
Quantum Information Theory

Solutions 4.

HS 2015
Prof. R. Renner
Dr. J.M. Renes

Exercise 1. Distinguishing channels

The setting is the following: With equal probabilities you are given either the identity channel I on some
finite alphabet X or an arbitrary channel W on the same alphabet, without knowing which. In terms of
conditional probability distributions the channels are described by

I(x |x′) = δxx′ and W (x |x′) , (1)

for x, x′ ∈ X . You are allowed to use the given channel once, possibly with a stochastic (randomized)
input, and then asked which channel was used.

(a) The error probability of a channel W is defined as Perror(W) := maxx∈X
(
1−W (x |x)

)
. Argue why

this is a sensible definition.

(b) Using properties of the trace distance of probability distributions previously derived in Exercise Sheet
1, Exercise 1(c), show that the probability of guessing the channel correctly in the above scenario is

Pguess(I vs. W) =
1

2

(
1 + Perror(W)

)
. (2)

Solution.

(a) For some specific x ∈ X the error probability of W is the probability that the output
differs from the input which is equal to 1 minus the probability that the output equals the
input, i.e. Perror(W on x) = 1−W (x |x). The ‘overall’ error probability of W is then just
the maximum error probability of W on the inputs,

Perror(W) = max
x∈X

Perror(W on x) = max
x∈X

(
1−W (x |x)

)
. (S.1)

Notice, however, that a high error probability according to this definition does not mean
that the channel is useless! This way of defining the error probability merely compares the
channel to the identity channel.

(b) According to the setting, the only thing we will have access to at the end is the output
of the channel, so what we will be confronted with is the problem of distinguishing two
probability distributions from one sample. This is exactly the setting considered in the
mentioned exercise in Exercise Sheet 1. Furthermore, we have not specified the input
distribution. Calling the chosen input RV X, distributed PX , and denoting the output RV
if W is applied by X ′ := W (X), distributed PX′ , we see that

Pguess(I vs. W) = max
PX

Pguess(X vs. X ′) = max
PX

1

2

(
1 + δ(PX , PX′)

)
. (S.2)

We can express PX′ in terms of PX and W (· | ·) as

PX′(x
′) =

∑
x∈X

PX(x)W (x′ |x) (S.3)

1

for x′ ∈ X . Together with the definition of the trace distance δ(·, ·) therefore:

Pguess(I vs. W) =
1

2

(
1 + max

PX

δ(PX , PX′)
)

=
1

2

(
1 + max

PX

1

2

∑
x∈X
|PX(x)− PX′(x)|

)
=

1

2

(
1 +

1

2
max
PX

∑
x∈X

∣∣∣ ∑
x′∈X

PX(x′) [δxx′ −W (x |x′)]
∣∣∣)

(S.4)

A few observations are in order. Consider the function g of PX ,

g(PX) :=
∑
x∈X

∣∣∣ ∑
x′∈X

PX(x′) [δxx′ −W (x |x′)]
∣∣∣. (S.5)

This is the function we want to maximise in (S.4). The absolute value | · | is a convex
function. In g this is applied to a linear function of PX ,

∑
x′∈X PX(x′) [δxx′−W (x |x′)]. Fi-

nally, g is a linear combination of such terms with positive coefficients (here all coefficients
are 1). Hence, g is a convex function on the space of probability distributions.

Now, when maximising a convex function we know that the maximiser lies on the boundary
of the domain of the function. In this case, the boundary of probability distributions are
the deterministic distributions,

PX(x) = δxx? , for some x? ∈ X . (S.6)

Therefore we can replace the maximization in (S.4) over probability distributions with a
maximization over all possible deterministic distributions and find

Pguess(I vs. W) =
1

2

(
1 +

1

2
max
x?

∑
x∈X

∣∣∣ ∑
x′∈X

δx′x? [δxx′ −W (x |x′)]
∣∣∣)

=
1

2

(
1 +

1

2
max
x?

∑
x∈X

∣∣δxx? −W (x |x?)
∣∣)

=
1

2

(
1 +

1

2
max
x?

[
1−W (x? |x?) +

∑
x 6=x?

W (x |x?)
])

=
1

2

(
1 + max

x?
[1−W (x? |x?)]

)
=

1

2

(
1 + Perror(W)

)
,

(S.7)

where we used that W (· | ·) is a conditional probability distribution in the fourth line.

Exercise 2. Source coding

In the lecture we have seen a channel coding theorem with a more or less tricky derivation involving
interesting ideas which were needed to get to the final result. In this exercise we will consider source
coding, the challenge of which is to compress some input described by a RV X to another RV Y . One
can think of this as the task to find the optimal channel PY |X such that all information contained in X
can be retrieved from Y , but the alphabet Y of Y should be as small as possible. Instead of phrasing the
problem in a technical way, we are here taking a simpler and more conceptual approach.

Consider a k-bit string described by the RV X distributed PX . We would like to compress this to a l-bit
string described by a RV Y distributed PY . The goal is to find the minimal l such that Y contains (almost)
all information from X.

2

(a) Suppose you are not interested in many but just in a single use of the compressed source. Further-
more you will not tolerate any errors. How small can l be chosen in this case?

(b) If you allow for some small error ε, what is the answer now?

(c) Often one is interested in many (independent) uses of the source. Using asymptotic equipartition
results for max-entropies, show that for N i.i.d. uses of the source the optimum compression requires
NH(X)PX

bits in the limit N →∞.

This is called Shannon’s source coding theorem. Interestingly, using single-shot quantities and results
about asymptotic equipartition this result becomes almost trivial.

Solution.

(a) If no errors are tolerated all one can do is to map X in a 1−1 fashion to Y such that every
possible value of X has exactly one corresponding value in Y (by ‘value’ here we basically
mean a specific bit string). Hence, optimally the alphabet of Y is as large as the support
of X. In terms if bits this is

l = log suppPX = Hmax(X)PX
, (S.8)

where log is the logarithm w.r.t. base 2.

(b) As encountered in Exercise Sheet 2, Exercise 1, allowing for small errors ε suggests that
we should use the smooth max-entropy instead of the standard max-entropy. Indeed, by
definition of the smooth max-entropy we find that the optimal number of bits to encode
X is in this case given by

l = min
QX∈Bε(PX)

Hmax(X)QX
= Hε

max(X)PX
. (S.9)

(c) The AEP for the classical smooth max-entropy says

lim
ε→0

lim
N→∞

1

N
Hε

max(XN)P×N
X

= H(X)PX
. (S.10)

According to (b), inN independent uses the compressed data finds space onHε
max(XN)P×N

X

bits, while the error is given by ε. The AEP now relates this asymptotically toNH(X)PX
∼

Hε
max(XN)P×N

X
for large N , which concludes the proof.

Exercise 3. Getting used to the Bloch representation

In this exercise we will see that any density operator of a qubit can be written as

ρ =
1

2
(1+ ~r · ~σ), (3)

where ~σ = (σx, σy, σz) is the vector of Pauli matrices and ~r = (rx, ry, rz) ∈ R3, |~r| ≤ 1 is the so-called
Bloch vector that gives us the position of a point in a unit ball. The surface of that ball is usually known
as the Bloch sphere. Thereby we go through a few properties of density matrices describing states of a
qubit using the Bloch representation. This way of expressing qubit states is very convenient and frequently
used in quantum information theory.

Hint: The (anti-)commutation relations for Pauli matrices will be helpful.

3

(a) Using Eq. (3):

(i) Find and draw in the ball the Bloch vectors of a fully mixed state and the pure states that
form three bases, {| ↑〉, | ↓〉}, {|+〉, |−〉} and {| 	〉, | �〉}.

(ii) Find and diagonalise the states represented by Bloch vectors ~r1 = (1
2 , 0, 0) and ~r2 = (1√

2
, 0, 1√

2
).

(b) Show that the operator ρ defined in Eq. (3) is a valid density operator for any vector ~r with |~r| ≤ 1
by proving it fulfils the following properties:

(i) Hermiticity: ρ = ρ†.

(ii) Positivity: ρ ≥ 0.

(iii) Normalisation: tr(ρ) = 1.

(c) Now do the converse: show that any qubit density operator may be written in the form of Eq. (3).

(d) Check that the surface of the ball is formed by all the pure states, i.e.

ρ pure ⇔ ρ =
1

2
(1+ ~r · ~σ) with |~r| = 1. (4)

Solution.

(a) (i)

state density matrix Bloch vector in the figure

1

2
1
2

(
1 0
0 1

)
(0, 0, 0) green

|0〉 1
2

(
2 0
0 0

)
(0, 0, 1) red

|1〉 1
2

(
0 0
0 2

)
(0, 0,−1) red

state density matrix Bloch vector in the figure

|+〉 1
2

(
1 1
1 1

)
(1, 0, 0) yellow

|−〉 1
2

(
1 −1
−1 1

)
(−1, 0, 0) yellow

|�〉 1
2

(
1 −i
i 1

)
(0, 1, 0) blue: |R〉

|	〉 1
2

(
1 i
−i 1

)
(0,−1, 0) blue: |L〉

id
2

x

y

z

-

+

L
R

4

(ii) We have

ρ1 =
1

2

[
1 +

(
1

2
, 0, 0

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1

2

(
0 1
1 0

)]
(S.11)

=
1

4

(
2 1
1 2

)
⇒ Eigenvalues:

{
1

4
,
3

4

}
,

ρ2 =
1

2

[
1 +

(
1√
2
, 0,

1√
2

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1√
2

(
0 1
1 0

)
+

1√
2

(
1 0
0 −1

)]
(S.12)

=
1

2
√

2

(√
2 + 1 1

1
√

2− 1

)
⇒ Eigenvalues: {0, 1}.

The first Bloch vector lies inside the ball (|~r1 = 1
4 |), and the state that it represents

is mixed. The Bloch vector of the second state is on the surface of the sphere, and
that state is pure.

(b) (i) Hermiticity: ρ = ρ†. All Pauli matrices are Hermitian and the vector ~r is real, so the
result comes from direct application of Eq. (3).

(ii) Positivity: ρ ≥ 0. The general form of a state given by Eq. (3) is

ρ =
1

2

(
1 + rz rx − iry
rx + iry 1− rz

)
⇒ Eigenvalues:

{
1− |~r|

2
,
1 + |~r|

2

}
. (S.13)

Since 0 ≤ |~r| ≤ 1, the eigenvalues are non negative.

(iii) Normalisation: tr(ρ) = 1. From Eq. (S.13) we have that

tr(ρ) = (1 + rz) + (1− rz) = 1. (S.14)

(c) One can always expand an operator A in an orthonormal basis {ei}i as A =
∑

i(A, ei)ei,
where the inner product (A,B) is defined as tr(A∗B). The three Pauli matrices and the
identity form a basis for 2 × 2 matrices, B. However, this basis is not normalized. A
normalized basis would be

B′ =
{
σx√

2
,
σy√

2
,
σz√

2
,
1√
2

}
. (S.15)

We can expand any 2 × 2 matrix in this basis, and in particular any two-level density
operator:

ρ = tr(ρ1)
1

2
+
∑
i

tr(ρσi)
σi
2

=
1

2
+

1

2

(
tr(ρσx), tr(ρσy), tr(ρσz)

)
·
(
σx, σy, σz

)
(S.16)

=
1

2
(rx, ry, rz) · (σx, σy, σz) ,

5

where we used the property of density operators tr(ρ) = 1. To obtain the bound |~r| ≤ 1
we use the fact that for any density operator tr(ρ2) ≤ 1 (because all eigenvalues λj ≤ 1
and

∑
λj = 1) and get

1 ≥ tr(ρ2)

= tr
([

1

2
+
∑
i

ri
σi
2

][
1

2
+
∑
i

ri
σi
2

])
=

1

4
tr
([

1 +
∑
i

ri
2

]
1

)
(because B′ is an orthonormal basis)

=
1

2

(
1 +

∑
i

ri
2
)

⇒ 1 ≥
∑
i

ri
2. (S.17)

(d) For pure states, tr(ρ2) = 1 and we can replace all “≥” with “=” above, obtaining |~r| = 1.

6

