## Exercise 1. Chained Bell inequalities

In this exercise we will encounter a Bell violation that is stronger in quantum mechanics than what we have seen so far. Let A and B denote random variables describing the input Alice and Bob give to their devices in space-like separated locations, respectively. The outputs of their devices, described by RVs X and Y, can take on values in  $\{0, 1\}$ . Alice and Bob can choose their inputs from N different values,  $A \in \mathcal{A} = \{0, 2, 4, \dots, 2N - 2\}$  and  $B \in \mathcal{B} = \{1, 3, 5, \dots, 2N - 1\}$ .



We define  $I_N$ , a measure of correlations, by

$$I_N = P[X = Y | A = 0, B = 2N - 1] + \sum_{|a-b|=1} P[X \neq Y | A = a, B = b].$$
(1)

If  $I_N$  is small this implies that the outcomes of adjacent inputs are almost perfectly correlated – a fact that can be used for secret key agreement.

(a) Assuming that the boxes allow for a hidden variable model s.t. X and Y can be seen as independent random variables, show that  $I_N \ge 1$ .

Hint: Define  $X_a$  to be Alice's outcome when she inputs a and  $Y_b$  to be Bob's outcome when he inputs b and consider the quantity

$$F_N = 1 - \delta_{X_0 Y_{2N-1}} + \sum_{|a-b|=1} \delta_{X_a Y_b} , \qquad (2)$$

 $\delta_{xy}$  being the Kronecker-Delta. Show that for any realisation of the different random variables  $F_N \geq 1$  and follow that  $I_N \geq 1$ .

(b) Within quantum mechanics, e.g. if the boxes contain quantum spins and A and B are inputs defining the measurement basis, one can show that  $I_N < 1$  is possible. To see this, assume that Alice and Bob share the 2-qubit state  $|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$  and perform their measurement in the basis  $\{|\frac{k\pi}{2N}\rangle, |\frac{k\pi}{2N} + \pi\rangle\}$  for  $k \in \{0, 1, 2, ..., 2N - 1\}$  (for Alice  $k \in \mathcal{A}$ , for Bob  $k \in \mathcal{B}$ ). Here,  $|\theta\rangle = \cos \frac{\theta}{2}|0\rangle + \sin \frac{\theta}{2}|1\rangle$ . Show that in this case

$$I_N = 2N\sin^2\frac{\pi}{4N} \le \frac{\pi^2}{8N} \,. \tag{3}$$

(c) Consider the case N = 2 and compare the above quantum violation of  $I_2 \ge 1$  with the violation of the standard Bell inequality.

## Solution.

(a) We consider all possible combinations for the 2N measurement outcomes and try to chose them such that  $F_N < 1$ . The sum in (2) must be zero in this case because otherwise  $F_N < 1$  is no longer achievable. Hence, every Kronecker-Delta in this sum must be zero. First, choose  $X_0 = 1$ . From the following table it follows that in this case  $Y_{2N-1} = 0$  and thus  $F_N = 1$  because  $X_0 \neq Y_{2N-1}$ :

| $X_a$ | a      | b      | $Y_b$ |
|-------|--------|--------|-------|
| 1     | 0      |        |       |
|       |        | 1      | 0     |
| 1     | 2      | 2      |       |
|       |        | 3      | 0     |
|       |        |        |       |
| :     |        |        | ÷     |
| _     |        |        |       |
| 1     | 2N - 2 |        | 0     |
|       |        | 2N - 1 | 0     |

Analogously we can argue if  $X_0 = 0$ , thus always  $F_N \ge 1$ . Since  $I_N$  is the expectation value of  $F_N$ , the claim follows immediately.

(b) Let us calculate the quantity  $I_N$  in the described setting:

$$\begin{split} &P[X = Y \mid A = 0, B = 2N - 1] \\ &= P[X = Y = 0 \mid A = 0, B = 2N - 1] + P[X = Y = 1 \mid A = 0, B = 2N - 1] \\ &= \left| \underbrace{\langle 0 \mid}_{a = 0, x = 0} \otimes \underbrace{\langle \frac{(2N - 1)\pi}{2N} \mid}_{b = 2N - 1, y = 0} \frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right) \right|^2 + \left| \underbrace{\langle \pi \mid}_{a = 0, x = 1} \otimes \underbrace{\langle \frac{(2N - 1)\pi}{2N} + \pi \mid}_{b = 2N - 1, y = 1} \frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right) \right|^2 \\ &= \frac{1}{2} \left| \left( \cos \left( \left(1 - \frac{1}{2N}\right) \frac{\pi}{2} \right) \langle 00 \right| + \sin \left( \left(1 - \frac{1}{2N}\right) \frac{\pi}{2} \right) \langle 01 \right| \right) \left( |00\rangle + |11\rangle \right) \right|^2 \\ &+ \frac{1}{2} \left| \left( \cos \left( \left(2 - \frac{1}{2N}\right) \frac{\pi}{2} \right) \langle 10 \right| + \sin \left( \left(2 - \frac{1}{2N}\right) \frac{\pi}{2} \right) \langle 11 \right| \right) \left( |00\rangle + |11\rangle \right) \right|^2 \\ &= \frac{1}{2} \cos^2 \left( \left(1 - \frac{1}{2N}\right) \frac{\pi}{2} \right) + \frac{1}{2} \sin^2 \left( \left(2 - \frac{1}{2N}\right) \frac{\pi}{2} \right) \\ &= \frac{1}{2} \left( \sin^2 \frac{\pi}{4N} + \sin^2 \frac{\pi}{4N} \right) = \sin^2 \frac{\pi}{4N} , \end{split}$$

where we used the identities  $\sin x = \cos(\frac{\pi}{2} - x) = \sin(\pi - x)$  in the second last step. Likewise we find for |a - b| = 1:

$$P[X \neq Y | A = 0, B = 2N - 1]$$

$$= P[X = 0, Y = 1 | A = a, B = b] + P[X = 1, Y = 0 | A = a, B = b]$$

$$= \left| \left\langle \frac{a\pi}{2N} \right| \otimes \left\langle \frac{b\pi}{2N} + \pi \right| \frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right) \right|^{2} + \left| \left\langle \frac{a\pi}{2N} + \pi \right| \otimes \left\langle \frac{b\pi}{2N} \right| \frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right) \right|^{2}$$

$$= \frac{1}{2} \left| \cos \left( \frac{a\pi}{4N} \right) \cos \left( \frac{b\pi}{4N} + \frac{\pi}{2} \right) + \sin \left( \frac{a\pi}{4N} \right) \sin \left( \frac{b\pi}{4N} + \frac{\pi}{2} \right) \right|^{2}$$

$$+ \frac{1}{2} \left| \cos \left( \frac{a\pi}{4N} + \frac{\pi}{2} \right) \cos \left( \frac{b\pi}{4N} \right) + \sin \left( \frac{a\pi}{4N} + \frac{\pi}{2} \right) \sin \left( \frac{b\pi}{4N} \right) \right|^{2}$$

$$= \frac{1}{2} \left( \underbrace{-\cos\frac{a\pi}{4N}\sin\frac{b\pi}{4N} + \sin\frac{a\pi}{4N}\cos\frac{b\pi}{4N}}_{=\sin\left((a-b)\frac{\pi}{4N}\right)} \right)^2 + \frac{1}{2} \left( \underbrace{-\sin\frac{a\pi}{4N}\cos\frac{b\pi}{4N} + \cos\frac{a\pi}{4N}\sin\frac{b\pi}{4N}}_{=\sin\left((b-a)\frac{\pi}{4N}\right)} \right)^2$$
$$= \sin^2\frac{\pi}{4N} \,.$$

Again we used identities for sin and cos, namely  $\cos x = \sin(x + \frac{\pi}{2})$  and  $\sin x = -\cos(x + \frac{\pi}{2})$ . Altogether we find

$$I_N = \left[1 + (2N - 1)\right] \sin^2 \frac{\pi}{4N} = 2N \sin^2 \frac{\pi}{4N} \le \frac{\pi^2}{8N},$$
 (S.1)

because  $\sin x \leq x$  for  $x \geq 0$ .

(c) For N = 2 we obtain  $I_2 = 4 \sin^2 \frac{\pi}{8} = 2 - \sqrt{2} < 1$ . The relative violation of the bound  $I_2 \ge 1$  is therefore  $1 - I_N = \sqrt{2} - 1$ .

In the standard Bell inequality we have the classical bound to be 2, while quantum mechanics achieves the Tsirelson bound  $2\sqrt{2}$ . Also here, the relative violation is given by  $\frac{2\sqrt{2}-2}{2} = \sqrt{2} - 1$ . In fact, the standard Bell violation and the violation of  $I_N$  for N = 2can be directly connected to each other and are essentially one and the same thing.