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Exercise 1. Canonical purifications

Given a state (density operator) ρ on HA, consider the state |ψ〉AB on HA ⊗HB, defined as

|ψ〉AB = (
√
ρA ⊗ VA′→B) |Ω〉AA′ , |Ω〉AA′ =

∑
k

|k〉A ⊗ |k〉A′ , (1)

where HA′ ' HA, dim(HB) ≥ dim(HA), and VA′→B is an isometry from A′ to B (i.e. V †V = 1A′).

(a) Show that |ψ〉AB is a purification of ρA.

(b) Show that every purification of ρ can be written in this form for some VA′→B.

Solution.

(a) Tracing out B, we obtain

trB[|ψ〉〈ψ|AB] =
√
ρ trB[VA′→B|Ω〉〈Ω|AA′V †

A′→B]
√
ρ

=
√
ρ
∑
k,k′

|k〉〈k′|A tr[VA′→B|k〉〈k′|A′V †
A′→B]

√
ρ

=
√
ρ
∑
k,k′

|k〉〈k′|A tr[|k〉〈k′|A′V †
A′→BVA′→B]

√
ρ

=
√
ρ
∑
k,k′

|k〉〈k′|A δkk′
√
ρ

=
√
ρ1A
√
ρ = ρ.

(S.1)

In the fourth line we used that V is an isometry.

(b) We know that any two purifications of ρA are related by isometries on the purifying
systems, here B. Since applying another isometry to B gives a state of the same form, all
purifications can be brought to this form.

Exercise 2. Decompositions of density matrices

Consider a mixed state ρ with two different pure state decompositions

ρ =
d∑

k=1

λk|k〉〈k| =
d∑

l=1

pl|φl〉〈φl|, (2)

the former being the eigendecomposition so that {|k〉} is an orthonormal basis, and the latter involving
arbitrary (normalized) states |φl〉.

(a) Show that the probability vector ~λ majorizes the probability vector ~p, which means that there exists

a doubly stochastic matrix Tjk such that ~p = T~λ. The defining property of doubly stochastic, or
bistochastic, matrices is that

∑
k Tjk =

∑
j Tjk = 1.

Hint: Observe that for a unitary matrix Ujk, Tjk = |Ujk|2 is doubly stochastic.

(b) The uniform probability vector ~u = ( 1
d , . . . ,

1
d ) is invariant under the action of an d × d doubly

stochastic matrix. Is there an ensemble decomposition of ρ such that pl = 1
d for all l?

Hint: Try to show that ~u is majorized by any other probability distribution.
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Solution.

(a) By the Proposition presented in class we have
√
pl|φl〉 =

∑
k

√
λkUkl|k〉 for some unitary

matrix Ukl. Taking the norm of each expression results in

pl =
∑
k

λk|Ukl|2 (S.2)

since |k〉 is an orthonormal basis. Thus ~λ majorizes ~p. Note that we cannot turn this

argument around to say that ~p majorizes ~λ since starting from
√
λk|k〉 =

∑
l

√
plU

†
kl|φl〉 we

cannot easily compute the norm of the righthand side because the |φl〉 are not orthogonal.

(b) ~u is majorized by every other distribution ~p (of length less or equal to d) since we can use
the doubly stochastic matrix Tjk = 1/d for all j, k to produce ~u = T~p. Therefore, to find
a decomposition in which all the weights are identical, we need to find a unitary matrix
whose entries all have the same magnitude, namely 1/

√
d. One choice that exists in every

dimension is the Fourier transform Fjk = 1√
d
ωjk, where ω = exp(2πi/d). The vectors in

the decomposition are therefore

|φl〉 =
∑
k

√
λkω

kl|k〉. (S.3)

Exercise 3. Generalized measurement by direct (tensor) product

Consider an apparatus whose purpose is to make an indirect measurement on a two-level system, A, by
first coupling it to a three-level system, B, and then making a projective measurement on the latter. B is
initially prepared in the state |0〉B and the two systems interact via the unitary UAB as follows:

|0〉A|0〉B → 1√
2

(|0〉A|1〉B + |0〉A|2〉B) , (3)

|1〉A|0〉B → 1√
6

(2|1〉A|0〉B + |0〉A|1〉B − |0〉A|2〉B) . (4)

(a) Calculate the measurement operators acting on A corresponding to a measurement on B in the
canonical basis {|0〉B , |1〉B , |2〉B}.

(b) Calculate the corresponding POVM elements. What is their rank? Onto which states do they
project?

(c) Suppose A is in the state |ψ〉A = 1√
2
(|0〉+ |1〉)A. What is the state after a measurement, averaging

over the measurement result?

Solution.

(a) Name the output states |φ00〉AB and |φ10〉AB, respectively. Although the specification of
U is not complete, we have the pieces we need, and we can write UAB =

∑
jk |φjk〉〈jk|AB

for some states |φ01〉 and |φ11〉. The measurement operators Ak are defined implicitly by

UAB|ψ〉A|0〉B =
∑
k

Ak ⊗ 1B |ψ〉A|k〉B. (S.4)

Thus Ak = B〈k|UAB|0〉B =
∑

j B〈k|φj0〉AB〈j|A, which is an operator on system A, even
though it might not look like it at first glance. We then find

A0 =
2√
6

(
0 0
0 1

)
, A1 =

1√
6

( √
3 1

0 0

)
, A2 =

1√
6

( √
3 −1

0 0

)
. (S.5)
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(b) The corresponding POVM elements are given by Ej = A†Aj :

E0 =
2

3

(
0 0
0 1

)
, E1 =

1

6

(
3
√

3√
3 1

)
, E2 =

1

6

(
3 −

√
3

−
√

3 1

)
. (S.6)

They are each rank one (which can be verified by calculating the determinant). The POVM
elements project onto the states |1〉, (

√
3|0〉 ± |1〉)/2.

(c) The averaged post-measurement state is given by ρ′ =
∑

j AjρA
†. In this case we have

ρ′ = diag(2/3, 1/3).
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