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Exercise 1. Depolarizing channel

We are given two two-dimensional Hilbert spaces HA and HB and a completely positive trace preserving
(CPTP) map Ep : S(HA)→ S(HB), 0 ≤ p ≤ 1, defined as

Ep(ρ) = p
1

2
+ (1− p)ρ. (1)

(a) An operator-sum representation (also called the Kraus-operator representation) of a CPTP map
E : S(HA)→ S(HB) is a decomposition {Ek}k of operators Ek ∈ Hom(HA,HB),

∑
k EkEk

† = 1,
such that

E(ρ) =
∑
k

EkρEk
†.

Find an operator-sum representation for Ep.

Hint: Remember that ρ ∈ S(HA) can be written in the Bloch sphere representation:

ρ =
1

2
(1 + ~r · ~σ), ~r ∈ R3, |~r| ≤ 1, ~r · ~σ = rxσx + ryσy + rzσz, (2)

where σx, σy and σz are Pauli matrices. It may be useful to show that

1 =
1

2
(ρ+ σxρσx + σyρσy + σzρσz).

(b) What happens to the radius ~r when we apply Ep? How can this be interpreted?

(c) A probability distribution PA(0) = q, PA(1) = 1 − q can be encoded in a quantum state on HA as
ρ̂ = q|0〉〈0|A + (1− q)|1〉〈1|A. Calculate E(ρ̂) and the conditional probabilities PB|A as well as PB

after measuring E(ρ̂) in the standard basis {|0〉B , |1〉B}.

Solution.

(a) For simplicity of notation, we denote the Pauli matrices by σx = X,σy = Y, σz = Z.

Defining A := 1
2(ρ + XρX + Y ρY + ZρZ) and remembering that X2 = Y 2 = Z2 = 1,

XY = −Y X = Z, Y Z = −ZY = X and ZX = −XZ = Y , you can easily verify that
1 = A by direct calculation. A nicer way of doing so is, for instance, to show that

[A,X] = [A, Y ] = [A,Z] = 0, and tr[A] = 2. (S.1)

This proves the claim because the Pauli matrices form a basis of the complex Hilbert space
of 2× 2 matrices and only multiples of the identity commute with all operators.

From this follows that we can write

Ep(ρ) = p
1

2
+ (1− p)ρ =

(
1− 3p

4

)
ρ+

p

4
(XρX + Y ρY + ZρZ) . (S.2)

From that we read out the operator sum representation {Ek}k,

E1 =

√
1− 3p

4
1, E2 =

√
p

2
X, E3 =

√
p

2
Y, E4 =

√
p

2
Z. (S.3)
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(b) Using the result from part (a) we have

E(ρ) =
p

2
1 + (1− p) ρ (S.4)

=
1

2
(1 + (1− p) ~r · ~σ) (S.5)

Thus, points on a sphere with radius r are mapped to a smaller sphere with radius (1−p)r
— they get more mixed in that sense. In particular, pure states will not remain pure
during this TPCPM.

(c) Applying the TPCPM to this state results in

E(ρ̂) =
(p

2
+ (1− p)q

)
|0〉〈0|B +

(p
2

+ (1− p)(1− q)
)
|1〉〈1|B (S.6)

The probabilities PB can be directly read out of the above equation. The conditional
probabilities PB|A can be arranged in a transition matrix (T )ij = PB|A(i|j) as follows:

T =

( p
2 + (1− p) p

2
p
2

p
2 + (1− p)

)
=

(
1− p

2
p
2

p
2 1− p

2

)
. (S.7)

This is what is known as a binary symmetric channel in classical information theory.

Exercise 2. A sufficient entanglement criterion

Given a bipartite quantum state ρAB we say it is separable if it can be written in the form

ρAB =
∑
k

pk σ
(k)
A ⊗ σ(k)

B , (3)

where {pk}k is a probability distribution and {σ(k)
A }k and {σ(k)

B }k are some states on A and B, respectively.
Bipartite states that are not separable are called entangled.

In general it is very difficult to determine if a state is entangled or not. In this exercise we will construct
a simple entanglement criterion that correctly identifies all entangled states in low dimensions.

(a) Let EA : End(HA) → End(HA) be a positive superoperator. Show that EA ⊗ IB maps separable
states to positive operators.

(b) Let {|vi〉A} be an orthonormal basis for system A and define the transpose T as

T : S =
∑
ij

sij |vi〉〈vj | 7→ ST :=
∑
ij

sij |vj〉〈vi|. (4)

Show that the transpose T is a positive superoperator and that it is basis dependent.

(c) Define the Werner state on a two-qubit system AB to be

W = x |ψ−〉〈ψ−|AB + (1− x)
1AB

4
, (5)

where 0 ≤ x ≤ 1 and |ψ−〉AB = 1√
2
(|00〉AB − |11〉AB). What happens to the eigenvalues of W if

we apply the partial transpose on A to it, i.e., what are the eigenvalues of WTA := (TA⊗IB)(W )?

(d) Given a description of a bipartite quantum state, explain how the partial transpose could be used to
determine if a state is entangled.
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Solution.

(a) Using linearity of the superoperator and applying EA ⊗ IB to each state in the mixture
defining the separable state results in a valid product state since EA is positive. Mixtures
of positive states are positive, so the output is positive.

(b) Since a matrix representation of an operator is in general basis-dependent, so is its trans-
pose.

The positivity of T follows from

T
(
USU †

)
= U †TSTUT , (S.8)

as can be seen from the definition. This means that if S has only positive eigenvalues, so
does ST , because unitaries do not change the eigenvalues, and the transpose of a unitary
is unitary.

(c) Clearly the identity remains unchanged by the operation. We write the partial transpose
of W in the standard basis {|00〉, |01〉, |10〉, |11〉} and obtain

W TA =
1

4


1 + x 0 0 0

0 1− x −2x 0
0 −2x 1− x 0
0 0 0 1 + x

 . (S.9)

There is a doubly-degenerate eigenvalue (1 + x)/4 and for the other two eigenvalues of
W TA we only need to look at the 2× 2 matrix

1

4

(
1− x −2x
−2x 1− x

)
.

Its eigenvectors are

(
1
±1

)
, with eigenvalues (1 + x)/4 and (1 − 3x)/4, respectively. The

latter is negative for x > 1/3, and therefore we can conclude that the state is certainly not
separable for 1/3 < x ≤ 1. For this range of x the state is entangled.

Remark 1: The Werner state is an example of an entangled state that nevertheless does not
violate Bell’s inequality. This means that in this sense the criterion we have constructed
is stronger than Bell’s inequality.

Remark 2: Indeed, it can be shown that the PPT criterion (positive partial transpose) is
necessary and sufficient for bipartite systems of dimension 2× 2 and 2× 3. Therefore W
is only separable for 1/3 > x.

(d) If the partial transpose applied to A or B of a bipartite state ρAB has at least one negative
eigenvalue, then ρAB cannot be separable, i.e. has to be entangled. If the partial transpose
of ρAB is positive nothing can be said about whether the state is entangled or not (unless
in dimensions 2× 2 or 2× 3, as mentioned above).
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