Exercise 1. Canonical purifications

Given a state (density operator) ρ on \mathcal{H}_{A}, consider the state $|\psi\rangle_{A B}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, defined as

$$
\begin{equation*}
|\psi\rangle_{A B}=\left(\sqrt{\rho_{A}} \otimes V_{A^{\prime} \rightarrow B}\right)|\Omega\rangle_{A A^{\prime}}, \quad|\Omega\rangle_{A A^{\prime}}=\sum_{k}|k\rangle_{A} \otimes|k\rangle_{A^{\prime}} \tag{1}
\end{equation*}
$$

where $\mathcal{H}_{A^{\prime}} \simeq \mathcal{H}_{A}, \operatorname{dim}\left(\mathcal{H}_{B}\right) \geq \operatorname{dim}\left(\mathcal{H}_{A}\right)$, and $V_{A^{\prime} \rightarrow B}$ is an isometry from A^{\prime} to B (i.e. $V^{\dagger} V=\mathbb{1}_{A^{\prime}}$).
(a) Show that $|\psi\rangle_{A B}$ is a purification of ρ_{A}.
(b) Show that every purification of ρ can be written in this form for some $V_{A^{\prime} \rightarrow B}$.

Solution.

(a) Tracing out B, we obtain

$$
\begin{align*}
\operatorname{tr}_{B}\left[|\psi\rangle\left\langle\left.\psi\right|_{A B}\right]\right. & =\sqrt{\rho} \operatorname{tr}_{B}\left[V_{A^{\prime} \rightarrow B}|\Omega\rangle\left\langle\left.\Omega\right|_{A A^{\prime}} V_{A^{\prime} \rightarrow B}^{\dagger}\right] \sqrt{\rho}\right. \\
& =\sqrt{\rho} \sum_{k, k^{\prime}}|k\rangle\left\langlek ^ { \prime } | _ { A } \operatorname { t r } \left[V_{A^{\prime} \rightarrow B}|k\rangle\left\langle\left. k^{\prime}\right|_{A^{\prime}} V_{A^{\prime} \rightarrow B}^{\dagger}\right] \sqrt{\rho}\right.\right. \\
& =\sqrt{\rho} \sum_{k, k^{\prime}}|k\rangle\left\langlek ^ { \prime } | _ { A } \operatorname { t r } \left[|k\rangle\left\langle\left. k^{\prime}\right|_{A^{\prime}} V_{A^{\prime} \rightarrow B}^{\dagger} V_{A^{\prime} \rightarrow B}\right] \sqrt{\rho}\right.\right. \tag{S.1}\\
& =\sqrt{\rho} \sum_{k, k^{\prime}}|k\rangle\left\langle\left. k^{\prime}\right|_{A} \delta_{k k^{\prime}} \sqrt{\rho}\right. \\
& =\sqrt{\rho} \mathbb{1}_{A} \sqrt{\rho}=\rho
\end{align*}
$$

In the fourth line we used that V is an isometry.
(b) We know that any two purifications of ρ_{A} are related by isometries on the purifying systems, here B. Since applying another isometry to B gives a state of the same form, all purifications can be brought to this form.

Exercise 2. Decompositions of density matrices

Consider a mixed state ρ with two different pure state decompositions

$$
\begin{equation*}
\rho=\sum_{k=1}^{d} \lambda_{k}|k\rangle\langle k|=\sum_{l=1}^{d} p_{l}\left|\phi_{l}\right\rangle\left\langle\phi_{l}\right|, \tag{2}
\end{equation*}
$$

the former being the eigendecomposition so that $\{|k\rangle\}$ is an orthonormal basis, and the latter involving arbitrary (normalized) states $\left|\phi_{l}\right\rangle$.
(a) Show that the probability vector $\vec{\lambda}$ majorizes the probability vector \vec{p}, which means that there exists a doubly stochastic matrix $T_{j k}$ such that $\vec{p}=T \vec{\lambda}$. The defining property of doubly stochastic, or bistochastic, matrices is that $\sum_{k} T_{j k}=\sum_{j} T_{j k}=1$.
Hint: Observe that for a unitary matrix $U_{j k}, T_{j k}=\left|U_{j k}\right|^{2}$ is doubly stochastic.
(b) The uniform probability vector $\vec{u}=\left(\frac{1}{d}, \ldots, \frac{1}{d}\right)$ is invariant under the action of an $d \times d$ doubly stochastic matrix. Is there an ensemble decomposition of ρ such that $p_{l}=\frac{1}{d}$ for all l ?
Hint: Try to show that \vec{u} is majorized by any other probability distribution.

Solution.

(a) By the Proposition presented in class we have $\sqrt{p_{l}}\left|\phi_{l}\right\rangle=\sum_{k} \sqrt{\lambda_{k}} U_{k l}|k\rangle$ for some unitary matrix $U_{k l}$. Taking the norm of each expression results in

$$
\begin{equation*}
p_{l}=\sum_{k} \lambda_{k}\left|U_{k l}\right|^{2} \tag{S.2}
\end{equation*}
$$

since $|k\rangle$ is an orthonormal basis. Thus $\vec{\lambda}$ majorizes \vec{p}. Note that we cannot turn this argument around to say that \vec{p} majorizes $\vec{\lambda}$ since starting from $\sqrt{\lambda_{k}}|k\rangle=\sum_{l} \sqrt{p_{l}} U_{k l}^{\dagger}\left|\phi_{l}\right\rangle$ we cannot easily compute the norm of the righthand side because the $\left|\phi_{l}\right\rangle$ are not orthogonal.
(b) \vec{u} is majorized by every other distribution \vec{p} (of length less or equal to d) since we can use the doubly stochastic matrix $T_{j k}=1 / d$ for all j, k to produce $\vec{u}=T \vec{p}$. Therefore, to find a decomposition in which all the weights are identical, we need to find a unitary matrix whose entries all have the same magnitude, namely $1 / \sqrt{d}$. One choice that exists in every dimension is the Fourier transform $F_{j k}=\frac{1}{\sqrt{d}} \omega^{j k}$, where $\omega=\exp (2 \pi i / d)$. The vectors in the decomposition are therefore

$$
\begin{equation*}
\left|\phi_{l}\right\rangle=\sum_{k} \sqrt{\lambda_{k}} \omega^{k l}|k\rangle \tag{S.3}
\end{equation*}
$$

Exercise 3. Generalized measurement by direct (tensor) product

Consider an apparatus whose purpose is to make an indirect measurement on a two-level system, A, by first coupling it to a three-level system, B, and then making a projective measurement on the latter. B is initially prepared in the state $|0\rangle_{B}$ and the two systems interact via the unitary $U_{A B}$ as follows:

$$
\begin{align*}
|0\rangle_{A}|0\rangle_{B} & \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{B}+|0\rangle_{A}|2\rangle_{B}\right) \tag{3}\\
|1\rangle_{A}|0\rangle_{B} & \rightarrow \frac{1}{\sqrt{6}}\left(2|1\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|1\rangle_{B}-|0\rangle_{A}|2\rangle_{B}\right) \tag{4}
\end{align*}
$$

(a) Calculate the measurement operators acting on A corresponding to a measurement on B in the canonical basis $\left\{|0\rangle_{B},|1\rangle_{B},|2\rangle_{B}\right\}$.
(b) Calculate the corresponding POVM elements. What is their rank? Onto which states do they project?
(c) Suppose A is in the state $|\psi\rangle_{A}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)_{A}$. What is the state after a measurement, averaging over the measurement result?

Solution.

(a) Name the output states $\left|\phi_{00}\right\rangle_{A B}$ and $\left|\phi_{10}\right\rangle_{A B}$, respectively. Although the specification of U is not complete, we have the pieces we need, and we can write $U_{A B}=\sum_{j k}\left|\phi_{j k}\right\rangle\left\langle\left. j k\right|_{A B}\right.$ for some states $\left|\phi_{01}\right\rangle$ and $\left|\phi_{11}\right\rangle$. The measurement operators A_{k} are defined implicitly by

$$
\begin{equation*}
U_{A B}|\psi\rangle_{A}|0\rangle_{B}=\sum_{k} A_{k} \otimes \mathbb{1}_{B}|\psi\rangle_{A}|k\rangle_{B} \tag{S.4}
\end{equation*}
$$

Thus $A_{k}={ }_{B}\langle k| U_{A B}|0\rangle_{B}=\sum_{j B}\left\langle k \mid \phi_{j 0}\right\rangle_{A B}\left\langle\left. j\right|_{A}\right.$, which is an operator on system A, even though it might not look like it at first glance. We then find

$$
A_{0}=\frac{2}{\sqrt{6}}\left(\begin{array}{ll}
0 & 0 \tag{S.5}\\
0 & 1
\end{array}\right), \quad A_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}
\sqrt{3} & 1 \\
0 & 0
\end{array}\right), \quad A_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
0 & 0
\end{array}\right) .
$$

(b) The corresponding POVM elements are given by $E_{j}=A^{\dagger} A_{j}$:

$$
E_{0}=\frac{2}{3}\left(\begin{array}{cc}
0 & 0 \tag{S.6}\\
0 & 1
\end{array}\right), \quad E_{1}=\frac{1}{6}\left(\begin{array}{cc}
3 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right), \quad E_{2}=\frac{1}{6}\left(\begin{array}{cc}
3 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right) .
$$

They are each rank one (which can be verified by calculating the determinant). The POVM elements project onto the states $|1\rangle,(\sqrt{3}|0\rangle \pm|1\rangle) / 2$.
(c) The averaged post-measurement state is given by $\rho^{\prime}=\sum_{j} A_{j} \rho A^{\dagger}$. In this case we have $\rho^{\prime}=\operatorname{diag}(2 / 3,1 / 3)$.

