Exercise 1. Quantum mutual information

One way of quantifying correlations between two systems A and B is through their mutual information $I(A: B)$.
(a) Consider two qubits A and B in joint state $\rho_{A B}$.
(i) Prove that the mutual information of the Bell state $\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ is maximal. This is why we say Bell states are maximally entangled.
(ii) Show that $I(A: B) \leq 1$ for classically correlated states, $\rho_{A B}=p|0\rangle\left\langle\left. 0\right|_{A} \otimes \sigma_{B}^{0}+(1-p) \mid 1\right\rangle\left\langle\left. 1\right|_{A} \otimes\right.$ $\sigma_{B}^{1} \quad($ where $0 \leq p \leq 1)$.
(b) Consider the so-called cat state of four qubits, $A \otimes B \otimes C \otimes D$, that is defined as

$$
\begin{equation*}
|\Phi\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle) . \tag{1}
\end{equation*}
$$

Check how the mutual information between A and B changes with the knowledge of the remaining qubits, i.e compute
(i) $I(A: B)$,
(ii) $I(A: B \mid C)$,
(iii) $I(A: B \mid C D)$.
(c) Can you give an intuitive explanation for the results in (b)?

Solution.

(a) (i) The global state is pure and the reduced states on A and B are both fully mixed, $\rho_{A}=\rho_{B}=\mathbb{1} / 2$, so we have

$$
H(A B)=0, \quad H(A)=H(B)=1 \quad \Rightarrow \quad I(A: B)=H(A)+H(B)-H(A B)=2
$$

which is maximal, because the entropy of a single qubit is at most $\log \left|\mathcal{H}_{A}\right|=1$, as we saw in a previous exercise, and the entropy of the joint state is always non negative.
(ii) Notice that $\rho_{A B}$ is a classical-quantum state. We can rewrite the mutual information as

$$
\begin{equation*}
I(A: B)=\underbrace{H(A)}_{\leq 1}-\underbrace{H(A \mid B)}_{\geq 0^{(*)}} \leq 1 \tag{S.1}
\end{equation*}
$$

where ${ }^{(*)}$ comes from Exercise 9.2 for classical-quantum states.
(b) The reduced states of the system for k qubits (which are independent of the qubits traced out) have entropies denoted by h_{k}, given as follows:

$$
\begin{array}{lll}
\rho_{4}=|\Phi\rangle\langle\Phi| & \Rightarrow & h_{4}=0 \\
\rho_{3}=\frac{1}{2}(|000\rangle\langle 000|+|111\rangle\langle 111|) & \Rightarrow & h_{3}=1, \\
\rho_{2}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|) & \Rightarrow & h_{2}=1, \tag{S.2}\\
\rho_{1}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|) & \Rightarrow & h_{1}=1 .
\end{array}
$$

The mutual information between A and B given the knowledge of other qubits comes

$$
\begin{align*}
I(A: B) & =H(A)+H(B)-H(A B)=h_{1}+h_{1}-h_{2} \\
& =1 \\
I(A: B \mid C) & =H(A \mid C)+H(B \mid C)-H(A B \mid C) \\
& =H(A C)-H(C)+H(B C)-H(C)-H(A B C)+H(C) \\
& =h_{2}-h_{1}+h_{2}-h_{1}-h_{3}+h_{1} \\
& =0 \\
I(A: B \mid C D) & =H(A \mid C D)+H(B \mid C D)-H(A B \mid C D) \\
& =H(A C D)-H(C D)+H(B C D)-H(C D)-H(A B C D)+H(C D) \\
& =h_{3}-h_{2}+h_{3}-h_{2}-h_{4}+h_{2} \\
& =1 \tag{S.3}
\end{align*}
$$

(c) The results of the conditional mutual information can be interpreted as follows.
$I(A: B)=1$ means that, upon getting system B, the entropy of A decreases by 1 . This makes sense, since A and B are classically correlated, i.e. $\rho_{A B}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)$ is the quantum representation of a clasical probability distribution between A and B, where they share the same bit (either both A and B are 0 or 1).
On the other hand, $I(A: B \mid C)=0$ means that when being in possession of C, the entropy of A does not decrease when learning B. Again, this makes sense because A, B and C are classically correlated, $\rho_{A B C}=\frac{1}{2}(|000\rangle\langle 000|+|111\rangle\langle 111|)$.
Finally, $I(A: B \mid C D)=1$ implies that when having access to $C D$ already, the entropy of A still decreases by 1 when learning B. The situation here is different from the previous one because the total state on $A B C D$ has now quantum correlations. This means that when getting access to B, while already in possession of $C D$, we then have a maximally entangled state between A and $B C D$, whereas before we did not encounter this situation.

Exercise 2. Classical and quantum Markov chains

Three random variables X, Y, Z form a Markov chain (also: have the Markov property), denoted by $X \leftrightarrow Y \leftrightarrow Z$, if $P_{Z \mid Y X=x}=P_{Z \mid Y}$ for all $x \in \mathcal{X}$, the alphabet of X. In short we write $P_{Z \mid X Y}=P_{Z \mid Y}$. One way of interpreting this is to say that once we know Y, we cannot learn more about Z when learning X.
(a) Show that the Markov property is symmetric, i.e. that it implies $P_{X \mid Y Z=z}=P_{X \mid Y}$ for all $z \in \mathcal{Z}$. Remark: This is already suggested by the notation.
(b) Prove that for Markov chains the conditional mutual information is zero, $I(X: Z \mid Y)=0$. This is a mathematical way of stating the interpretation mentioned above.

For quantum states we can define the Markov property as follows. A state $\rho_{A B C}$ on a tripartite Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$ is called a Markov state if there exists a CPTP map $\mathcal{T}_{B \rightarrow B C}$ from B to $B C$ s.t. $\rho_{A B C}=\mathcal{I}_{A} \otimes \mathcal{T}_{B \rightarrow B C}\left(\rho_{A B}\right)$.
(c) Explain how this definition can be interpreted in the same way as the classical one.
(d) Prove that the GHZ state, the 3-qubit state $|\psi\rangle_{A B C}=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$, is not a Markov state by explicitly showing that a reconstruction map $\mathcal{T}_{B \rightarrow B C}$ cannot exist.
Remark: Please do not use (e) here.
(e) Prove that for quantum Markov states $I(A: C \mid B)=0$.

Hint: Use strong subadditivity.

Solution.

(a) We use the definition, denoted by ${ }^{(*)}$ below, to prove this in a straight forward calculation:

$$
\begin{equation*}
P_{X \mid Y Z}=\frac{P_{X Y Z}}{P_{Y Z}}=\frac{P_{Z \mid X Y} P_{X \mid Y} P_{Y}}{P_{Z \mid Y} P_{Y}} \stackrel{(*)}{=} \frac{P_{Z \mid Y} P_{X \mid Y}}{P_{Z \mid Y}}=P_{X \mid Y} . \tag{S.4}
\end{equation*}
$$

(b) Let $X \leftrightarrow Y \leftrightarrow Z$ be a Markov chain. We first show that then $H(X \mid Y Z)=H(X \mid Y)$, where here H is the Shannon entropy. By definition of the Shannon entropy we have

$$
\begin{align*}
H(X \mid Y Z) & =-\sum_{x, y, z} P_{X Y Z}(x, y, z) \log P_{X \mid Y Z}(x \mid y, z) \\
& \stackrel{(*)}{=}-\sum_{x, y, z} P_{X Y Z}(x, y, z) \log P_{X \mid Y}(x \mid y) \tag{S.5}\\
& =-\sum_{x, y} P_{X Y}(x, y) \log P_{X \mid Y}(x \mid y) \\
& =H(X \mid Y) .
\end{align*}
$$

Therefore:

$$
\begin{equation*}
I(X: Z \mid Y)=H(X \mid Y)-H(X \mid Y Z)=H(X \mid Y)-H(X \mid Y)=0 . \tag{S.6}
\end{equation*}
$$

(c) The classical interpretation is mentioned above: if $X \leftrightarrow Y \leftrightarrow Z$ form a Markov chain then knowing $Y Z$ is as good as knowing $X Y Z$. In the definition for quantum Markov states this interpretation is directly used by saying that knowing the marginal state on $A B$ is as good as knowing the whole state, because the total state on $A B C$ can be reconstructed only from the marginal on $A B$. The map that does this reconstruction is $\mathcal{T}_{B \rightarrow B C}$.
(d) The marginal on $A B$ of the GHZ state is $\rho_{A B}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)$. A reconstruction map would have to achieve

$$
\begin{align*}
\mathcal{I}_{A} \otimes \mathcal{T}_{B \rightarrow B C}\left(\rho_{A B}\right)= & \frac{1}{2}\left(| 0 \rangle \left\langle0 | _ { A } \otimes \mathcal { T } _ { B \rightarrow B C } \left(|0\rangle\left\langle\left. 0\right|_{B}\right)+|1\rangle\left\langle1 | _ { A } \otimes \mathcal { T } _ { B \rightarrow B C } \left(|1\rangle\left\langle\left. 1\right|_{B}\right)\right.\right.\right.\right.\right. \\
= & \frac{1}{2}\left(| 0 0 0 \rangle \langle 0 0 0 | _ { A B C } + | 0 0 0 \rangle \left\langle\left.111\right|_{A B C}\right.\right. \tag{S.7}\\
& +|111\rangle\left\langle\left. 000\right|_{A B C}+\mid 111\right\rangle\left\langle\left. 111\right|_{A B C}\right) \\
= & |\psi\rangle\left\langle\left.\psi\right|_{A B C} .\right.
\end{align*}
$$

Obviously the terms with $|0\rangle\left\langle\left. 1\right|_{A}\right.$ and $\left.\mid 1\right\rangle\left\langle\left. 0\right|_{A}\right.$ cannot be reconstructed with a map \mathcal{T} of this form. Hence, $|\psi\rangle_{A B C}$ is not a Markov state.
(e) By strong subadditivity we know that always

$$
\begin{equation*}
I(A: C \mid B)=H(A \mid B)-H(A \mid B C) \geq H(A \mid B)-H(A \mid B)=0 . \tag{S.8}
\end{equation*}
$$

For Markov states we know in addition that a CPTP map acting only on B can reconstruct $A B C$ from $A B$ only. Due to Stinespring such a CPTP map $\mathcal{T}_{B \rightarrow B C}$ can always be written as an isometry $V_{B \rightarrow B C E}$ followed by tracing out the additional system E, i.e. $\mathcal{T}_{B \rightarrow B C}=$ $\operatorname{tr}_{E} \circ V_{B \rightarrow B C E}$. It is a fact that isometries do not change von Neumann entropy, so we must have $H(A \mid B)=H(A \mid B C E)$. On the other hand, again due to strong subadditivity, tracing out E in can only increase the conditional entropy: $H(A \mid B C E) \leq H(A \mid B C)$. Thus:
$0=H(A \mid B C)-H(A \mid B C) \geq H(A \mid B C E)-H(A \mid B C)=H(A \mid B)-H(A \mid B C)=I(A: C \mid B)$.

Altogether this yields $I(A: C \mid B)=0$ for quantum Markov states.
Remark: In fact, Petz' theorem states that a quantum state $\rho_{A B C}$ is a Markov state if and only if $I(A: C \mid B)=0$. The second part of this proof goes, however, beyond the scope of this lecture.

