Exercise 1. Dirac δ function reminder

1.1. Representations

We find α as a function of σ in order for the three functions to be normalised and then take the limit as $\sigma \rightarrow 0$ to check the values of the function for $x \neq 0$:
(a) The Gaussian integral is a standard integral, giving us:

$$
\int_{-\infty}^{\infty} \alpha e^{-(x / \sigma)^{2}} d x=\alpha \sigma \sqrt{\pi}=1 \Rightarrow \lim _{\sigma \rightarrow 0} \frac{e^{-(x / \sigma)^{2}}}{\sigma \sqrt{\pi}}=\delta(x)
$$

(b) The Lorentzian is also a standard integral, giving us:

$$
\int_{-\infty}^{\infty} \frac{\alpha \sigma}{x^{2}+\sigma^{2}} d x=\alpha \pi=1 \quad \Rightarrow \quad \lim _{\sigma \rightarrow 0} \frac{\sigma}{\pi} \frac{1}{x^{2}+\sigma^{2}}=\delta(x)
$$

(c) The sinusoidal integral is more tricky. First we use a trigonometric identity and write it as the real part of a complex valued function:

$$
\int_{-\infty}^{\infty} \alpha \sigma \frac{\sin ^{2}(x / \sigma)}{x^{2}} d x=\int_{-\infty}^{\infty} \alpha \sigma \frac{1-\cos (2 x / \sigma)}{2 x^{2}} d x=\operatorname{Re} \int_{-\infty}^{\infty} \alpha \sigma \frac{1-e^{2 i x / \sigma}}{2 x^{2}} d x
$$

Now we may close the contour in the upper half of the complex plane and take half the residue at $x=0$:

$$
\operatorname{Re} \int_{-\infty}^{\infty} \alpha \sigma \frac{1-e^{2 i x / \sigma}}{2 x^{2}} d x=\operatorname{Re} 2 \pi i \alpha \frac{-2 i}{4}=\alpha \pi=1 \quad \Rightarrow \quad \lim _{\sigma \rightarrow 0} \frac{\sigma}{\pi} \frac{\sin ^{2}(x / \sigma)}{x^{2}}=\delta(x)
$$

All three of these functions are 0 for $x \neq 0$ and are normalised to 1 , therefore they are all representations of the δ function.

1.2. Properties

As the δ function is 0 everywhere except when $f=0$ we may concentrate on the region around the roots x_{i} of $f(x)$ and expand $f(x)=\left(x-x_{i}\right) f^{\prime}\left(x_{i}\right)$. Note that higher order roots are not well defined.

$$
\int_{-\infty}^{\infty} \delta(f(x)) d x=\sum_{x_{i}} \int_{x_{i}-\epsilon}^{x_{i}+\epsilon} \delta(f(x)) d x=\sum_{x_{i}} \int_{x_{i}-\epsilon}^{x_{i}+\epsilon} \delta\left(\left(x-x_{i}\right) f^{\prime}\left(x_{i}\right)\right) d x
$$

Next we use a substitution $y=f^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)$ to get:

$$
\sum_{x_{i}} \int_{x_{i}-\epsilon}^{x_{i}+\epsilon} \delta\left(\left(x-x_{i}\right) f^{\prime}\left(x_{i}\right)\right) d x=\sum_{x_{i}} \frac{1}{f^{\prime}\left(x_{i}\right)} \int_{-f^{\prime}\left(x_{i}\right) \epsilon}^{f^{\prime}\left(x_{i}\right) \epsilon} \delta(y) d y=\sum_{x_{i}} \frac{\operatorname{sgn}\left(f^{\prime}\left(x_{i}\right)\right)}{f^{\prime}\left(x_{i}\right)}=\sum_{x_{i}} \frac{1}{\left|f^{\prime}\left(x_{i}\right)\right|}
$$

Evaluating it explicitly for the two cases we obtain:
(a) $\frac{1}{|a|}$
(b) $\frac{1}{\left|x_{0}\right|}$

Exercise 2. Fourier transforms reminder

Physical examples may be:
(a) A small crystal
(c) The bulk of a very large crystal
(b) A string of length L
(d) Vacuum

2.1. More representations of δ

We concentrate on X_{m} we have two cases, first $m=l N$ with l some integer:

$$
X_{l N}=\frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} e^{i 2 \pi n l L / L}=\frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} 1=\frac{N}{N}=1
$$

We then have the second case with all other m. Here we use the fact that the sum of evenly spaced numbers on the unit circle in the complex plane is 0 :

$$
X_{m \neq l N}=\frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} e^{i 2 \pi n m a / L}=\frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} e^{i 2 \pi n m / N}=0
$$

Thus we know both X_{m} and K_{n} :

$$
X_{m}=\sum_{l} \delta_{m, l N}=\delta_{m, 0} \quad \text { and } \quad K_{n}=\sum_{l} \delta_{n, l N}=\delta_{n, 0}
$$

As both n and m have a restricted range the terms with $|l|>0$ are truncated.
We can now extend this to the other cases. For (b) we have:

$$
X_{m}=\frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} e^{i k_{n} x_{m}} \rightarrow X(x)=\alpha \sum_{n=-\infty}^{\infty} e^{i k_{n} x}
$$

Where α is some normalisation we will determine. For $x=l L$ this sum is clearly infinite while for any other x it will be 0 . This reminds us of a sum of δ functions. We will now check the normalisation:

$$
\int_{-L / 2}^{L / 2} d x \sum_{n=-\infty}^{\infty} e^{i k_{n} x}=L+\sum_{n=-\infty}^{-1} \int_{-L / 2}^{L / 2} d x e^{i k_{n} x}+\sum_{n=1}^{\infty} \int_{-L / 2}^{L / 2} d x e^{i k_{n} x}
$$

$$
=L+\sum_{n=-\infty}^{-1} \frac{e^{i \pi n}-e^{-i \pi n}}{i k_{n}}+\sum_{n=1}^{\infty} \frac{e^{i \pi n}-e^{-i \pi n}}{i k_{n}}=L
$$

We now know what the normalisation should be and can write down our final solution:

$$
X(x)=\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i k_{n} x}=\sum_{l} \delta(x-l L)=\delta(x)
$$

The other sum becomes an integral with $d x=a$ and remains properly normalised:

$$
K_{n}=\frac{1}{N} \sum_{m=-N / 2}^{N / 2-1} e^{-i k_{n} x_{m}} \rightarrow K_{n}=\frac{1}{N} \frac{N}{L} \int_{-L / 2}^{L / 2} d x e^{-i k_{n} x}=\frac{1}{L} \int_{-L / 2}^{L / 2} d x e^{-i k_{n} x}
$$

For $k_{n}=0$ this is integral is simply unity while in all other cases it is 0 :

$$
\frac{1}{L} \int_{-L / 2}^{L / 2} d x e^{-i 2 \pi n x / L}=\frac{e^{-i \pi n}-e^{i \pi n}}{i k_{n}}=0
$$

Giving us the final result:

$$
K_{n}=\frac{1}{L} \int_{-L / 2}^{L / 2} d x e^{-i k_{n} x}=\delta_{n, 0}
$$

For (c) we go through the same steps to obtain:

$$
\begin{gathered}
X_{m}=\frac{a}{2 \pi} \int_{-\pi / a}^{\pi / a} d k e^{i k x_{m}}=\delta_{m, 0} \\
K(k)=\frac{a}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-i k x_{m}}=\sum_{l} \delta(k-2 \pi l / L)=\delta(k)
\end{gathered}
$$

For (d)we obtain two integrals:

$$
X(x)=\alpha \int_{-\infty}^{\infty} d k e^{i k x} \quad \text { and } \quad K(k)=\alpha \int_{-\infty}^{\infty} d x e^{-i k x}
$$

Both of them will obviously give the same result so we will concentrate on $X(x)$, we see that for $x=0$ it is infinite while everywhere else it is 0 again reminding us of a delta function. To check we perform the integral from $-R$ to R and take the limit as R goes to infinity.

$$
X(x)=\lim _{R \rightarrow \infty} \alpha \int_{-R}^{R} d k e^{i k x}=\alpha \lim _{R \rightarrow \infty} \frac{2 \sin (k R)}{k}=2 \pi \alpha \delta(x)
$$

We are now in a position to write down the final two terms:

$$
X(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k e^{i k x}=\delta(x) \quad \text { and } \quad K(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x e^{-i k x}=\delta(k)
$$

Each time we had an integral we obtained a single δ, when we had a sum we obtained a sum of $\delta \mathrm{s}$ which was truncated by the finite size or the discrete nature of the system. These truncated terms are similar to the ones used in proving the Poisson summation formula. In k space the range outside of $[-\pi / a, \pi / a]$ where these extra terms appear is useful when dealing with properties of solids, and will be called Brillouin zones.

2.2. Fourier transforms and their inverse

We simply write $\widehat{f}=\mathcal{F}^{-1}[\mathcal{F}[f]]$ in each case and check that $\widehat{f}=f$:
(a)

$$
\widehat{f}\left(x_{l}\right)=\sum_{m=-N / 2}^{N / 2-1} f\left(x_{m}\right) \frac{1}{N} \sum_{n=-N / 2}^{N / 2-1} e^{i k_{n}\left(x_{l}-x_{m}\right)}=\sum_{m=-N / 2}^{N / 2-1} f\left(x_{m}\right) \delta_{m, l}=f\left(x_{l}\right)
$$

(b)

$$
\widehat{f}(x)=\int_{-L / 2}^{L / 2} d x^{\prime} f\left(x^{\prime}\right) \frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i k_{n}\left(x-x^{\prime}\right)}=\int_{-L / 2}^{L / 2} d x^{\prime} f\left(x^{\prime}\right) \delta\left(x^{\prime}-x\right)=f(x)
$$

(c)

$$
\widehat{f}\left(x_{l}\right)=\sum_{m=-\infty}^{\infty} f\left(x_{m}\right) \frac{a}{2 \pi} \int_{-\pi / a}^{\pi / a} d k e^{i k\left(x_{l}-x_{m}\right)}=\sum_{m=-\infty}^{\infty} f\left(x_{m}\right) \delta_{m, l}=f\left(x_{l}\right)
$$

(d)

$$
\widehat{f}(x)=\int_{-\infty}^{\infty} d x^{\prime} f\left(x^{\prime}\right) \frac{1}{2 \pi} \int_{-\infty}^{\infty} d k e^{i k\left(x-x^{\prime}\right)}=\int_{-\infty}^{\infty} d x^{\prime} f\left(x^{\prime}\right) \delta\left(x^{\prime}-x\right)=f(x)
$$

Exercise 3. Green's function reminder

3.1. 1 The Green's function is given by $\left(\partial_{x}^{2}-k_{0}^{2}\right) G(x)=\delta(x)$. We can Fourier transform this to obtain:

$$
-\left(k^{2}+k_{0}^{2}\right) \widetilde{G}(k)=1
$$

And therefore

$$
G(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i k x}}{-\left(k^{2}+k_{0}^{2}\right)}
$$

Which when we evaluate it in turn gives

$$
G(x)=\frac{e^{-k_{0}|x|}}{-2 k_{0}}
$$

3.2. 1 We now have the differential equation $\left(\partial_{x}^{2}-k_{0}^{2}\right) f(x)=S(x)$ for some source $S(x)$. We proceed as in the previous section:

$$
\begin{gathered}
-\left(k^{2}+k_{0}^{2}\right) \widetilde{f}(k)=\widetilde{S}(k) \\
\widetilde{f}(k)=-\frac{\widetilde{S}(k)}{k^{2}+k_{0}^{2}} \\
f(x)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\widetilde{S}(k) e^{i k x}}{k^{2}+k_{0}^{2}} d k=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{S\left(x^{\prime}\right) e^{i k\left(x-x^{\prime}\right)}}{k^{2}+k_{0}^{2}} d k d x^{\prime}
\end{gathered}
$$

3.3. 1

By simply using the substitution $k_{0} \rightarrow i k_{0}$ we obtain:

$$
G(x)=i \frac{e^{-i k_{0}|x|}}{2 k_{0}}
$$

Which is waves being excited at $x=0$ and propagating outwards.

Exercise 4. Physics III reminder

We start with the de Broglie hypothesis $p=h / \lambda$ and first use the dispersion relation of a massless particle:

$$
E_{k i n}=p c \quad \Rightarrow \quad \lambda=\frac{h c}{E}
$$

We now repeat the same process for a massive particle:

$$
E_{k i n}=\frac{p^{2}}{2 m} \quad \Rightarrow \quad \lambda=\frac{h}{\sqrt{2 m E}}
$$

With these two expressions we now evaluate explicitly for various objects with $E_{k i n}=1 \mathrm{eV}$
(a) $\lambda_{\gamma}=1.2 \cdot 10^{-6} \mathrm{~m}$
(b) $\lambda_{e}=1.2 \cdot 10^{-9} m$
(c) $\lambda_{\mathrm{H}_{2} \mathrm{O}}=6.7 \cdot 10^{-12} \mathrm{~m}$
(d) $\lambda_{\text {football }}=1.2 \cdot 10^{-24} \mathrm{~m}$

We see that larger masses lead to smaller wavelengths a football is clearly not to be considered as behaving quantum mechanically as we will never be able to resolve it on such a small scale.

Exercise 5. Physics III reminder

The Hamiltonian for a hydrogen atom and the uncertainty principle are given by:

$$
H=\frac{p^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0} r} \quad \text { and } \quad \Delta x \Delta p \geq \frac{\hbar}{2}
$$

From the uncertainty principle we get $\Delta x \sim r, \Delta p \sim p$ and $p r \sim \hbar / 2$. Using the Virial theorem we can now estimate the binding energy of Hydrogen:

$$
\frac{p^{2}}{m} \sim \frac{2 p e^{2}}{4 \pi \epsilon_{0} \hbar} \quad \Rightarrow \quad p \sim \frac{e^{2} m}{\epsilon_{0} h} \quad \Rightarrow \quad E \sim \frac{e^{4} m}{2 \epsilon_{0}^{2} h^{2}} \approx 54 e V
$$

This is too large but means we will not be astonished when we find it is actually $\sim 13.6 \mathrm{eV}$. By setting $E=k_{B} T$ it also gives a temperature $T \sim 6 \cdot 10^{5} \mathrm{~K}$, the real result is about $T \sim 10^{4} \mathrm{~K}$. If we compare this to the temperatures in the centre of the sun $\left(T \sim 10^{7} K\right)$ we see that Hydrogen in the sun is a plasma.

