Exercise 1. Chained Bell inequalities

In this exercise we will encounter a Bell violation that is stronger in quantum mechanics than what we have seen so far. Let A and B denote random variables describing the input Alice and Bob give to their devices in space-like separated locations, respectively. The outputs of their devices, described by RVs X and Y, can take on values in $\{0,1\}$. Alice and Bob can choose their inputs from N different values, $A \in \mathcal{A}=\{0,2,4, \ldots, 2 N-2\}$ and $B \in \mathcal{B}=\{1,3,5 \ldots, 2 N-1\}$.

We define I_{N}, a measure of correlations, by

$$
\begin{equation*}
I_{N}=P[X=Y \mid A=0, B=2 N-1]+\sum_{|a-b|=1} P[X \neq Y \mid A=a, B=b] . \tag{1}
\end{equation*}
$$

If I_{N} is small this implies that the outcomes of adjacent inputs are almost perfectly correlated - a fact that can be used for secret key agreement.
(a) Assuming that the boxes allow for a hidden variable model s.t. X and Y can be seen as independent random variables, show that $I_{N} \geq 1$.
Hint: Define X_{a} to be Alice's outcome when she inputs a and Y_{b} to be Bob's outcome when he inputs b and consider the quantity

$$
\begin{equation*}
F_{N}=1-\delta_{X_{0} Y_{2 N-1}}+\sum_{|a-b|=1} \delta_{X_{a} Y_{b}}, \tag{2}
\end{equation*}
$$

$\delta_{x y}$ being the Kronecker-Delta. Show that for any realisation of the different random variables $F_{N} \geq 1$ and follow that $I_{N} \geq 1$.
(b) Within quantum mechanics, e.g. if the boxes contain quantum spins and A and B are inputs defining the measurement basis, one can show that $I_{N}<1$ is possible. To see this, assume that Alice and Bob share the 2-qubit state $|\Psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ and perform their measurement in the basis $\left\{\left|\frac{k \pi}{2 N}\right\rangle,\left|\frac{k \pi}{2 N}+\pi\right\rangle\right\}$ for $k \in\{0,1,2, \ldots, 2 N-1\}$ (for Alice $k \in \mathcal{A}$, for Bob $k \in \mathcal{B}$). Here, $|\theta\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$.
Show that in this case

$$
\begin{equation*}
I_{N}=2 N \sin ^{2} \frac{\pi}{4 N} \leq \frac{\pi^{2}}{8 N} \tag{3}
\end{equation*}
$$

(c) Consider the case $N=2$ and compare the above quantum violation of $I_{2} \geq 1$ with the violation of the standard Bell inequality.

Solution.

(a) We consider all possible combinations for the $2 N$ measurement outcomes and try to chose them such that $F_{N}<1$. The sum in (2) must be zero in this case because otherwise $F_{N}<1$ is no longer achievable. Hence, every Kronecker-Delta in this sum must be zero. First, choose $X_{0}=1$. From the following table it follows that in this case $Y_{2 N-1}=0$ and thus $F_{N}=1$ because $X_{0} \neq Y_{2 N-1}$:

X_{a}	a	b	Y_{b}
1	0		
1	2	1	0
		3	0
\vdots	\vdots	\vdots	\vdots
1	$2 N-2$		
		$2 N-1$	0

Analogously we can argue if $X_{0}=0$, thus always $F_{N} \geq 1$. Since I_{N} is the expectation value of F_{N}, the claim follows immediately.
(b) Let us calculate the quantity I_{N} in the described setting:

$$
\begin{aligned}
P & {[X=Y \mid A=0, B=2 N-1] } \\
= & P[X=Y=0 \mid A=0, B=2 N-1]+P[X=Y=1 \mid A=0, B=2 N-1] \\
= & |\underbrace{\langle 0|}_{a=0, x=0} \otimes \underbrace{\left\langle\frac{(2 N-1) \pi}{2 N}\right|}_{b=2 N-1, y=0} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)|^{2}+|\underbrace{\langle\pi|}_{a=0, x=1} \otimes \underbrace{\left\langle\frac{(2 N-1) \pi}{2 N}+\pi\right|}_{b=2 N-1, y=1} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)|^{2} \\
= & \frac{1}{2}\left|\left(\cos \left(\left(1-\frac{1}{2 N}\right) \frac{\pi}{2}\right)\langle 00|+\sin \left(\left(1-\frac{1}{2 N}\right) \frac{\pi}{2}\right)\langle 01|\right)(|00\rangle+|11\rangle)\right|^{2} \\
& +\frac{1}{2}\left|\left(\cos \left(\left(2-\frac{1}{2 N}\right) \frac{\pi}{2}\right)\langle 10|+\sin \left(\left(2-\frac{1}{2 N}\right) \frac{\pi}{2}\right)\langle 11|\right)(|00\rangle+|11\rangle)\right|^{2} \\
= & \frac{1}{2} \cos ^{2}\left(\left(1-\frac{1}{2 N}\right) \frac{\pi}{2}\right)+\frac{1}{2} \sin ^{2}\left(\left(2-\frac{1}{2 N}\right) \frac{\pi}{2}\right) \\
= & \frac{1}{2}\left(\sin ^{2} \frac{\pi}{4 N}+\sin ^{2} \frac{\pi}{4 N}\right)=\sin ^{2} \frac{\pi}{4 N},
\end{aligned}
$$

where we used the identities $\sin x=\cos \left(\frac{\pi}{2}-x\right)=\sin (\pi-x)$ in the second last step.
Likewise we find for $|a-b|=1$:

$$
\begin{aligned}
& P[X \neq Y \mid A=0, B=2 N-1] \\
& =P[X=0, Y=1 \mid A=a, B=b]+P[X=1, Y=0 \mid A=a, B=b] \\
& =\left\lvert\,\left.\left\langle\left.\left\langle\frac{a \pi}{2 N}\right| \otimes\left\langle\frac{b \pi}{2 N}+\pi\right| \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right|^{2}+\right|\left\langle\frac{a \pi}{2 N}+\pi\right| \otimes\left\langle\frac{b \pi}{2 N}\right| \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right|^{2}\right. \\
& =\frac{1}{2}\left|\cos \left(\frac{a \pi}{4 N}\right) \cos \left(\frac{b \pi}{4 N}+\frac{\pi}{2}\right)+\sin \left(\frac{a \pi}{4 N}\right) \sin \left(\frac{b \pi}{4 N}+\frac{\pi}{2}\right)\right|^{2} \\
& \quad+\frac{1}{2}\left|\cos \left(\frac{a \pi}{4 N}+\frac{\pi}{2}\right) \cos \left(\frac{b \pi}{4 N}\right)+\sin \left(\frac{a \pi}{4 N}+\frac{\pi}{2}\right) \sin \left(\frac{b \pi}{4 N}\right)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}(\underbrace{-\cos \frac{a \pi}{4 N} \sin \frac{b \pi}{4 N}+\sin \frac{a \pi}{4 N} \cos \frac{b \pi}{4 N}}_{=\sin \left((a-b) \frac{\pi}{4 N}\right)})^{2}+\frac{1}{2}(\underbrace{-\sin \frac{a \pi}{4 N} \cos \frac{b \pi}{4 N}+\cos \frac{a \pi}{4 N} \sin \frac{b \pi}{4 N}}_{=\sin \left((b-a) \frac{\pi}{4 N}\right)})^{2} \\
& =\sin ^{2} \frac{\pi}{4 N} .
\end{aligned}
$$

Again we used identities for \sin and \cos, namely $\cos x=\sin \left(x+\frac{\pi}{2}\right)$ and $\sin x=-\cos \left(x+\frac{\pi}{2}\right)$. Altogether we find

$$
\begin{equation*}
I_{N}=[1+(2 N-1)] \sin ^{2} \frac{\pi}{4 N}=2 N \sin ^{2} \frac{\pi}{4 N} \leq \frac{\pi^{2}}{8 N} \tag{S.1}
\end{equation*}
$$

because $\sin x \leq x$ for $x \geq 0$.
(c) For $N=2$ we obtain $I_{2}=4 \sin ^{2} \frac{\pi}{8}=2-\sqrt{2}<1$. The relative violation of the bound $I_{2} \geq 1$ is therefore $1-I_{N}=\sqrt{2}-1$.
In the standard Bell inequality we have the classical bound to be 2 , while quantum mechanics achieves the Tsirelson bound $2 \sqrt{2}$. Also here, the relative violation is given by $\frac{2 \sqrt{2}-2}{2}=\sqrt{2}-1$. In fact, the standard Bell violation and the violation of I_{N} for $N=2$ can be directly connected to each other and are essentially one and the same thing.

