Exercise 1. Thermalization through entanglement

In the lecture we have seen a theorem stating the following:

Let $\mathcal{H}_S \otimes \mathcal{H}_E$ be a bipartite Hilbert space of dimension $d_S \cdot d_E$ and $\mathcal{H}_R \subset \mathcal{H}_S \otimes \mathcal{H}_E$ a subspace (reflecting some constraint on the possible states) of dimension d_R . Define $\mathcal{E}_R = \frac{1}{d_R}$ to be the fully mixed state on the subspace \mathcal{H}_R and the corresponding marginals $\Omega_S = \operatorname{tr}_E[\mathcal{E}_R]$ and $\Omega_E = \operatorname{tr}_S[\mathcal{E}_R]$. Then for a randomly chosen pure state on \mathcal{H}_R , $|\phi\rangle \in \mathcal{H}_R$, and arbitrary $\varepsilon > 0$, the distance between the actual reduced state on S, $\rho_S = \operatorname{tr}_E[|\phi\rangle\langle\phi|]$, and the canonical state Ω_S is given probabilistically by

$$P[\|\rho_S - \Omega_S\|_1 \ge \eta] \le \eta', \tag{1}$$

where

$$\eta = \varepsilon + \sqrt{\frac{d_S}{d_E^{\text{eff}}}}, \quad \eta' = 2e^{-Cd_R\varepsilon^2}, \quad d_E^{\text{eff}} = \frac{1}{\text{tr}[\Omega_E^2]} \ge \frac{d_R}{d_S}, \quad C = \frac{1}{18\pi^3}.$$
 (2)

In applications the environment will be much larger than the system, $d_E \gg d_S$, and $d_R \gg 1$ s.t. both η and η' will be small. Thus the actual state ρ_S will be close to the so called canonical state Ω_S with high probability.

(a) Find a lower bound on d_E^{eff} in terms of $H_{\min}(E)_{\Omega_E}$ and argue why we can set $d_S = 2^{H_{\max}(S)_{\Omega_S}}$. Bound η in terms of ε and the two entropies.

In the remaining part of this exercise we will explore the above theorem by considering the example of an ensemble of $n \operatorname{spin} \frac{1}{2}$ systems in an external magnetic field B. The field points to the +z direction and the first k spins form the system S while the remaining n-k spins are the environment. The Hamiltonian is

$$H = -\sum_{i=1}^{n} \frac{B}{2} \sigma_z^{(i)} , \qquad (3)$$

where $\sigma_z^{(i)} = \mathbb{1}_1 \otimes \cdots \otimes \mathbb{1}_{i-1} \otimes \sigma_z \otimes \mathbb{1}_{i+1} \otimes \cdots \otimes \mathbb{1}_n$. We now consider the restriction to the subspace $\mathcal{H}_R \subset \mathcal{H}_S \otimes \mathcal{H}_E$ in which np spins are in the excited state $|1\rangle$ (opposite to the field) and the remaining n(1-p) spins are in the ground state $|0\rangle$. Our goal is to show that $\Omega_S \propto \exp\left(-\frac{H_S}{k_B T}\right)$, where H_S is the Hamiltonian (3) restricted to the first k spins and T is the temperature of the environment according to Boltzmann (see definition below).

(b) Show that for $n \gg k^2$ the canonical state Ω_S is approximately given by

$$\Omega_S \approx \left(p|1\rangle\langle 1| + (1-p)|0\rangle\langle 0| \right)^{\otimes k}.$$
(4)

(c) Boltzmann's formula relates the entropy of the environment at energy E, $S_E(E)$, to the number of states available at this energy, $N_E(E)$, by $S_E(E) = k_B \ln N_E(E)$. Having an expression for $S_E(E)$ then allows us to find the thermodynamic temperature by means of $\frac{1}{T} = \frac{\mathrm{d}S_E(E)}{\mathrm{d}E}\Big|_{E=\langle E \rangle}$. Using Stirling's approximation, find that

$$\frac{1}{T} \approx \frac{k_B}{B} \ln\left(\frac{1-p}{p}\right) \,. \tag{5}$$

(d) Use (b) and (c) to show that the canonical state on S approximately fulfils

$$\Omega_S \propto \exp\left(-\frac{H_S}{k_B T}\right) \,. \tag{6}$$

Solution.

(a) Let $\{\lambda_i\}_i$ be the eigenvalues of Ω_E . The term $\operatorname{tr}[\Omega_E^2] = \sum_i \lambda_i^2$ can be seen as the 'expected' eigenvalue of Ω_E , which is certainly upper bounded by the maximal eigenvalue, $\max_i \lambda_i$. Therefore we have

$$d_E^{\text{eff}} = \text{tr}[\Omega_E]^{-1} = 2^{-\log\sum_i \lambda_i^2} \ge 2^{-\log\max_i \lambda_i} = 2^{H_{\min}(E)}, \qquad (S.1)$$

as $H_{\min}(E)_{\Omega_E} = -\log \max_i \lambda_i$.

On the other hand, we can always restrict S to be the subspace on which Ω_S has support because, according to the result (1), this is the space of interest (to very good approximation). Therefore, we can set $d_S = |\operatorname{supp}(\Omega_S)| = 2^{H_{\max}(S)}$ as $H_{\max}(S)_{\Omega_S} = \log |\operatorname{supp}(\Omega_S)|$. In total we find

 $\eta = \varepsilon + \sqrt{\frac{d_S}{dS}} \le \varepsilon + 2^{\frac{1}{2} \left(H_{\max}(S) - H_{\min}(S) \right)}$

$$\eta = \varepsilon + \sqrt{\frac{d_S}{d_E^{\text{eff}}}} \le \varepsilon + 2^{\frac{1}{2} \left(H_{\max}(S) - H_{\min}(E) \right)} \,. \tag{S.2}$$

Importantly, this bound only depends on the canonical states, which arise as a consequence of the (physical) restriction defining \mathcal{H}_R .

(b) Before going into the calculation of Ω_S we first use Stirling's approximation, $\ln n! = n \ln n - n + O(\ln n)$, denoted by ^(*), to show that for large n and $k \ll n$: $(n - k)! \approx n!/n^k$. We have

$$\ln(n-k)! \stackrel{(*)}{\approx} (n-k)\ln(n-k) - (n-k) = (n-k)\ln n + (n-k)\ln\left(1-\frac{k}{n}\right) - n + k$$

$$\stackrel{(*)}{\approx} \ln n! - k\ln n + (n-k)\ln\left(1-\frac{k}{n}\right) + k \approx \ln n! - k\ln n + (n-k)\left(-\frac{k}{n}\right) + k$$

$$= \ln n! - k\ln n + \frac{k^2}{n} \approx \ln n! - k\ln n ,$$
(S.3)

where we used $\frac{k^2}{n} \ll 1$ and $\ln(1-x) \approx x$ for small x together with $\frac{k}{n} \ll 1$. Exponentiating gives the desired approximation.

In the following we use the notation $|\vec{s}\rangle = |s_1\rangle|s_2\rangle \cdots |s_k\rangle$ for $\vec{s} \in \{0,1\}^k$ and define $|\vec{s}| := \sum_i s_i$. We can write the canonical state on S as

$$\Omega_S = \frac{1}{d_R} \sum_{\vec{s}} \binom{n-k}{np-|\vec{s}|} |\vec{s}\rangle \langle \vec{s}|, \qquad (S.4)$$

where $d_R^{-1} = {\binom{n}{np}}^{-1}$ stands for normalization and the binomial coefficients arise due to the n - k spins of the environment which can have $np - |\vec{s}|$ excitations if there are $|\vec{s}|$ excitations in S. For fixed p and sufficiently large n (we assume it to be sufficiently large) the approximation (S.3) also applies to

$$(np - |\vec{s}|)! \approx (np)!/(np)^{|\vec{s}|}$$
, and $(n(1-p) - (k - |\vec{s}|))! \approx (n(1-p))!/(n(1-p))^{k-|\vec{s}|}$
(S.5)

due to $|\vec{s}|^2 \leq k^2 \ll n$. We therefore find

$$\Omega_{S} \approx {\binom{n}{np}}^{-1} \sum_{\vec{s}} \frac{n!/n^{k}}{(np)!/(np)^{|\vec{s}|} (n(1-p))!/(n(1-p))^{k-|\vec{s}|}} |\vec{s}\rangle \langle \vec{s}|$$

$$= {\binom{n}{np}}^{-1} \sum_{\vec{s}} \frac{n!}{(np)!(n-np)!} p^{|\vec{s}|} (1-p)^{k-|\vec{s}|} |\vec{s}\rangle \langle \vec{s}|$$

$$= \sum_{\vec{s}} p^{|\vec{s}|} (1-p)^{k-|\vec{s}|} |\vec{s}\rangle \langle \vec{s}|$$

$$= (p|1\rangle \langle 1| + (1-p)|0\rangle \langle 0|)^{\otimes k}.$$
(S.6)

(c) Let e be the number of excitations in the environment of n - k spins. The average value for e obviously is (n - k)p. The logarithm of the number of states in the environment with e excitations reads

$$\ln N_E(e) = \ln \binom{n-k}{e} \approx (n-k)\ln(n-k) - e\ln e - (n-k-e)\ln(n-k-e), \quad (S.7)$$

where we again used Stirling's approximation. We now use Boltzmann's formula for the entropy, $S_E(e) = k_B \ln N_E(e)$, to obtain the inverse temperature $\frac{1}{T} = \frac{\mathrm{d}S_E(E)}{\mathrm{d}E} \Big|_{E=\langle E \rangle}$, where E = eB - (n-k)B/2:

$$\frac{1}{T} = \frac{\mathrm{d}S_E(E)}{\mathrm{d}E}\Big|_{E=\langle E\rangle} = \frac{1}{B} \frac{\mathrm{d}S_E(e)}{\mathrm{d}e}\Big|_{e=\langle e\rangle} \approx \frac{k_B}{B} \ln\left(\frac{n-k-e}{e}\right)\Big|_{e=(n-k)p} \qquad (S.8)$$
$$= \frac{k_B}{B} \ln\left(\frac{1-p}{p}\right) \,.$$

(d) From (b) and (c) we get

$$\Omega_S \approx (1-p)^k \sum_{\vec{s}} \left(\frac{p}{1-p}\right)^{|\vec{s}|} |\vec{s}\rangle \langle \vec{s}| = (1-p)^k \sum_{\vec{s}} \exp\left(-|\vec{s}| \ln\left(\frac{1-p}{p}\right)\right) |\vec{s}\rangle \langle \vec{s}|$$

$$= (1-p)^k \sum_{\vec{s}} \exp\left(-\frac{|\vec{s}|B}{k_B T}\right) |\vec{s}\rangle \langle \vec{s}| \propto \exp\left(-\frac{H_S}{k_B T}\right).$$
 (S.9)

Together with the above theorem we learn that in this example on n spins (n sufficiently large), the state of the first k spins is very close to thermal for a typical pure state on the total system with np excitations.

Exercise 2. One-time Pad

Consider three random variables: a message M, a secret key K and a ciphertext C. We want to encode M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher: I(C:M) = 0.

After the transmission, we want to be able to decode the ciphertext: someone who knows the key and the cipher should be able to obtain the message perfectly, i.e. H(M|CK) = 0.

- (a) Show that this is only possible if the key contains at least as much randomness as the message, namely $H(K) \ge H(M)$.
- (b) Give an optimal algorithm for encoding and decoding.

Solution.

(a) First note that

$$I(C:M) - I(C:M|K) = I(M:K) - I(M:K|C)$$

= $I(K:C) - I(K:C|M),$ (S.10)

and that mutual information is non-negative. We introduce x = I(C : M|K), y = I(M : K|C) and z = I(K : C|M) and, using I(C : M) = 0, we get

$$x - I(C; M) = x = y - I(M:K) = z - I(K:C).$$
(S.11)

Using the two conditions, we write

$$H(M) = H(M|CK) + I(C:M) + I(K:M|C) = y, \text{ and} H(K) = H(K|MC) + I(M:K) + I(M:C|K) \ge y - x + z.$$
(S.12)

However, since $y \ge x$ and $z \ge x$ (from (S.11)), we get $H(K) \ge H(M)$.

(b) Given a message M of m bits, an optimal encoding algorithm could first compress the message to H(M) bits and then use a secret and completely random binary key of length H(M) to encode it. Given a message bit M_i and a secret code bit K_i , the ciphertext bit would be generated $C_i = M_i \oplus K_i$ using XOR. The decoding would recreate the message bit $M_i = C_i \oplus K_i$ and then decompress it.

This way of encoding is called one-time pad and by showing that $H(K) \ge H(M)$ is necessary we have in particular shown optimality of the one-time pad in terms of the number of used key bits.