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Exercise 1. Quantum mutual information

One way of quantifying correlations between two systems A and B is through their mutual information
I(A : B).

(a) Consider two qubits A and B in joint state ρAB.

(i) Prove that the mutual information of the Bell state |Ψ+〉 = 1√
2

(|00〉+ |11〉) is maximal. This

is why we say Bell states are maximally entangled.

(ii) Show that I(A : B) ≤ 1 for classically correlated states, ρAB = p|0〉〈0|A⊗σ0
B +(1−p)|1〉〈1|A⊗

σ1
B (where 0 ≤ p ≤ 1).

(b) Consider the so-called cat state of four qubits, A⊗B ⊗ C ⊗D, that is defined as

|Φ〉 =
1√
2

(|0000〉+ |1111〉) . (1)

Check how the mutual information between A and B changes with the knowledge of the remaining
qubits, i.e compute

(i) I(A : B) ,

(ii) I(A : B|C) ,

(iii) I(A : B|CD) .

(c) Can you give an intuitive explanation for the results in (b)?

Solution.

(a) (i) The global state is pure and the reduced states on A and B are both fully mixed,
ρA = ρB = 1/2, so we have

H(AB) = 0, H(A) = H(B) = 1 ⇒ I(A : B) = H(A) +H(B)−H(AB) = 2,

which is maximal, because the entropy of a single qubit is at most log |HA| = 1, as we
saw in a previous exercise, and the entropy of the joint state is always non negative.

(ii) Notice that ρAB is a classical-quantum state. We can rewrite the mutual information
as

I(A : B) = H(A)︸ ︷︷ ︸
≤1

−H(A|B)︸ ︷︷ ︸
≥0(∗)

≤ 1 (S.1)

where (∗) comes from Exercise 9.2 for classical-quantum states.

(b) The reduced states of the system for k qubits (which are independent of the qubits traced
out) have entropies denoted by hk, given as follows:

ρ4 = |Φ〉〈Φ| ⇒ h4 = 0,

ρ3 =
1

2
(|000〉〈000|+ |111〉〈111|) ⇒ h3 = 1,

ρ2 =
1

2
(|00〉〈00|+ |11〉〈11|) ⇒ h2 = 1,

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|) ⇒ h1 = 1.

(S.2)
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The mutual information between A and B given the knowledge of other qubits comes

I(A : B) = H(A) +H(B)−H(AB) = h1 + h1 − h2
= 1,

I(A : B|C) = H(A|C) +H(B|C)−H(AB|C)

= H(AC)−H(C) +H(BC)−H(C)−H(ABC) +H(C)

= h2 − h1 + h2 − h1 − h3 + h1

= 0,

I(A : B|CD) = H(A|CD) +H(B|CD)−H(AB|CD)

= H(ACD)−H(CD) +H(BCD)−H(CD)−H(ABCD) +H(CD)

= h3 − h2 + h3 − h2 − h4 + h2

= 1 .

(S.3)

(c) The results of the conditional mutual information can be interpreted as follows.

I(A : B) = 1 means that, upon getting system B, the entropy of A decreases by 1. This
makes sense, since A and B are classically correlated, i.e. ρAB = 1

2(|00〉〈00| + |11〉〈11|) is
the quantum representation of a clasical probability distribution between A and B, where
they share the same bit (either both A and B are 0 or 1).

On the other hand, I(A : B|C) = 0 means that when being in possession of C, the entropy
of A does not decrease when learning B. Again, this makes sense because A, B and C are
classically correlated, ρABC = 1

2(|000〉〈000|+ |111〉〈111|).
Finally, I(A : B|CD) = 1 implies that when having access to CD already, the entropy of
A still decreases by 1 when learning B. The situation here is different from the previous
one because the total state on ABCD has now quantum correlations. This means that
when getting access to B, while already in possession of CD, we then have a maximally
entangled state between A and BCD, whereas before we did not encounter this situation.

Exercise 2. Classical and quantum Markov chains

Three random variables X,Y, Z form a Markov chain (also: have the Markov property), denoted by
X ↔ Y ↔ Z, if PZ|Y X=x = PZ|Y for all x ∈ X , the alphabet of X. In short we write PZ|XY = PZ|Y .
One way of interpreting this is to say that once we know Y , we cannot learn more about Z when learning
X.

(a) Show that the Markov property is symmetric, i.e. that it implies PX|Y Z=z = PX|Y for all z ∈ Z.
Remark: This is already suggested by the notation.

(b) Prove that for Markov chains the conditional mutual information is zero, I(X : Z |Y ) = 0. This
is a mathematical way of stating the interpretation mentioned above.

For quantum states we can define the Markov property as follows. A state ρABC on a tripartite Hilbert
space HA ⊗HB ⊗HC is called a Markov state if there exists a CPTP map TB→BC from B to BC s.t.
ρABC = IA ⊗ TB→BC(ρAB).

(c) Explain how this definition can be interpreted in the same way as the classical one.
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(d) Prove that the GHZ state, the 3-qubit state |ψ〉ABC = 1√
2
(|000〉+ |111〉), is not a Markov state by

explicitly showing that a reconstruction map TB→BC cannot exist.
Remark: Please do not use (e) here.

(e) Prove that for quantum Markov states I(A : C |B) = 0.
Hint: Use strong subadditivity.

Solution.

(a) We use the definition, denoted by (∗) below, to prove this in a straight forward calculation:

PX|Y Z =
PXY Z

PY Z
=
PZ|XY PX|Y PY

PZ|Y PY

(∗)
=
PZ|Y PX|Y

PZ|Y
= PX|Y . (S.4)

(b) Let X ↔ Y ↔ Z be a Markov chain. We first show that then H(X|Y Z) = H(X|Y ),
where here H is the Shannon entropy. By definition of the Shannon entropy we have

H(X|Y Z) = −
∑
x,y,z

PXY Z(x, y, z) logPX|Y Z(x | y, z)

(∗)
= −

∑
x,y,z

PXY Z(x, y, z) logPX|Y (x | y)

= −
∑
x,y

PXY (x, y) logPX|Y (x | y)

= H(X|Y ) .

(S.5)

Therefore:

I(X : Z|Y ) = H(X|Y )−H(X|Y Z) = H(X|Y )−H(X|Y ) = 0 . (S.6)

(c) The classical interpretation is mentioned above: if X ↔ Y ↔ Z form a Markov chain then
knowing Y Z is as good as knowing XY Z. In the definition for quantum Markov states
this interpretation is directly used by saying that knowing the marginal state on AB is as
good as knowing the whole state, because the total state on ABC can be reconstructed
only from the marginal on AB. The map that does this reconstruction is TB→BC .

(d) The marginal on AB of the GHZ state is ρAB = 1
2(|00〉〈00| + |11〉〈11|). A reconstruction

map would have to achieve

IA ⊗ TB→BC(ρAB) =
1

2
(|0〉〈0|A ⊗ TB→BC(|0〉〈0|B) + |1〉〈1|A ⊗ TB→BC(|1〉〈1|B)

!
=

1

2
(|000〉〈000|ABC + |000〉〈111|ABC

+ |111〉〈000|ABC + |111〉〈111|ABC)

= |ψ〉〈ψ|ABC .

(S.7)

Obviously the terms with |0〉〈1|A and |1〉〈0|A cannot be reconstructed with a map T of
this form. Hence, |ψ〉ABC is not a Markov state.

(e) By strong subadditivity we know that always

I(A : C|B) = H(A|B)−H(A|BC) ≥ H(A|B)−H(A|B) = 0 . (S.8)
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For Markov states we know in addition that a CPTP map acting only on B can reconstruct
ABC from AB only. Due to Stinespring such a CPTP map TB→BC can always be written
as an isometry VB→BCE followed by tracing out the additional system E, i.e. TB→BC =
trE ◦ VB→BCE . It is a fact that isometries do not change von Neumann entropy, so we
must have H(A|B) = H(A|BCE). On the other hand, again due to strong subadditivity,
tracing out E in can only increase the conditional entropy: H(A|BCE) ≤ H(A|BC).
Thus:

0 = H(A|BC)−H(A|BC) ≥ H(A|BCE)−H(A|BC) = H(A|B)−H(A|BC) = I(A : C|B) .
(S.9)

Altogether this yields I(A : C|B) = 0 for quantum Markov states.

Remark: In fact, Petz’ theorem states that a quantum state ρABC is a Markov state if and
only if I(A : C|B) = 0. The second part of this proof goes, however, beyond the scope of
this lecture.
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