Exercise 1. Thermalization through entanglement

In the lecture we have seen a theorem stating the following:
Let $\mathcal{H}_{S} \otimes \mathcal{H}_{E}$ be a bipartite Hilbert space of dimension $d_{S} \cdot d_{E}$ and $\mathcal{H}_{R} \subset \mathcal{H}_{S} \otimes \mathcal{H}_{E}$ a subspace (reflecting some constraint on the possible states) of dimension d_{R}. Define $\mathcal{E}_{R}=\frac{\mathbb{1}_{R}}{d_{R}}$ to be the fully mixed state on the subspace \mathcal{H}_{R} and the corresponding marginals $\Omega_{S}=\operatorname{tr}_{E}\left[\mathcal{E}_{R}\right]$ and $\Omega_{E}=\operatorname{tr}_{S}\left[\mathcal{E}_{R}\right]$. Then for a randomly chosen pure state on $\mathcal{H}_{R},|\phi\rangle \in \mathcal{H}_{R}$, and arbitrary $\varepsilon>0$, the distance between the actual reduced state on $S, \rho_{S}=\operatorname{tr}_{E}[|\phi\rangle\langle\phi|]$, and the canonical state Ω_{S} is given probabilistically by

$$
\begin{equation*}
P\left[\left\|\rho_{S}-\Omega_{S}\right\|_{1} \geq \eta\right] \leq \eta^{\prime} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\varepsilon+\sqrt{\frac{d_{S}}{d_{E}^{\mathrm{eff}}}}, \quad \eta^{\prime}=2 e^{-C d_{R} \varepsilon^{2}}, \quad d_{E}^{\mathrm{eff}}=\frac{1}{\operatorname{tr}\left[\Omega_{E}^{2}\right]} \geq \frac{d_{R}}{d_{S}}, \quad C=\frac{1}{18 \pi^{3}} \tag{2}
\end{equation*}
$$

In applications the environment will be much larger than the system, $d_{E} \gg d_{S}$, and $d_{R} \gg 1$ s.t. both η and η^{\prime} will be small. Thus the actual state ρ_{S} will be close to the so called canonical state Ω_{S} with high probability.
(a) Find a lower bound on $d_{E}^{\text {eff }}$ in terms of $H_{\min }(E)_{\Omega_{E}}$ and argue why we can set $d_{S}=2^{H_{\max }(S)_{\Omega_{S}}}$. Bound η in terms of ε and the two entropies.

In the remaining part of this exercise we will explore the above theorem by considering the example of an ensemble of n spin- $\frac{1}{2}$ systems in an external magnetic field B. The field points to the $+z$ direction and the first k spins form the system S while the remaining $n-k$ spins are the environment. The Hamiltonian is

$$
\begin{equation*}
H=-\sum_{i=1}^{n} \frac{B}{2} \sigma_{z}^{(i)}, \tag{3}
\end{equation*}
$$

where $\sigma_{z}^{(i)}=\mathbb{1}_{1} \otimes \cdots \otimes \mathbb{1}_{i-1} \otimes \sigma_{z} \otimes \mathbb{1}_{i+1} \otimes \cdots \otimes \mathbb{1}_{n}$. We now consider the restriction to the subspace $\mathcal{H}_{R} \subset \mathcal{H}_{S} \otimes \mathcal{H}_{E}$ in which np spins are in the excited state $|1\rangle$ (opposite to the field) and the remaining $n(1-p)$ spins are in the ground state $|0\rangle$. Our goal is to show that $\Omega_{S} \propto \exp \left(-\frac{H_{S}}{k_{B} T}\right)$, where H_{S} is the Hamiltonian (3) restricted to the first k spins and T is the temperature of the environment according to Boltzmann (see definition below).
(b) Show that for $n \gg k^{2}$ the canonical state Ω_{S} is approximately given by

$$
\begin{equation*}
\Omega_{S} \approx(p|1\rangle\langle 1|+(1-p)|0\rangle\langle 0|)^{\otimes k} \tag{4}
\end{equation*}
$$

(c) Boltzmann's formula relates the entropy of the environment at energy $E, S_{E}(E)$, to the number of states available at this energy, $N_{E}(E)$, by $S_{E}(E)=k_{B} \ln N_{E}(E)$. Having an expression for $S_{E}(E)$ then allows us to find the thermodynamic temperature by means of $\frac{1}{T}=\left.\frac{\mathrm{d} S_{E}(E)}{\mathrm{d} E}\right|_{E=\langle E\rangle}$. Using Stirling's approximation, find that

$$
\begin{equation*}
\frac{1}{T} \approx \frac{k_{B}}{B} \ln \left(\frac{1-p}{p}\right) \tag{5}
\end{equation*}
$$

(d) Use (b) and (c) to show that the canonical state on S approximately fulfils

$$
\begin{equation*}
\Omega_{S} \propto \exp \left(-\frac{H_{S}}{k_{B} T}\right) \tag{6}
\end{equation*}
$$

Solution.

(a) Let $\left\{\lambda_{i}\right\}_{i}$ be the eigenvalues of Ω_{E}. The term $\operatorname{tr}\left[\Omega_{E}^{2}\right]=\sum_{i} \lambda_{i}^{2}$ can be seen as the 'expected' eigenvalue of Ω_{E}, which is certainly upper bounded by the maximal eigenvalue, $\max _{i} \lambda_{i}$. Therefore we have

$$
\begin{equation*}
d_{E}^{\mathrm{eff}}=\operatorname{tr}\left[\Omega_{E}\right]^{-1}=2^{-\log \sum_{i} \lambda_{i}^{2}} \geq 2^{-\log \max _{i} \lambda_{i}}=2^{H_{\min }(E)} \tag{S.1}
\end{equation*}
$$

as $H_{\min }(E)_{\Omega_{E}}=-\log \max _{i} \lambda_{i}$.
On the other hand, we can always restrict S to be the subspace on which Ω_{S} has support because, according to the result (1), this is the space of interest (to very good approximation). Therefore, we can set $d_{S}=\left|\operatorname{supp}\left(\Omega_{S}\right)\right|=2^{H_{\max }(S)}$ as $H_{\max }(S)_{\Omega_{S}}=\log \left|\operatorname{supp}\left(\Omega_{S}\right)\right|$. In total we find

$$
\begin{equation*}
\eta=\varepsilon+\sqrt{\frac{d_{S}}{d_{E}^{\mathrm{eff}}}} \leq \varepsilon+2^{\frac{1}{2}\left(H_{\max }(S)-H_{\min }(E)\right)} \tag{S.2}
\end{equation*}
$$

Importantly, this bound only depends on the canonical states, which arise as a consequence of the (physical) restriction defining \mathcal{H}_{R}.
(b) Before going into the calculation of Ω_{S} we first use Stirling's approximation, $\ln n!=n \ln n-$ $n+O(\ln n)$, denoted by ${ }^{(*)}$, to show that for large n and $k \ll n:(n-k)!\approx n!/ n^{k}$. We have

$$
\begin{align*}
\ln (n-k)! & \stackrel{(*)}{\approx}(n-k) \ln (n-k)-(n-k)=(n-k) \ln n+(n-k) \ln \left(1-\frac{k}{n}\right)-n+k \\
& \stackrel{(*)}{\approx} \ln n!-k \ln n+(n-k) \ln \left(1-\frac{k}{n}\right)+k \approx \ln n!-k \ln n+(n-k)\left(-\frac{k}{n}\right)+k \\
& =\ln n!-k \ln n+\frac{k^{2}}{n} \approx \ln n!-k \ln n \tag{S.3}
\end{align*}
$$

where we used $\frac{k^{2}}{n} \ll 1$ and $\ln (1-x) \approx x$ for small x together with $\frac{k}{n} \ll 1$. Exponentiating gives the desired approximation.
In the following we use the notation $|\vec{s}\rangle=\left|s_{1}\right\rangle\left|s_{2}\right\rangle \cdots\left|s_{k}\right\rangle$ for $\vec{s} \in\{0,1\}^{k}$ and define $|\vec{s}|:=\sum_{i} s_{i}$. We can write the canonical state on S as

$$
\begin{equation*}
\Omega_{S}=\frac{1}{d_{R}} \sum_{\vec{s}}\binom{n-k}{n p-|\vec{s}|}|\vec{s}\rangle\langle\vec{s}| \tag{S.4}
\end{equation*}
$$

where $d_{R}^{-1}=\binom{n}{n p}^{-1}$ stands for normalization and the binomial coefficients arise due to the $n-k$ spins of the environment which can have $n p-|\vec{s}|$ excitations if there are $|\vec{s}|$ excitations in S. For fixed p and sufficiently large n (we assume it to be sufficiently large) the approximation (S.3) also applies to

$$
\begin{equation*}
(n p-|\vec{s}|)!\approx(n p)!/(n p)^{|\vec{s}|}, \quad \text { and } \quad(n(1-p)-(k-|\vec{s}|))!\approx(n(1-p))!/(n(1-p))^{k-|\vec{s}|} \tag{S.5}
\end{equation*}
$$

due to $|\vec{s}|^{2} \leq k^{2} \ll n$. We therefore find

$$
\begin{align*}
\Omega_{S} & \approx\binom{n}{n p}^{-1} \sum_{\vec{s}} \frac{n!/ n^{k}}{(n p)!/(n p)^{|\vec{s}|}(n(1-p))!/(n(1-p))^{k-|\vec{s}|}}|\vec{s}\rangle\langle\vec{s}| \\
& =\binom{n}{n p}^{-1} \sum_{\vec{s}} \frac{n!}{(n p)!(n-n p)!} p^{|\vec{s}|}(1-p)^{k-|\vec{s}|}|\vec{s}\rangle\langle\vec{s}| \tag{S.6}\\
& =\sum_{\vec{s}} p^{|\vec{s}|}(1-p)^{k-|\vec{s}|}|\vec{s}\rangle\langle\langle\vec{s}| \\
& =(p|1\rangle\langle 1|+(1-p)|0\rangle\langle 0|)^{\otimes k} .
\end{align*}
$$

(c) Let e be the number of excitations in the environment of $n-k$ spins. The average value for e obviously is $(n-k) p$. The logarithm of the number of states in the environment with e excitations reads

$$
\begin{equation*}
\ln N_{E}(e)=\ln \binom{n-k}{e} \approx(n-k) \ln (n-k)-e \ln e-(n-k-e) \ln (n-k-e) \tag{S.7}
\end{equation*}
$$

where we again used Stirling's approximation. We now use Boltzmann's formula for the entropy, $S_{E}(e)=k_{B} \ln N_{E}(e)$, to obtain the inverse temperature $\frac{1}{T}=\left.\frac{\mathrm{d} S_{E}(E)}{\mathrm{d} E}\right|_{E=\langle E\rangle}$, where $E=e B-(n-k) B / 2$:

$$
\begin{align*}
\frac{1}{T} & =\left.\frac{\mathrm{d} S_{E}(E)}{\mathrm{d} E}\right|_{E=\langle E\rangle}=\left.\left.\frac{1}{B} \frac{\mathrm{~d} S_{E}(e)}{\mathrm{d} e}\right|_{e=\langle e\rangle} \approx \frac{k_{B}}{B} \ln \left(\frac{n-k-e}{e}\right)\right|_{e=(n-k) p} \tag{S.8}\\
& =\frac{k_{B}}{B} \ln \left(\frac{1-p}{p}\right)
\end{align*}
$$

(d) From (b) and (c) we get

$$
\begin{align*}
\Omega_{S} & \approx(1-p)^{k} \sum_{\vec{s}}\left(\frac{p}{1-p}\right)^{|\vec{s}|}|\vec{s}\rangle\langle\vec{s}|=(1-p)^{k} \sum_{\vec{s}} \exp \left(-|\vec{s}| \ln \left(\frac{1-p}{p}\right)\right)|\vec{s}\rangle\langle\vec{s}| \\
& =(1-p)^{k} \sum_{\vec{s}} \exp \left(-\frac{|\vec{s}| B}{k_{B} T}\right)|\vec{s}\rangle\langle\vec{s}| \propto \exp \left(-\frac{H_{S}}{k_{B} T}\right) . \tag{S.9}
\end{align*}
$$

Together with the above theorem we learn that in this example on n spins (n sufficiently large), the state of the first k spins is very close to thermal for a typical pure state on the total system with $n p$ excitations.

Exercise 2. One-time Pad

Consider three random variables: a message M, a secret key K and a ciphertext C. We want to encode M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher: $I(C: M)=0$.

After the transmission, we want to be able to decode the ciphertext: someone who knows the key and the cipher should be able to obtain the message perfectly, i.e. $H(M \mid C K)=0$.
(a) Show that this is only possible if the key contains at least as much randomness as the message, namely $H(K) \geq H(M)$.
(b) Give an optimal algorithm for encoding and decoding.

Solution.

(a) First note that

$$
\begin{align*}
I(C: M)-I(C: M \mid K) & =I(M: K)-I(M: K \mid C) \\
& =I(K: C)-I(K: C \mid M), \tag{S.10}
\end{align*}
$$

and that mutual information is non-negative. We introduce $x=I(C: M \mid K), y=I(M$: $K \mid C)$ and $z=I(K: C \mid M)$ and, using $I(C: M)=0$, we get

$$
\begin{equation*}
x-I(C ; M)=x=y-I(M: K)=z-I(K: C) \tag{S.11}
\end{equation*}
$$

Using the two conditions, we write

$$
\begin{align*}
H(M) & =H(M \mid C K)+I(C: M)+I(K: M \mid C)=y, \quad \text { and } \\
H(K) & =H(K \mid M C)+I(M: K)+I(M: C \mid K) \geq y-x+z \tag{S.12}
\end{align*}
$$

However, since $y \geq x$ and $z \geq x($ from (S.11)), we get $H(K) \geq H(M)$.
(b) Given a message M of m bits, an optimal encoding algorithm could first compress the message to $H(M)$ bits and then use a secret and completely random binary key of length $H(M)$ to encode it. Given a message bit M_{i} and a secret code bit K_{i}, the ciphertext bit would be generated $C_{i}=M_{i} \oplus K_{i}$ using XOR. The decoding would recreate the message bit $M_{i}=C_{i} \oplus K_{i}$ and then decompress it.

This way of encoding is called one-time pad and by showing that $H(K) \geq H(M)$ is necessary we have in particular shown optimality of the one-time pad in terms of the number of used key bits.

