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Exercise 1. Partial trace

The partial trace is an important concept in the quantum mechanical treatment of multi-partite systems,
and it is the natural generalisation of the concept of marginal distributions in classical probability theory.
Let ρAB be a density matrix on the bipartite Hilbert space HA⊗HB and ρA = trB(ρAB) the marginal on
HA.

(a) Show that ρA is a valid density operator by proving it is:

(i) Hermitian: ρA = ρ†A.

(ii) Positive: ρA ≥ 0.

(iii) Normalised: tr(ρA) = 1.

(b) Calculate the reduced density matrix of system A in the Bell state

|Ψ〉 =
1√
2

(|00〉+ |11〉) , where |ab〉 = |a〉A ⊗ |b〉B. (1)

(c) Consider a classical probability distribution PXY with marginals PX and PY .

(i) Calculate the marginal distribution PX for

PXY (x, y) =


0.5 for (x, y) = (0, 0),

0.5 for (x, y) = (1, 1),

0 else,

(2)

with alphabets X ,Y = {0, 1}.
(ii) How can we represent PXY in form of a quantum state?

(iii) Calculate the partial trace of PXY in its quantum representation.

(d) Can you think of an experiment to distinguish the bipartite states of parts (b) and (c)?

Solution.

(a) (i) Remember that ρAB can always be written as

ρAB =
∑
i,j,k,l

cij;kl |i〉〈k|A ⊗ |j〉〈l|B, (S.1)

for some bases {|i〉A} and {|j〉B} of HA and HB, respectively, and cij;kl = c†kl;ij is
hermitian. The reduced density operator ρA is then given by

ρA = trB(ρAB) =
∑
i,k

∑
m

cim;km|i〉〈k|A (S.2)

as can easily be verified. Hermiticity of ρA follows from

ρ†A =
∑
i,k

∑
m

c†im;km (|i〉〈k|A)† =
∑
i,k

∑
m

ckm;im|k〉〈i|A = ρA. (S.3)
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(ii) Since ρAB ≥ 0 is positive, its scalar product with any pure state is positive. Let |ψ〉A
an arbitrary pure state in HA and define |Ψm〉AB = |ψ〉A⊗|m〉B, a state on HA⊗HB:

0 ≤
∑
m

〈Ψm|ρAB|Ψm〉

=
∑
m

〈ψ|A ⊗ 〈m|BρAB|ψ〉A ⊗ |m〉B

=
∑
m

∑
i,j,k,l

cij;kl〈ψ|i〉〈k|ψ〉A〈m|j〉〈l|m〉B

=
∑
i,k

∑
m

cim;km〈ψ|i〉〈k|ψ〉A

= 〈ψ|ρA|ψ〉

(S.4)

Because this is true for any |ψ〉 on mathcalHA, it follows that ρA is positive.

(iii) Consider

tr(ρA) =
∑
i,j

∑
m,n

cim;km〈n|i〉〈k|n〉

=
∑
m,n

cnm;nm = tr(ρAB) = 1.
(S.5)

(b) The reduced state is mixed, even though |Ψ〉 is pure:

ρAB = |Ψ〉〈Ψ| = 1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
(S.6)

trB(ρAB) =
1

2

(
|0〉〈0|+ |1〉〈1|

)
=
1A

2
. (S.7)

(c) (i) Using PX(·) =
∑

y∈Y PXY (·, y), we immediately obtain

PX(0) = 0.5, PX(1) = 0.5. (S.8)

(ii) A probability distribution PZ = {PZ(z)}z may be represented by a state

ρZ =
∑
z

PZ(z)|z〉〈z| (S.9)

for a basis {|z〉}z of a Hilbert space HZ . In this case we can create a two-qubit system
with composed Hilbert space HX ⊗HY in state

ρXY =
1

2

(
|00〉〈00|+ |11〉〈11|

)
. (S.10)

(iii) The reduced state of qubit X is

ρX =
1

2

(
|0〉〈0|+ |1〉〈1|

)
=
1X

2
. (S.11)

Notice that the reduced states of this classical state and the Bell state are the same
whereas the state of the global state is very different – in particular, the latter is
a pure state that can be very useful in quantum communication and cryptography
whereas the former is not.
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(d) One could for instance measure the two states in the Bell basis,

|ψ1〉 =
|00〉+ |11〉√

2
, |ψ2〉 =

|00〉 − |11〉√
2

,

|ψ3〉 =
|01〉+ |10〉√

2
, |ψ4〉 =

|01〉 − |10〉√
2

.

(S.12)

The Bell state we analysed corresponds to the first state of this basis, |Ψ〉 = |ψ1〉, and
a measurement in the Bell basis would always have the same outcome. For the classical
state, however, ρXY = 1

2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), so with probability 1
2 a measurement in this

basis will output |ψ2〉, and we will know we had the classical state. Of course, if we only
have access to a single copy we will find out about the difference only with probability 1

2 .
However, with arbitrarily many copies we will find out which state we have with very high
probability after a few measurements.

Exercise 2. Bipartite systems and measurement

(a) Consider a state ρAB in a composed system HA ⊗ HB shared by Alice, who is in possession of
system A, and Bob, who has access to B. Suppose Alice wants to perform a measurement described
by an observable OA on subsystem HA. The operator OA has eigenvalues (possible outcomes) {x}x
and may be written as the spectral decomposition OA =

∑
x xPx, where {Px}x are projectors –

operators that only have eigenvalues 0 and 1.

Show that the measurement statistics (probabilities of obtaining the different outcomes) are the
same whether you apply OA⊗1B on the joint state ρAB or first trace out the system HB and then
apply OA on the reduced state ρA.

(b) Suppose now that Alice and Bob share a two-qubit system in a maximally entangled state,

|Φ〉AB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) . (3)

Alice then performs a measurement in the basis {|θ〉, |π2 + θ〉}, with |θ〉 := cos θ |0〉 + sin θ |1〉 for
θ ∈ R, on her qubit. In the notation from (a) the basis corresponds to the projectors P+1 = |θ〉〈θ|
and P−1 = |π2 + θ〉〈π2 + θ|.

(i) What description does Alice give to system B, given the outcome of her measurement?

(ii) If Bob performs the measurement in the basis {|0〉, |1〉} on his part of the system, B, what
is the probability distribution for his outcomes? How would Alice, who knows the outsome of
her measurement, describe his probability distribution?

(c) Finally, Alice and Bob share an arbitrary pure state |Ψ〉AB, and Bob would like to perform a
measurement on B described by projectors {Qy}y. Unfortunately his measurement apparatus is
broken, however he can still perform arbitrary unitary operations. Meanwhile, Alice’s measurement
apparatus is in good working order. Show that there exist projectors {Py}y on Alice’s part and
unitaries Uy on A and Vy on B so that

|Ψ̃y〉AB := (1A ⊗Qy) |Ψ〉AB = (Uy ⊗ Vy) (Py ⊗ 1B) |Ψ〉AB . (4)

(Note that the ‘state’ |Ψ̃y〉AB is unnormalized, so that it implicitly encodes the probability of outcome
y.)

By showing this we have proven that Alice can assist Bob by performing a related measurement
herself, after which they can locally correct the state using the local unitaries Uy and Vy. Notice
that Alice will have to (classically) communicate to Bob what her outcome was.
Hint: Use the Schmidt decomposition and work in the Schmidt basis of |Ψ〉AB.
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Solution.

(a) The probability of obtaining outcome x when applying the measurement described by OA
on the reduced state ρA is

tr(PxρA) = tr
(
Px[trB(ρAB)]

)
.

On the other hand, the probability of obtaining the same outcome when we apply OA⊗1B
to the global state is

tr([Px ⊗ 1B]ρAB) = tr
(

trB([Px ⊗ 1B] ρAB)
)

(S.13)

= tr
(
Px[trB(ρAB)]

)
, (S.14)

where Eq. (S.13) stands because the trace can be decomposed into partial traces and
Eq. (S.14) because the partial trace commutes with multiplication with operators of the
form TA ⊗ 1B (see definition of partial trace, e.g. in script).

(b) (i) In accordance with the postulates, Alice describes B by the postmeasurement state.
Computing this we find, for any θ,

A〈θ|Φ〉AB =
1√
2

(cos θ 〈0|+ sin θ 〈1|)(|00〉+ |11〉) (S.15)

=
1√
2

(cos θ |0〉+ sin θ 〈1|) =
1√
2
|θ〉B. (S.16)

Thus, she describes Bob’s state as |θ〉 or |π2 + θ〉 depending on the result of her
measurement, either of which is equally-likely as the other.

(ii) The calculation from the previous part shows that the outcomes of Alice’s measure-
ment on |Φ〉AB are both equally-likely, no matter the value of θ. Hence, also the
probability distribution of Bob’s outcomes should be uniform, as Alice’s mere im-
plementation of the measurement should not affect any observable quantity at his
end.

However, we must check this is consistent with the postulates. Conditioned on Alice’s
measurement result, the state of B is either |θ〉 or |π2 + θ〉, but Bob does not know
which, so he must average over the two possibilities. Alice, who knows the result,
does not need to average. The probability of obtaining |0〉 in his measurement, given
the state |θ〉, is simply cos2 θ (this is Alice’s decription). bob’s ‘averaged’ probability
is then

1

2
cos2 θ +

1

2
cos2(

π

2
+ θ) =

1

2
, (S.17)

which is what we expected. We see that Alice and Bob will have different descriptions
of the postmeasurement state, which is not surprising as it was assumed that only
Alice knows the outcome of her measurement.

(c) Start with the Schmidt decomposition of |Ψ〉AB, |Ψ〉AB =
∑

k

√
pk|αk〉A|βk〉B. Bob’s mea-

surement projectors Qy can be expanded in his Schmidt basis as Qy =
∑

kl c
y
kl|βk〉〈βl|. In

order for Alice’s measurement to replicate Bob’s, the probabilities of the various outcomes
must be identical, which is to say

〈Ψ|1A ⊗Qy|Ψ〉AB = 〈Ψ|Py ⊗ 1B|Ψ〉AB
=⇒

∑
k

pk〈αk|Py|αk〉 =
∑
k

pk〈βk|Qy|βk〉 (S.18)
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for all y. Thus Alice should choose Py =
∑

kl c
y
kl|αk〉〈αl|. The post-measurement states

when Alice or Bob measures are given by

|Ψ′
y〉AB =

∑
kl

√
pkc

y
kl|αl〉A|βk〉B and |Ψy〉AB =

∑
kl

√
pkc

y
kl|αk〉A|βl〉B, (S.19)

respectively. Neither is in Schmidt form, but note that they are related by a simple
swap operation |αj〉A|βk〉B ↔ |αk〉A|βj〉B, which is unitary; call this unitary WAB so that
|Ψy〉 = WY ketΨy. Now let U ′

y⊗V ′
y be unitary operators which transform |Ψy〉 to Schmidt

form in the |αj〉|βk〉 basis. That is, (U ′
y ⊗ V ′

y)|Ψy〉 =
∑

k

√
pyk|αk〉|βk〉, and it follows that

W (U ′
y ⊗ V ′

y)|Ψy〉 = (U ′
y ⊗ V ′

y)|Ψy〉. Therefore V ′
y ⊗ U ′

y takes |Ψ′
y〉 to Schmidt form:

(V ′
y ⊗ U ′

y)|Ψ′
y〉 = WW †(V ′

y ⊗ U ′
y)W |Ψy〉 = W (U ′

y ⊗ V ′
y)|Ψy〉 =

∑
k

√
pyk|αk〉|βk〉, (S.20)

and thus

(U ′
y ⊗ V ′

y)|Ψy〉 = (V ′
y ⊗ U ′

y)|Ψ′
y〉

⇒ (U ′
y ⊗ V ′

y)(1A ⊗Qy)|Ψ〉 = (V ′
y ⊗ U ′

y)(Py ⊗ 1B)|Ψ〉
⇒ (1A ⊗Qy)|Ψ〉 = (U ′†

y V
′
y ⊗ V ′†

y U
′
y)(Py ⊗ 1B)|Ψ〉.

(S.21)

In other words, Py =
∑

kl c
y
kl|αk〉〈αl|, Uy = U ′†

y V ′
y and Vy = V ′†

y U ′
y do the job.
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