty principle are given by:

H =
p2

2m
− e2

4πε0r
and ∆x∆p ≥ ~

2

From the uncertainty principle we get ∆x ∼ r, ∆p ∼ p and pr ∼ ~/2. Using the Virial theorem
we can now estimate the binding energy of Hydrogen:

p2

m
∼ 2pe2

4πε0~
⇒ p ∼ e2m

ε0h
⇒ E ∼ e4m

2ε20h
2
≈ 54eV

This is too large but means we will not be astonished when we find it is actually ∼ 13.6eV . By
setting E = kBT it also gives a temperature T ∼ 6 ·105K , the real result is about T ∼ 104K. If
we compare this to the temperatures in the centre of the sun (T ∼ 107K) we see that Hydrogen
in the sun is a plasma.
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