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Exercise 1. Smooth min-entropy in the i.i.d. limit

The smooth min-entropy of a random variable X over X is defined as

Hε
min(X)P = max

QX∈Bε(PX)
Hmin(X)Q, (1)

where the maximum is taken over all probability distributions QX that are ε-close to PX . Furthermore,
we define an i.i.d. random variable ~X = {X1, X2, . . . , Xn} on X×n with P ~X(~x) =

∏n
i=1 PX(xi).

Use the weak law of large numbers to show that the smooth min-entropy converges to the Shannon entropy
H(X) in the i.i.d. limit:

lim
ε→0

lim
n→∞

1

n
Hε

min( ~X)P ~X = H(X)PX . (2)

Solution. The weak law of large numbers as shown in exercise series 1 is given by:

lim
n→∞

P

( 1

n

∑
i

Si − µ

)2

≥ η

 = 0 for any η > 0, µ = E[S]. (S.1)

Setting Si = hP (xi) := − logPX(xi) we get µ = H(X) and thus

lim
n→∞

P

[∣∣∣∣∣ 1n∑
i

hP (xi)−H(X)

∣∣∣∣∣ < ν

]
= 1 for any ν > 0. (S.2)

Notice that to simplify the notation we dropped the subscript P (X) for H(X).
This knowledge allows us to restrict the set of vectors ~x to typical outcomes, namely we introduce
a subset Gν of X×n:

G(n)
ν =

{
~x ∈ X×n :

∣∣∣∣∣ 1n∑
i

hP (xi)−H(X)

∣∣∣∣∣ < ν

}
. (S.3)

The weak law of large numbers can now be restated simply as

lim
n→∞

P ~X [G(n)
ν ] = lim

n→∞
P ~X [~x ∈ G(n)

ν ] = 1. (S.4)

Furthermore, let (G(n)
ν )c denote the complement of G(n)

ν in X×n. As a next step we choose

Q ~X(~x) =

{
P ~X(~x)/P ~X [G(n)

ν ] if ~x ∈ G(n)
ν

0 if ~x ∈ (G(n)
ν )c

. (S.5)

This distribution has the property that for any fixed ν, the trace distance δ(P ~X , Q ~X) vanishes
in the limit of n→∞. This can be seen when we use the alternative definition of δ introduced
in problem set 1 and when we take the probabilities over the set (G(n)

ν )c of all events where
Q ~X < P ~X :

lim
n→∞

δ(P ~X , Q ~X) = lim
n→∞

P ~X [(G(n)
ν )c]−Q ~X [(G(n)

ν )c] = 0. (S.6)
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In particular, we can now evaluate the “smooth” min-entropy for any fixed ε > 0 and ν > 0:

lim
n→∞

1

n
Hε

min( ~X) ≥ lim
n→∞

min
~x∈X×n

1

n
hQ(~x)

= lim
n→∞

min
~x∈Gν

1

n
hP (~x) + lim

n→∞

1

n
logP ~X [G(n)

ν ]

= lim
n→∞

min
~x∈Gν

1

n

∑
i

hP (xi)

≥ H(X)− ν

(S.7)

The first inequality is a consequence of the fact that our Q ~X is not necessarily optimal (as
a matter of fact it could be shown that it actually is). It follows that this construction only
gives us a lower bound on the i.i.d. limit once we set ν arbitrarily close to zero and let ε → 0.
However, from the definition of Shannon and min-entropy follows directly that min-entropy can
never exceed Shannon entropy,

Hmin(X)P ≤ H(X)P , (S.8)

since the information gain in the worst-case can never be higher than the average information
gain. This concludes the proof.

Exercise 2. An interpretation of the trace distance

We have introduced the trace distance of two probability distributions in exercise sheet 1 and have shown
that it is at least a reasonable distance measure in that it is positive and fulfils the triangle inequality. In
this exercise we show an important property of this measure which is arguably the main reason why the
trace distance is so frequently used, e.g. in security proofs of cryptographic protocols.

Consider two random variables X and X ′ on the same alphabet X distributed PX and PX′ , respectively.
The trace distance between them is δ(PX , PX′) =: ε. The goal is to show that there exists a joint distri-
bution of X and X ′, P̄XX′ , which is compatible with PX and PX′ and has the property that

P̄ [X 6= X ′] ≤ ε. (3)

Compatibility here means that the marginals of P̄XX′ , P̄X and P̄X′ , coincide with PX and PX′ , respec-
tively.

(a) Argue that for ε ∈ {0, 1} the statement is (almost) trivially true.

(b) From now on we assume 0 < ε < 1. For x ∈ X define

Pmin
X (x) :=

min{PX(x), PX′(x)}
1− ε

, P diff
X (x) :=

PX(x)− (1− ε)Pmin
X (x)

ε
and (4)

P diff
X′ (x) :=

PX′(x)− (1− ε)Pmin
X (x)

ε
. (5)

Check that Pmin
X , P diff

X and P diff
X′ are valid probability distributions on X .

(c) Construct a possible joint distribution P̄ as follows: throw a die with odds {1−ε, ε}. If the outcome
corresponds to the probability 1 − ε distribute XX ′ s.t. X = X ′ and X distributed Pmin

X . If not,
let X and X ′ be independently distributed P diff

X and P diff
X′ , respectively. Check that P̄ is compatible

with PX and PX′ and that P̄ [X 6= X ′] ≤ ε.

Why is this way of interpreting the trace distance so helpful? Think of X as an ideal system about which
we can make precise statements (e.g. about its security w.r.t. attacks from adversaries) and about X ′
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as the real system. First the special case ε = 0: suppose we found in our theoretical analysis that the
descriptions in terms of probability distributions of X and X ′ differ in trace distance by zero, ε = 0.
Then, by the above, we know that there exists a joint distribution P̄ describing both the ideal and the real
system at the same time s.t. they never behave differently, i.e. always X = X ′. In other words, with
probability 1 the real system behaves ideally. In the general case, when the trace distance between PX
and PX′ can be bounded by some ε, the statement that X ′ behaves like an ideal system still holds with
probability 1− ε.

Solution.

(a) If ε = 0 this means that the probability distributions are equal. P̄ should then just be

P̄XX′(x, x
′) = δxx′PX(x). (S.9)

By definition X = X ′ always in this case. In the case where ε = 1 the statement P̄ [X 6=
X ′] ≤ 1 is trivially satisfied.

(b) We start with Pmin
X . There are two things we need to show: (i) ∀x ∈ X : Pmin

X (x) ≥ 0 and
(ii)

∑
x∈X P

min
X (x) = 1. (i) is trivially satisfied by definition because both PX and PX′

are valid probability distributions. For (ii), define the (by now well-known) set S := {x ∈
X | PX(x) ≥ PX′(x)}, showing up in the alternative definition of δ(·, ·), and calculate

∑
x∈X

Pmin
X (x) =

1

1− ε

(∑
x∈S

PX′(x) +
∑
x∈Sc

PX(x)

)

=
1

1− ε

(∑
x∈S

[PX′(x)− PX(x)] +
∑
x∈S

PX(x) +
∑
x∈Sc

PX(x)

)

=
1

1− ε

(
−δ(PX , PX′) +

∑
x∈X

PX(x)

)

=
1− ε
1− ε

= 1.

(S.10)

Likewise we see that P diff
X and P diff

X′ are positive. Furthermore:∑
x∈X

P diff
X (x) =

1

ε

∑
x∈X

(
PX(x)− (1− ε)Pmin

X (x)
)

=
1

ε

(
1− (1− ε)

)
= 1, (S.11)

where we used
∑

x∈X P
min
X (x) = 1 from above. The same calculation obviously works for

P diff
X′ .

(c) The distribution P̄ described in the exercise can be written as

P̄XX′(x, x
′) = (1− ε)δxx′Pmin

X (x) + εP diff
X (x)P diff

X′ (x′). (S.12)

We first check compatibility. By definition of P̄ for x ∈ X we can write

P̄X(x) =
∑
x′∈X

P̄XX′(x, x
′) = (1− ε)Pmin

X (x) + εP diff
X (x)

= (1− ε)Pmin
X (x) + ε

PX(x)− (1− ε)Pmin
X (x)

ε
= PX(x).

(S.13)
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Again the same calculation works for PX′ , which concludes the argument that P̄ is com-
patible with PX and PX′ . Now, what is the probability that X and X ′ differ? By definition
of P̄ they could only differ if the ‘coin flip’ has the outcome associated to probability ε.
Therefore we have almost trivially

P̄ [X 6= X ′] ≤ ε. (S.14)

Exercise 3. Fano’s inequality

Given two random variables X and Y , how well can we predict X given Y ? Fano’s inequality bounds the
probability of error in such a prediction in terms of the conditional entropy H(X|Y ). The goal of this
exercise is to prove the inequality

Perror ≥
H(X|Y )− 1

log |X|
. (6)

(a) Representing the guess of X by the random variable X̂, which is some function, possibly random,

of Y , show that H(X|X̂) ≥ H(X|Y ).

(b) Consider the indicator random variable E which is 1 if X̂ 6= X and zero otherwise. Using the chain

rule we can express the conditional entropy H(E,X|X̂) in two ways:

H(E,X|X̂) = H(E|X, X̂) +H(X|X̂) = H(X|E, X̂) +H(E|X̂). (7)

Calculate each of these four expressions and complete the proof of the Fano inequality.

Hints: For H(E|X̂) use the fact that conditioning reduces entropy: H(E|X̂) ≤ H(E). For H(X|E, X̂)
consider the cases E = 0, 1 individually.

Solution.

(a) By definition of the setting the random variable X̂ arises from Y through a channel (con-
ditional probability distribution) P

X̂|Y . Thus we can use the data processing inequality.

It leads directly to H(X|X̂) ≥ H(X|Y ).
Notice that here another way of saying ‘X̂ arises from Y ’ is to state that X, Y , and X̂
form a Markov chain, X ↔ Y ↔ X̂.

(b) First, we have H(E|X, X̂) = 0 since E is determined from X and X̂. On the other hand,
H(E|X̂) ≤ H(E) = Hbin(Perror) since conditioning reduces entropy. Here, Hbin is the
binary entropy. We then have

H(X|E, X̂) = H(X|E = 0, X̂)p(E = 0) +H(X|E = 1, X̂)p(E = 1)

= 0(1− Perror) +H(X|E = 1, X̂)Perror ≤ Perror log |X| .
(S.15)

Putting this together we obtain

H(X|Y ) ≤ H(X|X̂) ≤ Hbin(Perror) + Perror log |X| ≤ 1 + Perror log |X|, (S.16)

where the last inequality follows since Hbin(x) ≤ 1. Rearranging terms gives the Fano
inequality.
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