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Exercise 1. Thermalization through entanglement

In the lecture we have seen a theorem stating the following:

Let HS⊗HE be a bipartite Hilbert space of dimension dS ·dE and HR ⊂ HS⊗HE a subspace (reflecting
some constraint on the possible states) of dimension dR. Define ER = 1R

dR
to be the fully mixed state on

the subspace HR and the corresponding marginals ΩS = trE [ER] and ΩE = trS [ER]. Then for a randomly
chosen pure state on HR, |φ〉 ∈ HR, and arbitrary ε > 0, the distance between the actual reduced state
on S, ρS = trE [|φ〉〈φ|], and the canonical state ΩS is given probabilistically by

P [ ‖ρS − ΩS‖1 ≥ η ] ≤ η′ , (1)

where

η = ε+

√
dS
deff
E

, η′ = 2e−CdRε2

, deff
E =

1

tr[Ω2
E ]
≥ dR
dS

, C =
1

18π3
. (2)

In applications the environment will be much larger than the system, dE � dS, and dR � 1 s.t. both η
and η′ will be small. Thus the actual state ρS will be close to the so called canonical state ΩS with high
probability.

(a) Find a lower bound on deff
E in terms of Hmin(E)ΩE

and argue why we can set dS = 2Hmax(S)ΩS .
Bound η in terms of ε and the two entropies.

In the remaining part of this exercise we will explore the above theorem by considering the example of an
ensemble of n spin- 1

2 systems in an external magnetic field B. The field points to the +z direction and
the first k spins form the system S while the remaining n−k spins are the environment. The Hamiltonian
is

H = −
n∑

i=1

B

2
σ(i)
z , (3)

where σ
(i)
z = 11 ⊗ · · · ⊗ 1i−1 ⊗ σz ⊗ 1i+1 ⊗ · · · ⊗ 1n. We now consider the restriction to the subspace

HR ⊂ HS ⊗ HE in which np spins are in the excited state |1〉 (opposite to the field) and the remaining
n(1− p) spins are in the ground state |0〉. Our goal is to show that ΩS ∝ exp

(
− HS

kBT

)
, where HS is the

Hamiltonian (3) restricted to the first k spins and T is the temperature of the environment according to
Boltzmann (see definition below).

(b) Show that for n� k2 the canonical state ΩS is approximately given by

ΩS ≈
(
p|1〉〈1|+ (1− p)|0〉〈0|

)⊗k
. (4)

(c) Boltzmann’s formula relates the entropy of the environment at energy E, SE(E), to the number of
states available at this energy, NE(E), by SE(E) = kB lnNE(E). Having an expression for SE(E)

then allows us to find the thermodynamic temperature by means of 1
T = dSE(E)

dE

∣∣
E=〈E〉. Using

Stirling’s approximation, find that

1

T
≈ kB

B
ln

(
1− p
p

)
. (5)

(d) Use (b) and (c) to show that the canonical state on S approximately fulfils

ΩS ∝ exp

(
− HS

kBT

)
. (6)
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Solution.

(a) Let {λi}i be the eigenvalues of ΩE . The term tr[Ω2
E ] =

∑
i λ

2
i can be seen as the ‘expected’

eigenvalue of ΩE , which is certainly upper bounded by the maximal eigenvalue, maxi λi.
Therefore we have

deff
E = tr[ΩE ]−1 = 2− log

∑
i λ

2
i ≥ 2− log maxi λi = 2Hmin(E) , (S.1)

as Hmin(E)ΩE
= − log maxi λi.

On the other hand, we can always restrict S to be the subspace on which ΩS has support
because, according to the result (1), this is the space of interest (to very good approxima-
tion). Therefore, we can set dS = |supp(ΩS)| = 2Hmax(S) as Hmax(S)ΩS

= log |supp(ΩS)|.
In total we find

η = ε+

√
dS

deff
E

≤ ε+ 2
1
2

(
Hmax(S)−Hmin(E)

)
. (S.2)

Importantly, this bound only depends on the canonical states, which arise as a consequence
of the (physical) restriction defining HR.

(b) Before going into the calculation of ΩS we first use Stirling’s approximation, lnn! = n lnn−
n + O(lnn), denoted by (∗), to show that for large n and k � n: (n − k)! ≈ n!/nk. We
have

ln(n− k)!
(∗)
≈ (n− k) ln(n− k)− (n− k) = (n− k) lnn+ (n− k) ln

(
1− k

n

)
− n+ k

(∗)
≈ lnn!− k lnn+ (n− k) ln

(
1− k

n

)
+ k ≈ lnn!− k lnn+ (n− k)

(
− k

n

)
+ k

= lnn!− k lnn+ k2

n ≈ lnn!− k lnn ,

(S.3)

where we used k2

n � 1 and ln(1−x) ≈ x for small x together with k
n � 1. Exponentiating

gives the desired approximation.

In the following we use the notation |~s〉 = |s1〉|s2〉 · · · |sk〉 for ~s ∈ {0, 1}k and define
|~s| :=

∑
i si. We can write the canonical state on S as

ΩS =
1

dR

∑
~s

(
n− k
np− |~s|

)
|~s〉〈~s| , (S.4)

where d−1
R =

(
n
np

)−1
stands for normalization and the binomial coefficients arise due to

the n − k spins of the environment which can have np − |~s| excitations if there are |~s|
excitations in S. For fixed p and sufficiently large n (we assume it to be sufficiently large)
the approximation (S.3) also applies to

(np− |~s|)! ≈ (np)!/(np)|~s| , and (n(1− p)− (k − |~s|))! ≈ (n(1− p))!/(n(1− p))k−|~s|

(S.5)
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due to |~s|2 ≤ k2 � n. We therefore find

ΩS ≈
(
n

np

)−1∑
~s

n!/nk

(np)!/(np)|~s| (n(1− p))!/(n(1− p))k−|~s|
|~s〉〈~s|

=

(
n

np

)−1∑
~s

n!

(np)!(n− np)!
p|~s|(1− p)k−|~s||~s〉〈~s|

=
∑
~s

p|~s|(1− p)k−|~s||~s〉〈~s|

=
(
p|1〉〈1|+ (1− p)|0〉〈0|

)⊗k
.

(S.6)

(c) Let e be the number of excitations in the environment of n − k spins. The average value
for e obviously is (n−k)p. The logarithm of the number of states in the environment with
e excitations reads

lnNE(e) = ln

(
n− k
e

)
≈ (n− k) ln(n− k)− e ln e− (n− k − e) ln(n− k − e) , (S.7)

where we again used Stirling’s approximation. We now use Boltzmann’s formula for the
entropy, SE(e) = kB lnNE(e), to obtain the inverse temperature 1

T = dSE(E)
dE

∣∣
E=〈E〉, where

E = eB − (n− k)B/2:

1

T
=

dSE(E)

dE

∣∣∣∣
E=〈E〉

=
1

B

dSE(e)

de

∣∣∣∣
e=〈e〉

≈ kB
B

ln

(
n− k − e

e

) ∣∣∣∣
e=(n−k)p

=
kB
B

ln

(
1− p
p

)
.

(S.8)

(d) From (b) and (c) we get

ΩS ≈ (1− p)k
∑
~s

(
p

1− p

)|~s|
|~s〉〈~s| = (1− p)k

∑
~s

exp

(
−|~s| ln

(
1− p
p

))
|~s〉〈~s|

= (1− p)k
∑
~s

exp

(
−|~s|B
kBT

)
|~s〉〈~s| ∝ exp

(
− HS

kBT

)
.

(S.9)

Together with the above theorem we learn that in this example on n spins (n sufficiently
large), the state of the first k spins is very close to thermal for a typical pure state on the
total system with np excitations.

Exercise 2. One-time Pad

Consider three random variables: a message M , a secret key K and a ciphertext C. We want to encode
M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher:
I(C : M) = 0.

After the transmission, we want to be able to decode the ciphertext: someone who knows the key and the
cipher should be able to obtain the message perfectly, i.e. H(M |CK) = 0.

(a) Show that this is only possible if the key contains at least as much randomness as the message,
namely H(K) ≥ H(M).

(b) Give an optimal algorithm for encoding and decoding.
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Solution.

(a) First note that

I(C : M)− I(C : M |K) = I(M : K)− I(M : K|C)

= I(K : C)− I(K : C|M),
(S.10)

and that mutual information is non-negative. We introduce x = I(C : M |K), y = I(M :
K|C) and z = I(K : C|M) and, using I(C : M) = 0, we get

x− I(C;M) = x = y − I(M : K) = z − I(K : C). (S.11)

Using the two conditions, we write

H(M) = H(M |CK) + I(C : M) + I(K : M |C) = y, and

H(K) = H(K|MC) + I(M : K) + I(M : C|K) ≥ y − x+ z.
(S.12)

However, since y ≥ x and z ≥ x (from (S.11)), we get H(K) ≥ H(M).

(b) Given a message M of m bits, an optimal encoding algorithm could first compress the
message to H(M) bits and then use a secret and completely random binary key of length
H(M) to encode it. Given a message bit Mi and a secret code bit Ki, the ciphertext bit
would be generated Ci = Mi ⊕Ki using XOR. The decoding would recreate the message
bit Mi = Ci ⊕Ki and then decompress it.

This way of encoding is called one-time pad and by showing that H(K) ≥ H(M) is
necessary we have in particular shown optimality of the one-time pad in terms of the
number of used key bits.
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