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1Introduction
“Information is physical” claimed the late physicist Rolf Landauer,1 by which he meant that

Computation is inevitably done with real physical degrees of freedom, obeying the laws
of physics, and using parts available in our actual physical universe. How does that re-
strict the process? The interface of physics and computation, viewed from a very fun-
damental level, has given rise not only to this question but also to a number of other
subjects...[1]

The field of quantum information theory is among these “other subjects”. It is the result of asking
what sorts of information processing tasks can and cannot be performed if the underlying informa-
tion carriers are governed by the laws of quantum mechanics as opposed to classical mechanics. For
example, we might use the spin of a single electron to store information, rather than the magneti-
zation of a small region of magnetic material (to say nothing of ink marks on a piece of paper). As
this is a pretty broad question, the field of quantum information theory overlaps with many fields:
physics, of course, but also computer science, electrical engineering, chemistry and materials science,
mathematics, as well as philosophy.

Famously, it is possible for two separated parties to communicate securely using only insecure
classical and quantum transmission channels (plus a short key for authentication), using a protocol for
quantum key distribution (QKD). Importantly, the security of the protocol rests on the correctness
of quantum mechanics, rather than any assumptions on the difficulty of particular computational
tasks—such as factoring large integers—as is usual in today’s cryptosystems. This is also fortunate
from a practical point of view because, just as famously, a quantum computer can find prime factors
very efficiently. On the other hand, as opposed to classical information, quantum information cannot
even be copied, nor can it be deleted! Nevertheless, quantum and classical information theory are
closely related. Because any such classical system can in principle be described in the language of
quantum mechanics, classical information theory is actually a (practically significant) special case of
quantum information theory.

The goal of this course is to provide a solid understanding of the mathematical foundations of
quantum information theory, with which we can then examine some of the counterintuitive phe-
nomena in more detail. In the next few lectures we will study the foundations more formally and
completely, but right now let’s just dive in and get a feel for the subject.

1.1 Bits versus qubits

Classical information, as you already know, usually comes in bits, random variables which can take
on one of two possible values. We could also consider “dits”, random variables taking on one of d
values, but this can always be thought of as some collection of bits. The point is that the random
variable takes a definite value in some alphabet.

In contrast, quantum information comes in qubits, which are normalized vectors in C2. Given
some basis |0〉 and |1〉, the qubit state, call itψ, can be written |ψ〉= a|0〉+b |1〉, with a, b ∈C such that
|a|2+|b |2 = 1. The qubit is generally not definitely in either state |0〉 or |1〉; if we make a measurement
whose two outcomes correspond to the system being in |0〉 and |1〉, then the probabilities are

prob(0) = |〈0|ψ〉|2 = |a|2 prob(1) = |〈1|ψ〉|2 = |b |2 (1.1)

1Rolf Wilhelm Landauer, 1927-1999, German-American physicist.
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1. INTRODUCTION

The state of n qubits is a vector in C2n
, a basis for which is given by states of the form |0, . . . , 0〉=

|0〉⊗ · · · ⊗ |0〉, |0, . . . , 1〉, |0, . . . , 1, 0〉, etc. Then we write the quantum state of the entire collection as

|ψ〉= ∑

s∈{0,1}n
ψs |s〉, (1.2)

where s are binary strings of length n and once again ψs ∈C with 〈ψ|ψ〉= 1=
∑

s |ψs |2.
Allowed transformations of a set of qubits come in the form of unitary operators, which just

transform one basis ofC2n
into another. Knowing this, we can already prove the no-cloning theorem!

1.2 No cloning

Suppose we have a cloning machine, which should perform the following transformation

|ψ〉|0〉 −→ |ψ〉|ψ〉, (1.3)

for any qubit state |ψ〉. According to the laws of quantum mechanics, the transformation should be
described by a unitary U . In particular, U should clone the standard basis states:

U |00〉= |00〉 and U |10〉= |11〉. (1.4)

But the action on a basis fixes the action on an arbitrary qubit state, due to the linearity of U . Thus,
for |ψ〉= a|0〉+ b |1〉 we find

U |ψ〉|0〉= aU |00〉+ b U |10〉= a|00〉+ b |11〉. (1.5)

But what we wanted was

|ψ〉|ψ〉= (a|0〉+ b |1〉) (a|0〉+ b |1〉) (1.6)

= a2|00〉+ ab |01〉+ ba|10〉+ b 2|11〉, (1.7)

which is not the same. Thus, U |ψ〉|0〉 6= |ψ〉|ψ〉 for arbitrary qubit states. Note that U does clone the
basis properly, but by the linearity of quantum mechanics, it can therefore not clone arbitrary states.

Instead, the cloning machine extends the superposition over two systems, producing an entangled
state. As we will see, the superposition now manifests itself only in the two systems jointly, not in
either system individually. Superposition of two states is often called coherence, for just as two classical
waves are coherent if they have a definite phase relationship, a given superposition with weights a and
b also has a definite phase relationship between the two states. It turns out that for a state like (1.5), the
coherence of the first system has completely vanished; there is no more detectable phase relationship
between the two states |0〉 and |1〉. Of course, the coherence isn’t destroyed, since it can be restored
by simply applying U ∗.

The interplay between coherence, cloning, and entanglement already gives us an idea of the deli-
cate nature of quantum information processing. Superposition, or coherence, is the hallmark of the
quantum nature of an information processing device. The above example shows that mere copying
of the state in one basis, which we think of as copying classical information encoded in this basis,
is already enough to destroy the coherence. Thus, a truly quantum information processing device
cannot leak any information whatsoever, it must operate completely isolated from its environment.
This requirement is one of the daunting challenges of constructing quantum devices.
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1.3. Measurement and disturbance

1.3 Measurement and disturbance

Even if a generic qubit is not definitely in one of the states |0〉 or |1〉, what happens after a mea-
surement? Surely if we repeat the measurement, we should get the same result (provided nothing
much has happened in the meantime). Indeed this is the case in quantum mechanics. Starting from
|ψ〉= a|0〉+ b |1〉 and making the |0〉/|1〉measurement leaves the system in state |0〉 with probability
|a|2 or the state |1〉 with probability |b |2, so that a subsequent identical measurement yields the same
result as the first.

We can measure in other bases as well. For instance, consider the basis |±〉= 1p
2
(|0〉± |1〉). Now

the probabilities for the two outcomes are

prob(+) = |〈+|ψ〉|2 = 1
2 |a+ b |2 prob(−) = |〈−|ψ〉|2 = 1

2 |a− b |2. (1.8)

Thus, if |ψ〉 = |0〉, then p± =
1
2 . That is, the measurement outcome is completely random. And

after the measurement the state is either |+〉 or |−〉. In this way, measurement disturbs the system by
changing its state.

This phenomenon makes QKD possible. Very roughly, a potential eavesdropper attempting to
listen in on a quantum transmission by measuring the signals will unavoidably disturb the signals,
and this disturbance can be detected by the sender and receiver.

1.4 Quantum key distribution

We can get a flavor of how this works by taking a quick look at the original BB84 protocol, formulated
by Bennett2 and Brassard3 in 1984. The goal, as in any QKD protocol, is to create a secret key between
the two parties, which may then be used to encrypt sensitive information using classical encryption
methods. A secret key is simply a random sequence of bits which are unknown to anyone but the
two parties.

Here’s how it works. One party (invariably named Alice) transmits quantum states to the other
(invariably named Bob), where the states are randomly chosen from the set {|0〉, |1〉, |+〉, |−〉}. Phys-
ically these could correspond to various polarization states of a single photon (horizontal, vertical,
+45◦, −45◦), or anything else whose quantum description is given by the states above. When Bob
receives each signal, he immediately measures it, randomly choosing either the “standard” |k〉 basis
(k = 0,1) or the “conjugate” |±〉 basis.

If the quantum states arrive at Bob’s end unchanged, then when he measures in the same basis
Alice used to prepare the state, he will certainly get the corresponding outcome. That is, if Alice
prepares a standard basis state and Bob makes a measurement in the standard basis, they will have the
same classical bit describing which basis element was transmitted/received. When Alice prepares |0〉,
Bob is certain to see |0〉, so they can create one bit of secret key (with value 0). On the other hand,
if Bob’s basis does not match Alice’s then Bob’s “which-basis-element” bit is totally uncorrelated
with Alice’s, and hence useless. When Alice sends |0〉 but Bob measures in the conjugate basis, his
outcome is completely random. Alice and Bob can separate the good cases from the bad ones by
simply announcing publicly which basis they used in each instance.

Due to the fragility of quantum states, any attempt by a would-be eavesdropper (invariably named
Eve) to spy on the quantum signals can be noticed by Alice and Bob. Suppose Eve intercepts the

2Charles Henry Bennett, born 1943, American physicist and information theorist.
3Gilles Brassard, born 1955, Canadian computer scientist.
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1. INTRODUCTION

signals, measures them randomly in one basis or the other, and then resends the state corresponding
to the outcome she observed. This will cause errors in the bits created by Alice and Bob, which they
can observe by sacrificing a portion of the key and directly comparing it publicly.

Specifically, Eve’s action causes an error with probability 1/4. For concreteness, suppose Alice
sends |0〉. Half the time Eve measures in the standard basis and passes |0〉 to Bob without error. The
other half of the time she measures in the conjugate basis, which produces a random outcome. Each
of the two possible states |±〉 has a probability of 1/2 of generating the correct outcome |0〉 when
measured by Bob, so the overall error probability is 1/4. This attack nets Eve the value of the bit sent
by Alice with probability 1/2.

But if Alice and Bob compare a portion of the key and observe no errors, then they can be rela-
tively certain that the remainder of the key is secure against this “intercept-resend” attack: Eve could
not have gained any information about the key.

Although we haven’t proven that QKD can be secure against arbitrary attacks, this example illus-
trates the basis mechanism of security. The crucial point is that the fragility of quantum information
implies that the information gained by Eve is linked to the errors observed in the key. Classical in-
formation, in contrast, is not so fragile and shows no evidence of it having been copied.

Even thought in this example Alice and Bob abort the protocol for any nonzero error rate, it is
possible to construct QKD protocols which can tolerate a finite amount of error. Showing how to
accomplish this task is in fact one of the goals of the course.

1.5 Quantum computation is not like classical computation

From a computer science perspective, we might now wonder why quantum computers could be more
powerful than classical computers, given the rough sketch of quantum information theory we have
seen so far. After all, quantum states are vectors, operations on them are unitary operators, and
measurements correspond to taking an inner product, all of which can be simulated on a classical
computer. Right! A quantum computer cannot compute anything that a classical computer cannot,
since we can always simulate the former with the latter. But what is really important are the necessary
resources, in particular how much space (memory) we are going to need and how much time it is going
to take.

A quantum computation, like a classical computation, is the calculation of a given function of
the (classical) input. In a quantum computer we feed in |x〉 for input x. For instance, the factoring
algorithm is a means to compute f (x) = (p1, p2, . . . ), the prime factors of input x. The goal is to
do this quickly, in an amount of time t which scales algebraically with the length of the input, i.e.
t ≈ poly(|x|), where |x| is the number of bits of x. Algorithms scaling exponentially in |x|, on the
other hand, quickly become too slow.

Algorithms are sequences of simple operations which yield the action of the desired function. For
instance, we can build up any function we want (assuming it takes binary strings to binary strings)
out of AND, OR, and NOT operations on just two bits at a time (or one for NOT). Indeed, NAND

or NOR gates alone suffice to compute any function. The runtime of the computation is then how
many steps we need to execute all of the required gates.

Quantum algorithms are largely the same, sequences of unitary operations acting on just one
and two qubits at a time. A quantum computer is therefore any device with which we can perform
suitable unitary gates to the initial state and then read out (measure) the final state to get the answer,
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1.5. Quantum computation is not like classical computation

as in

|x〉 f−→Uf |x〉= | f (x)〉 Uf =VnVn−1 · · ·V1, (1.9)

where the V j are single- and two-qubit operations. Actually, we only need something like

p f (x) = |〈 f (x)|Uf |x〉|2 ≥ 2/3, (1.10)

so that the probability of getting the right answer is large. By repeating the computation a modest
number of times we can achieve whatever probability of error we like.

Where does the power of a quantum computer come from? I don’t think anyone has a very precise
answer to that question, but we can get an idea by thinking about how we might simulate it classically
and where that approach goes wrong. Since the algorithm is just equivalent to multiplication of
unitary matrices, the simplest thing is just to do that ourselves. But wait! The matrices are 2n ×
2n dimensional for n qubits! 236 ≈ 70 Gb, so we can only simulate around 36 qubits with today’s
hardware. Still thinking in terms of matrices, after each step we have a vector giving the amplitude to
be in each of the various computational states. The trouble is, these amplitudes are complex numbers,
and therefore the states interfere with each other when going from one step to the next. Thus, we
have to keep track of all of them (or, it is not clear how to get by without doing this).

To see this more concretely, suppose we want to calculate |〈y|Uf |x〉|2 for some value of y. Since
Uf =VnVn−1 · · ·V1, we can express this in terms of the matrix elements of the Vk :

|〈y|Uf |x〉|2 =
�

�

�

∑

z1,...,zn−1

〈y|Vn |zn−1〉 〈zn−1|Vn−1|zn−2〉
︸ ︷︷ ︸

matrix element

· · · 〈z1|V1|x〉
�

�

�

2
. (1.11)

This is the product of matrices that we wanted to calculate earlier. Instead of doing that, we could try
to keep track of the amplitude associated with each computational path, i.e. sequence |x〉, |z1〉, . . . ,
|y〉. This is just the path integral of quantum mechanics, adapted to the present scenario of dynamics
by discrete jumps represented by unitaries. To each path is associated an amplitude αk ,

αk = 〈y|Vn |zn−1〉 〈zn−1|Vn−1|zn−2〉
︸ ︷︷ ︸

matrix element

· · · 〈z1|V1|x〉, (1.12)

so that

|〈y|Uf |x〉|2 =
�

�

�

∑

paths k

αk

�

�

�

2
. (1.13)

The idea would then be to estimate the expression by randomly sampling a modest number of paths.
But this does not work either, again due to interference—the overall magnitude can be quite small
even though each αk might not be. We need to know a sizable fraction of the αk to be able to predict
the transition probability. Alas, there are an exponential number of paths.

Observe that if the algorithm were such that after each step, most of the probability amplitude
were concentrated on one or a few of the states |z〉, then we could simulate the computation efficiently.
In the case of weight on just one state, this essentially is a classical computation, since we just jump
from x→ z1→ z2→ ·· · → y.

One often hears the claim that quantum computers get their power because n qubits can encode
or represent 2n numbers. That is true, in the sense that it takes 2n complex numbers to specify a
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1. INTRODUCTION

quantum state. But it also takes 2n numbers, now just reals, to specify the probability distribution of
n bits! If the initial distribution and all computational steps are deterministic, then the computation
takes just one path. But the bigger point is that even if it were probabilistic, we could still potentially
sample from the set of paths to get an idea of the transition probability. The possibility of interference
between paths precludes us from doing this in the quantum case.

1.6 Notes & Further reading

It is not the intention of this course to give a complete treatment of quantum information theory.
Instead, the goal is to focus on certain key concepts and to study them in more detail. For further
reading, I recommend the standard textbook by Nielsen and Chuang [2], as well as the more recent
offerings from Rieffel and Polak [3], Barnett [4], and especially Schumacher and Westmoreland [5].
Advanced treatments are offered by Hayashi [6] and two volumes by Holevo [7, 8]. An inspiration
for many of these books and early lecture notes is the book by Peres [9]. Wilde [10] presents in detail
the main results pertaining to information processing tasks such as compression and communication;
in the classical setting, these are treated by Cover and Thomas [11]. Mackay [12] treats information
theory and many other interesting topics such as Bayesian inference and neural networks from a
physics point of view. Mermin [13] gives a concise introduction to quantum algorithms. There are
too many lecture notes for quantum information available online to list here; of particular note are
those by Preskill [url] as well as Watrous [url]. The argument about computational paths is adapted
from Aaronson [14] (see also [url]).
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2Probability Theory
A nice way to understand the formalism of quantum mechanics (but not the physics) is as a gener-
alization of classical probability theory. Moreover, classical information theory is formulated in the
language of probability theory, so quantum information theory will be as well. Therefore, we begin
by recalling some key notions of probability theory.

2.1 What is probability?

The notion of probability is actually a rather delicate philosophical question, and it is not the topic of
this course to answer it. For the purpose of this course, it might make sense to take a Bayesian1 point
of view, meaning that probability distributions are generally interpreted as a state of knowledge. To
illustrate this approach, consider a game where a quizmaster hides a prize behind one of three doors
and the task of a candidate is to find the prize. Let X be the number of the door (1, 2, or 3) which
hides the prize. Obviously, as long as the candidate does not get any additional information, each
door is equally likely to hide the prize. Hence, the probability distribution P cand

X that the candidate
would assign to X is uniform,

P cand
X (1) = P cand

X (2) = P cand
X (3) = 1/3.

On the other hand, the quizmaster knows where he has hidden the prize, so he would assign a deter-
ministic value to X . For example, if the prize is behind door 1, the probability distribution P mast the
quizmaster would assign to X has the form

P mast
X (1) = 1 and P mast

X (2) = P mast
X (3) = 0.

The crucial thing to note here is that, although the distributions P cand
X and P mast

X are referring to the
same physical value X , they are different because they correspond to different states of knowledge.

We can extend this example. For instance, the quizmaster could open one of the doors, say 3,
to reveal that the prize is not behind it. This additional information changes the candidate’s state of
knowledge, resulting in yet another probability distribution P cand′

X associated with X ,2

P cand′
X (1) = P cand′

X (2) = 1/2 and P cand′
X (3) = 0.

When interpreting a probability distribution as a state of knowledge and, hence, as subjective quan-
tity, we must specify whose state of knowledge we are referring to. This is particularly relevant for
the analysis of information-theoretic settings, which usually involve more than one party. For exam-
ple, in a communication scenario a sender would like to transmit a message M to a receiver. Clearly,
before M is sent, the sender and the receiver have different knowledge about M and consequently
assign different probability distributions to M . In the following, when describing such situtations,
we will ascribe all distributions as states of knowledge of an outside observer.

1Thomas Bayes, c. 1701 – 1761, English mathematician and Presbyterian minister.
2The situation becomes more intriguing if the quizmaster opens a door after the candidate has already made a guess.

The problem of determining the probability distribution that the candidate assigns to X in this case is known as the Monty
Hall problem.
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2. PROBABILITY THEORY

2.2 Probability spaces and random variables

Both the concepts of probability and random variables are important in both physics and information
theory. Roughly speaking, one can think of a random variable as describing the value of some physical
degree of freedom of a classical system. Hence, in classical information theory, it is natural to think
of data as being represented by random variables.

In this section we define probability spaces and random variables. For completeness, we first
give the general mathematical formulation based on probability spaces, known as the Kolmogorov3

axioms. Later, we will restrict to discrete spaces and random variables (i.e., random variables that
only take countably many values). These are easier to handle than general random variables but still
sufficient for the information-theoretic considerations of this course. Being precise at this stage will
allow us to better appreciate the differences to quantum mechanics and will be useful in formulating
results of classical information theory.

2.2.1 Probability space

The basic notion in the Kolmogorov approach to probability theory is a probability space, which
models an experiment with random outcomes or, in our Bayesian interpretation, a physical system
with properties that are not fully known. It is a collection of three things:

1. a sample space Ω, which represents the set of all possible outcomes,

2. a set of events E , which are collections of possible outcomes, and

3. a probability measure P , which gives the probability of any event.

The set of events is required to be a σ -algebra, which means that (i) E 6= ;, i.e. E is not trivial, (ii) if
E is an event then so is its complement E c :=Ω\E , and (iii) if (Ei )i∈N is a countable family of events
then

⋃

i∈N Ei is an event. In particular, from these requirements one can show that Ω and ; are
events, called the certain event and the impossible event. The requirements of a σ -algebra reflect the
probabilistic setting. For any given event there ought to be an “opposite” event such that one or the
other is certain to occur, hence the requirement that complements exist. And for any two events one
should be able to find an event which corresponds to either one occurring, hence the requirement
that unions exist.

Example 2.2.1. The simplest, not utterly trivial example is perhaps given by two coins. When flipped,
each lands either heads H or tails T. The sample space is Ω= {HH,HT,TH,TT}. Events are any subset of
the elements of Ω; the event corresponding to “the first coin shows heads” is {HH,HT}, and so forth.

Example 2.2.2. A more standard example in probability theory is Ω=R and the events are formed
by countable unions, intersections and complements of open sets. In contrast to the discrete case,
here individual elements of Ω (points in R) are not events themselves.

The probability measure P on (Ω,E ) is a function P : E → R+ that assigns to each event E ∈ E a
nonnegative real number P [E], called the probability of E . It must satisfy the Kolmogorov probability
axioms

1. P [Ω] = 1 and

3Andrey Nikolaevich Kolmogorov, 1903 – 1987, Russian mathematician.
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2. P
�⋃

i∈N Ei
�

=
∑

i∈N P [Ei ] for any countable family (Ei )i∈N of pairwise disjoint events.

The axioms are precisely what is needed to be compatible with the σ -algebra structure of events.
The second axiom directly echoes the union-property of events, and since E and E c are disjoint,
P [E] + P [E c] = P [Ω] = 1 so that indeed either E or E c is certain to occur, since the certain event
has probability one. Of course, the impossible event has probability zero, since it is the complement
of the certain event.

Example 2.2.3. Returning to the coin example, valid probability measures include the uniform mea-
sure defined by P [{ω}] = 1/4 for allω or P [HH] = P [TT] = 1/2.

The above applies for quite general sample spaces, including those which are uncountably infinite
such asR. To properly deal with such cases one needs to be able to take limits of sequences of events,
hence the constant attention to countable collections of events and so forth. The pair (Ω,E ) is known
in this general context as a measureable space, and the uncountably infinite case is important in the
mathematical study of integration. In this course we will be concerned with discrete sample spaces
Ω, for which the set of events E can be taken to be the power set E = 2Ω, the set of all subsets of Ω.

2.2.2 Conditional probability and measurement

Any event E ′ ∈ E with P (E ′) > 0 gives rise to a new probability measure P [·|E ′] on (Ω,E ), the
conditional probability, defined by

P [E |E ′] :=
P [E ∩ E ′]

P [E ′]
∀E ∈ E . (2.1)

The probability P [E |E ′] of E conditioned on E ′ can be interpreted as the probability that the event
E occurs if we already know that the event E ′ has occurred or will occur. The logic of the definition
is that restricting Ω to the elements in the event E ′ effectively gives a new sample space, whose events
are all of the form E∩E ′. The probability of any of the new events is its original probability, rescaled
by the probability of the new sample space. If knowing E ′ is certain does not change the probability
of E , then E and E ′ are called mutually independent. Formally, if P [E |E ′] = P [E], then P [E ∩E ′] =
P [E] · P [E ′].

In the Bayesian framework, the conditional probability rule (2.1) describes the change in our
state of knowledge when we acquire additional information about a system that we describe with the
probability space (Ω,E , P ), in particular when we learn that the event E ′ has occurred or is certain
to occur. With a view toward our later formulation of quantum mechanics, we can think of the
process of acquiring information as a measurement of the system. If, prior to the measurement, our
probability were P [·], then after learning that E ′ is certain our probability becomes P [·|E ′].

But this does not describe the whole measurement procedure, for we only considered one mea-
surement outcome E ′ and surely at least the event E ′c was also, in principle, possible. We can think
of a measurement as a partition of Ω into a collection of disjoint events E1, E2, . . . , EM , where M is
the number of outcomes of the measurement. The most intuitive measurement in this sense is just
the collection of all singletons {ω}, but really any partition will do. The measurement then reports
the kth outcome with probability P [Ek] and the probability measure is updated from P to P ′ with
P ′[E] = P [E |E ′].

9



2. PROBABILITY THEORY

Notice that if we average the new probability measure over the measurement outcomes them-
selves, we end up with the original (here we show this for the discrete case):

P ′[E] :=
M
∑

k=1

P [Ek]P [E |Ek] =
M
∑

k=1

P [E ∩ Ek]

=
M
∑

k=1

∑

ω∈E∩Ek

P [{ω}] =∑
ω∈E

P [{ω}] = P [E]. (2.2)

This calculation has an important physical interpretation. Suppose we describe a physical system by
the probability measure P . If we then perform a measurement on the system, but forget the result,
then our probabilistic description is unchanged. We could also imagine that someone else measures
the system but does not tell us the result; knowing that they have performed a measurement does not
change our description of the system.

2.2.3 Random variables

In the formal setting of probability theory, random variables are functions from Ω to the space of
values taken by the variable. The precise definition is as follows. Suppose that (Ω,E , P ) is a probability
space and let (X ,F ) be another measurable space. A random variable X is a function from Ω toX ,

X : ω 7→X (ω), (2.3)

which is measurable with respect to the σ -algebras E and F . Measurable means that the preimage
of any F ∈ F is an event in E , i.e. X−1(F ) ∈ E . The space (X ,F ) is often called the range of the
random variable X .

Thus, we may define events in terms of the random variables themselves. In doing so, the events
F inherit a probability measure PX from the probability space, like so:4

PX [F ] := P [X−1(F )] ∀F ∈F . (2.4)

Analogously to (2.4), the conditional probability measure also gives rise to a conditional probability
measure of any random variable X , P [·|E ′], i.e.,

PX |E ′[F ] := P [X−1(F )|E ′] ∀F ∈F . (2.5)

Example 2.2.4. Suppose Ω is the sample space for the roll of three dice. Then possible random
variables include the sum of the faces, their product, the product of the first two minus the third, etc.
Calling these random variables X , Y , and Z and supposing that each die is equally likely to show any
face, then it happens that the most likely values are X = 10,11, Y = 12,24 and Z = 0.

A pair (X ,Y ) of random variables can be seen as a new random variable. More precisely, if X
and Y are random variables with range (X ,F ) and (Y ,G ), respectively, then (X ,Y ) is the random
variable with range (X ×Y ,F ×G ) defined by

(X ,Y ) : ω 7→X (ω)×Y (ω). (2.6)

4This is an instance of the general mathematical concept of a pushforward; here the probability measure P is pushed
forward to PX by the function X . In a different guise, the pushforward is familiar when changing variables in integrals.
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Here,F ×G denotes the set {F ×G : F ∈F , G ∈G}, and it is easy to see thatF ×G is a σ -algebra
overX ×Y . Naturally, this construction extends to any (finite) number of random variables.

We will typically write PX Y to denote the joint probability measure P(X ,Y ) on (X ×Y ,F ×G )
induced by (X ,Y ). This convention can, of course, be extended to more than two random variables
in a straightforward way. For example, we will write PX1···Xn

for the probability measure induced by
an n-tuple of random variables (X1, . . . ,Xn).

In a context involving only finitely many random variables X1, . . . ,Xn , it is usually sufficient to
specify the joint probability measure PX1···Xn

, while the underlying probability space (Ω,E , P ) is ulti-
mately irrelevant. In fact, as long as we are only interested in events defined in terms of the random
variables X1, . . . ,Xn , we can without loss of generality identify the sample space (Ω,E )with the range
of the tuple (X1, . . . ,Xn) and define the probability measure P to be equal to PX1···Xn

.

Example 2.2.5. Returning to the example of three dice, X j could simply be the value of the j th die,
which is how we would label the ω themselves. Then PX1X2X3

is identical to P , and the probability
spaces for the two are equivalent. The same holds if we instead choose Y1 = X1, Y2 = X2, and
Y3 =X1+X2+X3, though the labelling of individual eventsω by Y is not the same as by X . On the
other hand, if we choose Z1 =X1, Z2 =X2, and Z3 =X1+X2+X3 mod 2, then the probability space
associated with PZ1Z2Z3

is distinct from Ω. The event (Z1 = 1,Z2 = 4,Z3 = 1) does not correspond to
a single sample space elementω, but rather the compound event (X1 = 1,X2 = 4,X3 = 2,4,6).

2.3 Discrete random variables

Discrete random variables are simply those for which X is a discrete space. In this case, we refer
to it as the alphabet of the random variable X . We also make use of the probability mass function,
PX (x), which gives the probability of the event X = x and satisfies the normalization condition
∑

x∈X PX (x) = 1. We will often call the probability mass function of X the probability distribution
of X .

Certain probability distributions or probability mass functions are important enough to be given
their own names. We call PX flat if all non-zero probabilities are equal. By the normalization condi-
tion, PX (x) =

1
|suppPX | for all x ∈X , where suppPX := {x ∈X : PX (x)> 0} is the support of the func-

tion PX . Furthermore, PX is uniform if it is flat and has no zero probabilities, whence PX (x) =
1
|X |

for all x ∈X .

2.3.1 Joint, marginal, and conditional distributions

When working with more than one random variable the concepts of joint, marginal, and conditional
distributions become important. The following definitions and statements apply to arbitrary n-tuples
of random variables, but we formulate them only for pairs (X ,Y ) in order to keep the notation simple.
In particular, it suffices to specify a bipartite probability distribution PX Y , whereX and Y are the
alphabets of X and Y , respectively. The extension to arbitrary n-tuples is straightforward.

Given PX Y , we call PX and PY the marginal distributions. It is easy to verify that

PY (y) =
∑

x∈X
PX Y (x, y) ∀y ∈Y , (2.7)

11
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and likewise for PX . Furthermore, for any y ∈ Y with PY (y) > 0, the distribution PX |Y=y of X
conditioned on the event Y = y obeys

PX |Y=y (x) =
PX Y (x, y)

PY (y)
∀x ∈X . (2.8)

2.3.2 Independence and Markov chains

Two discrete random variables X and Y are said to be mutually independent if the events {X = x} and
{Y = y} are mutually independent for any (x, y) ∈ X ×Y . Their joint distribution then satisfies
PX Y (x, y) = PX (x)PY (y).

Related is the notion of Markov5 chains. A sequence of random variables X1,X2, . . . is said to form
a Markov chain, denoted X1↔X2↔·· ·↔Xn , if for all i ∈ {1, . . . , n− 1}

PXi+1|X1=x1,...,Xi=xi
= PXi+1|Xi=xi

∀x1, . . . , xi . (2.9)

This expresses the fact that, given any fixed value of Xi , the random variable Xi+1 is completely
independent of all previous random variables X1, . . . ,Xi−1. Note that the arrows in the notation for
the Markov property go both ways; the reader is invited to verify that under (2.9) it also holds that
Xi−1 is independent of Xi+1, . . . ,Xn given a fixed value of Xi .

2.3.3 Functions of random variables and Jensen’s inequality

Let X be a random variable with alphabet X and let f be a function from X to Y . We denote by
Y = f (X ) the random variable defined by the concatenation f ◦X . Obviously, f (X ) has alphabetY
and, in the discrete case we consider here, the corresponding probability mass function PY is given
by

PY (y) =
∑

x∈ f −1(y)

PX (x). (2.10)

For a real convex function f on a convex setX , the expectation values of X and f (X ) are related
by Jensen’s6 inequality:

〈 f (X )〉 ≥ f (〈X 〉). (2.11)

The inequality is essentially a direct consequence of the definition of convexity, as depicted for binary
random variables in Fig. 2.1.

2.3.4 I.i.d. distributions and their asymptotic behavior

An n-tuple of random variables X1, . . . ,Xn with alphabetX is said to be independent and identically
distributed (i.i.d.) if their joint probability mass function has the form

PX1···Xn
= P×n

X := PX × · · ·× PX . (2.12)

5Andrey Andreyevich Markov, 1856 – 1922, Russian mathematician.
6Johan Ludwig William Valdemar Jensen, 1859 – 1925, Danish mathematician and engineer.
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x

y
y = f (x)

f (x0)

x0

f (x1)

x1〈X 〉

〈 f (X )〉
f (〈X 〉)

Figure 2.1: Depiction of Jensen’s inequality for a convex function of a binary-valued random variable
X . The random variable X can take two possible values, x0 and x1, with corresponding probabilities
PX (x0) and PX (x1). A function f induces a new random variable Y = f (X ); for convex f it follows
that 〈Y 〉 ≥ f (〈X 〉).

The i.i.d. property thus characterizes situations where a certain process is repeated n times indepen-
dently. In the context of information theory, the i.i.d. property is often used to describe the statistics
of noise, for example in repeated uses of a communication channel.

The law of large numbers and the central limit theorem characterize the “typical behavior” of real-
valued i.i.d. random variables X1, . . . ,Xn in the limit of large n. The law of large numbers states that
the sample mean of the Xi tends to the expectation value for large n. It usually comes in two versions,
the weak and the strong law. As the names suggest, the latter implies the former.

More precisely, let µ= 〈Xi 〉 be the expectation value of Xi (which, by the i.i.d. assumption, is the
same for all X1, . . . ,Xn), and let

Zn :=
1
n

n
∑

i=1

Xi (2.13)

be the sample mean. Then, according to the weak law of large numbers, the probability that Zn is
ε-close to µ for any positive ε converges to one:

lim
n→∞P

�|Zn −µ|< ε
�

= 1 ∀ε > 0. (2.14)

The weak law of large numbers will be sufficient for our purposes, and is proven in the exercises.
By contrast, the strong law of large numbers says that Zn converges to µ with probability one,

P
�

lim
n→∞Zn =µ

�

= 1. (2.15)

Note that to properly interpret the strong law, we need the formal machinery of the underlying
probablity space (Ω,E , P ), since the number of random variables is infinite. One way to remember
the difference between the weak and strong laws is to realize that they are essentially saying the same
thing, but using different notions of convergence. The weak law is a statement of convergence in
probability, while the strong law is a statement of almost-sure convergence.

While the laws of large numbers tell us about the behavior of the sample mean, the central limit
theorem gives some insight into the behavior of fluctuations around the mean, at least when the Xi
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have bounded variance σ2. In particular, let Φ be the cumulative distribution function of a standard
normal distribution (zero-mean Gaussian with unit variance) and define the rescaled fluctuation vari-
able

Yn =
p

n(Zn −µ)/σ . (2.16)

Then the central limit theorem asserts that the cumulative distribution of Yn converges to that of the
normal distribution:

lim
n→∞P [Yn ≤ y] = Φ (y) . (2.17)

This type of convergence is called convergence in distribution. It is weaker than either of the other
two notions mentioned above.

The statements above only in the limit n →∞, but it is often more interesting to have bounds
on the deviation of i.i.d. random variables from their typical behavior for finite n. For the deviation
from the mean, such a statement is for instance provided by the Hoeffding7 bound. Suppose that the
random variables X j takes values in a bounded range, from a to b . Then

P [|Zn −µ| ≥ ε]≤ 2exp
�

− 2nε2

(b − a)2

�

. (2.18)

Meanwhile, the Berry-Esseen8 theorem provides a bound on the speed of convergence in the central
limit theorem. Supposing that ρ := 〈|X j |3〉<∞ and defining Fn(y) to be the cumulative distribution
of Yn , the theorem states that there is a constant C (known to be less than one half) such that

|Fn(y)−Φ(y)| ≤
Cρ
σ3
p

n
∀n, y. (2.19)

2.4 Channels

A channel W is a probabilistic mapping that assigns to each value of an input alphabet X a value
of the output alphabet Y . In doing so, it transforms the random variable X to the random variable
Y =W (X ). It is specified by assigning a number W (y|x) to each input-ouput pair (x, y) such that
such that W (·|x) is a probability mass function for any x ∈X .

Channels can be seen as abstractions of any (classical) physical device that takes an input X and
outputs Y . A typical example for such a device is a communication channel, e.g., an optical fiber,
where X is the input provided by a sender and where Y is the (possibly noisy) version of X delivered
to a receiver. A practically relevant question then is how much information one can transmit reliably
over such a channel, using an appropriate encoding.

Not only do channels carry information over space, they also carry information through time.
Typical examples are memory devices, e.g., a hard drive or a CD (where one wants to model the errors
introduced between storage and reading out of data). Here, the question is how much redundancy
we need to introduce in the stored data in order to correct these errors.

Example 2.4.1. The channel depicted in Fig. 2.2(a) maps the input 0 to either 0 or 1 with equal
probability; the input 1 is always mapped to 2. The channel has the property that its input is uniquely
determined by its output. Such a channel would allow the reliable transmission of one classical bit of
information.

7Wassily Hoeffding, 1914 – 1991, Finnish statistician and probabilist.
8Carl-Gustav Esseen, 1918 – 2001, Swedish mathematician.
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input output

0 0

1 1

2

1/2

1/2

1

(a) A reliable channel

input output

0 0

1 1

1/2

1/2

1/2

1/2

(b) An unreliable channel

Figure 2.2: Examples of channels.

Example 2.4.2. The channel shown in Fig. 2.2(b) maps each possible input with equal probability to
either 0 or 1. The output is thus completely independent of the input. Such a channel is obviously
not useful for transmitting information.

2.4.1 Formal definition and properties

Formally, a channel is a transformation ofX toY which preserves the probability structure. In other
words, the channel must induce a valid probability distribution onY from the distribution overX .
Given any fixed input X = x, W (X = x) must be a probability mass function over Y . Therefore,
the earlier description using W (y|x) =W (X = x) encompasses all possible channels. Indeed, we may
regard W (X = x) as the conditional distribution PY |X=x associated with the joint distribution

PX Y (x, y) = PX (x)W (y|x). (2.20)

Moreover, channels can be seen as generalizations of functions (random variables). Indeed, if f is
a function fromX to Y , its description as a channel W is given by

W (y|x) = δy, f (x). (2.21)

Returning to the definition of Markov chains in (2.9), it is easy to see that a Markov chain is a sequence
of random variables in which X j+1 is generated from X j by some channel W j .

2.4.2 Measurement as a channel

The process of measurement, described in §2.2.2 can also be thought of as a channel, where the input
X is the system to be measured and the output Y is the output of the measurement. Consider again a
partition of the sample spaceX into a set of disjoint events, i.e. a collection of sets Ey , y = 1, . . . , |Y |
of values that X can take on, with all such sets pairwise disjoint and every possible value X = x an
element of some set in the collection. Then define the channel W by

W (y|x) =
�

1 x ∈ Ey
0 else

. (2.22)
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Now consider the joint distribution PX Y , given by (2.20). The marginal distribution for Y is simply

PY (y) =
∑

x∈X
PX (x)W (y|x) =

∑

x∈Ey

PX (x), (2.23)

the probability distribution of the measurement outcomes. Moreover, by (2.1), the conditional dis-
tribution of X given Y is just

PX |Y=y (x) =
1

PY (y)
PX (x)W (y|x). (2.24)

Thus, the joint distribution (2.20) induced by the channel incorporates both the probabilities of
the outcomes of the measurement, as well as the distributions of the original system X conditional on
the measurement outcome. The fact that forgetting the outcome undoes the measurement is reflected
in the fact that the unconditional distribution of X , i.e. the marginal distribution not conditioned on
the value of Y , is simply the original PX . This description of measurement is depicted in Fig. 2.3.

W

X X

Y

Figure 2.3: Depiction of measurement as a channel. Depending on the value of the input X , the
measurement produces the result Y . This conditional action is represented by the dot and wire to the
channel W .

The importance of this analysis is that if channels represent physical operations, then measurement
itself is a physical operation. We obviously expect this to be true, but the previous discussion of mea-
surements and channels did not rule out the possibility that measurement is somehow distinct from
the action of a channel.

2.5 Vector representation of finite discrete spaces

In the remainder of these lecture notes, we specialize to the case of finite discrete probability spaces
(Ω,E , P ). Now Ω is a discrete set, which we will assume to contain finitely many elements N = |Ω|.
Further, we take the σ -algebra of events to be the power set 2Ω, i.e.E := {E ⊆Ω}, which one can easily
verify to indeed be a valid σ -algebra. Such spaces have a simple representation in terms of real-valued
vectors in a finite-dimensional space; this will prove useful later in understanding the similarities and
differences between classical probability theory and the formalism of quantum mechanics.

2.5.1 Represention of the probability space

Since Ω is finite, we may define N = |Ω| and associate the elements ω with a basis {~bω} of RN . In
particular, we could label ω with integers from 1 to N and define ~bω to be the vector with a single
1 in the ωth component and all entries zero. Any event is a collection of elements from the sample
space, which corresponds to the sum of the associated sample space vectors. The vector ~e(E) ∈ RN

associated with the event E is defined by

~e(E) =
∑

ω∈E

~bω, (2.25)
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2.5. Vector representation of finite discrete spaces

i.e. ~e(E) has a 1 in any component corresponding to an ω contained in the event E . The set of
possible ~e(E) is just ZN

2 (i.e. all binary vectors), while the sample space corresponds to the usual basis

of ZN
2 . Notice that the inner product between ~e(E) and ~bω indicates whether the ωth element of Ω

is contained in E : ~e(E) · ~bω = 1 ifω ∈ E and 0 otherwise.
Since the probability is additive for families of pairwise disjoint events, and the sample space

elements are pairwise disjoint as events, by the second axiom we have

P (E) =
∑

ω∈E
P [{ω}] =∑

ω∈Ω
~e(E) · ~bω P [{ω}] = ~e(E) ·

�

∑

ω∈Ω
~sωP [{ω}]

�

. (2.26)

This suggests we define a vector ~p =
∑

ω∈Ω ~bω P [{ω}] ∈RN
+ , which is just the list of probabilities of

the sample space elements. Taking E = Ω in the above, we see that the first axiom implies ‖~p‖1 = 1.
The nice feature of this representation is that from ~p the probability of any event can be found via
the inner product:

P [E] = ~e(E) · ~p. (2.27)

2.5.2 Random variables and conditional probabilities

Real-valued random variables can also be represented as vectors in RN
+ , in order to represent the ex-

pectation value. Let X (ω) = xω and define ~x =
∑

ω∈Ω xω
~bω. Then the expected value of X is just the

average value under the probability distribution,

〈X 〉 :=∑
ω∈Ω

P [{ω}]X (ω) = ~x · ~p. (2.28)

We can also succinctly represent the rule for conditional probability, (2.1), in this framework. For
some event E ′, let us call the vector representation of the conditional probability ~p ′. What is ~p ′ in
terms of ~p? The denominator of (2.1) is simple enough: P [E ′] = ~e(E ′) · ~p. For the numerator, we
need only consider the probabilities of the singleton events {ω}, since all other events are just unions
of these. Then, the event {ω} ∩ E ′ is just {ω} whenω ∈ E ′ and ; otherwise. Therefore we have

~p ′ = 1
~e(E ′) · ~p

∑

ω∈E ′

�

~bω · ~p
�

~bω =
1

~e(E ′) · ~p
∑

ω∈Ω

�

~bω · ~p
��

~e(E ′) · ~bω
�

~bω. (2.29)

The conditional probability vector is formed by discarding or projecting out the components of ~p
which are inconsistent with E ′, and then normalizing the result.

2.5.3 Transformations and dilations

We have seen in §2.4 that channels describe all transformations of probability distributions that pre-
serve the probability structure. Inded, (2.23) shows that the transformation is linear and the transition
probabilities W (y|x) are the components of the matrix representation of the channel. Such matrices,
called stochastic matrices, have positive entries and column-sums all equal to one by definition.

For given input and output alphabet sizes n = |X | and m = |Y |, respectively, the set St(m, n) of
all m×n stochastic matrices is convex, since the convex mixture of two channels is clearly also a valid
channel. As the entries are bounded between 0 and 1 and each column sums to 1 (providing n linear
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constraints), St(m, n) is a closed, compact subset of Rm(n−1). Indeed, it must be a convex polytope
because the boundaries are specified by linear relations.

Among the stochastic matrices are the representations of deterministic transformations, i.e. usual
functions as in (2.21). These are stochastic matrices with a single 1 in every column. Clearly, de-
terministic transformations cannot be nontrivially decomposed into other stochastic matrices, since
the entries are bounded between 0 and 1. Thus, they are extreme points in St(m, n). In fact, they are
the only extreme points, and every stochastic matrix can be expressed as a convex combination of
deterministic transformations. To see why this is so, first denote by D( j1, . . . , jn) the matrix whose
i th column has a 1 in the ji th row, and zeros elsewhere. Then, an arbitrary T ∈ St(m, n) with com-
ponents Ti j can be expressed as

T =
m
∑

j1,..., jn=1

T j1,1 · · ·T jn ,n D( j1, . . . , jn). (2.30)

The coefficient for a given D( j1, . . . , jn) is simply the product of the transition probabilities for X = 1
to be mapped to Y = j1 and so forth. The coefficients make up a convex combination, since they are
positive real numbers whose sum is unity (it is the product of the column sums of T ). Summing over
the coefficients of D( j1, . . . , j`−1, k , j`+1, . . . , jn) for arbitrary j1, . . . , j`−1, j`+1, . . . jn , we recover Tk ,`
as intended.

The number of vertices of the St(m, n) polytope is mn , the number of distinct deterministic
matrices fromX toY . However, any given T can be expressed as a combination of just m(n−1)+1
vertices (one plus the dimension of the space in which the polytope lives) by Carathéodory’s9 theorem,
though we will not make use of this fact here. Altogether we have the following proposition.

Proposition 2.5.1: Convex decomposition of stochastic matrices

Any T ∈ St(m, n) can be expressed as a convex combination of no greater than m(n − 1) + 1
deterministic transformations.

Using this representation, we can construct a dilation of any stochastic transformation of single
random variables to a deterministic transformation on a pair of random variables. This is but the
first example of a dilation we will meet in this course. Loosely speaking, the idea of a dilation is to
regard any given element of a convex set as the image under some fixed map of an extreme point of the
associated convex set in a larger space. In the present case, suppose that we have a channel W fromX
toY and a representation W =

∑|Z |
z=1λz Dz in terms of deterministic maps. Then, let Z be a random

variable over alphabet Z , with PZ (z) = λz , and define the new transformation Wdet : X ×Z →
Y ×Z which applies Dz toX when Z = z. In other words, if Dz is the representation of the function
fz , Wdet deterministically applies fz conditioned on the value of Z . The original transformation W
is recovered by marginalizing over the additional random variable Z . This is depicted in Fig. 2.4.
Formally, we have shown the following.

Proposition 2.5.2: Dilation of channels to deterministic functions

For any channel W :X →Y there exists a deterministic channel Wdet :X ×Z →Y ×Z and

9Constantin Carathéodory, 1873 – 1950, Greek mathematician.
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WX Y
dilate Wdet

X Y

Z Z

Figure 2.4: Dilation of a channel W to a deterministic channel Wdet. Essentially, the randomness
inherent in the channel is extracted to the random variable Z , which is then used to control which
deterministic function is applied to X .

a random variable Z (probability distribution PZ ) such that

PW (X )(y) =
∑

z∈Z
PWdet(X ,Z)(y, z). (2.31)

If the row-sums of a stochastic matrix are also all unity, the matrix is called doubly stochastic.
In this case, it follows that the input and output random variables or probability spaces have the
same size, since the sum of all entries equals both the number of rows and the number of columns.
Equivalently, a doubly stochastic matrix is a stochastic matrix which maps the uniform distribution
to itself. Doubly stochastic m× n matrices also form a convex set.

Among the doubly-stochastic matrices are the permutation matrices, which have a single 1 in each
row and column. Since the action is just to rearrange the elements of the sample space, they can be un-
done (using the matrix representing the inverse permutation). That is, permutation matrices describe
reversible transformations. Similarly to the case of stochastic matrices, doubly stochastic matrices can
be expressed as convex combinations of permutations, a fact known as Birkhoff’s10 theorem. We may
therefore dilate any doubly stochastic transformation to a reversible transformation by following the
same construction as above.

2.6 Notes & Further reading

Mellor gives a nice introduction to the philosophy of probability theory in [15]. Jaynes describes
how Bayesian probability “ought” to be applied in science in [16]; to say that opinions vary among
mathematical and statistical researchers is an understatement. For more on the mathematical struc-
ture of probability theory itself, see the introductory text by Ross [17], an intermediate approach by
Gut [18], and recent in-depth treatments by Durrett [19] and Fristedt and Gray [20]. The discussion
of stochastic matrices is adapted from Davis [21].

10Garrett Birkhoff, 1911 – 1996, American mathematician.

19

http://en.wikipedia.org/wiki/Doubly_stochastic_matrix
http://en.wikipedia.org/wiki/Garrett_Birkhoff


2. PROBABILITY THEORY

2.7 Exercises

Exercise 2.1. Statistical distance → solution
The statistical distance, or total variational distance, between two probability distributions P and

Q over an alphabetX is generally defined by

δ(P,Q) := sup
S⊆X
|P [S]−Q[S]|, (2.32)

where the maximization is over all events S ⊆X . For finite alphabets that we are considering in this
course, the supremum can be replaced by a maximum.

a) Show that δ(·, ·) is a good measure of distance by proving that 0≤ δ(P,Q)≤ 1 and the triangle
inequality δ(P, R)≤ δ(P,Q)+δ(Q, R) for arbitrary probability distributions P , Q and R.

b) Suppose that P and Q represent the probability distributions of the outcomes of two dice,
which we can also label P and Q. You are allowed to throw one of them once and then have to
guess which it was. What is your best strategy? What is the probability that you guess correctly
and how can you relate that to the statistical distance δ(P,Q)?

c) Show that for a finite alphabet the statistical distance can also be expressed as

δ(P,Q) = 1
2

∑

x∈X
|P (x)−Q(x)|. (2.33)

Exercise 2.2. Jensen’s inequality → solution
For any convex function f and probability distribution {p1, .., pn}, prove Jensen’s inequality:

f
�

n
∑

k=1

pk xk
�≤

n
∑

k=1

pk f (xk ). (2.34)

Regarding the xk as defining a random variable X , this can also be written as

f (〈X 〉)≤ 〈 f (X )〉. (2.35)

Exercise 2.3. Weak law of large numbers → solution
Let A be a positive random variable with expectation value 〈A〉 = ∑

a a PA(a). Let P [A ≥ ε]
denote the probability of an event {A≥ ε}.

a) Prove Markov’s inequality

P [A≥ ε]≤ 〈A〉
ε

. (2.36)

b) Use Markov’s inequality to prove Chebyshev’s inequality

P
�

(X −µ)2 ≥ ε�≤ σ
2

ε
, (2.37)

where µ= 〈X 〉 and σ denotes the standard deviation of X .
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c) Use Chebyshev’s inequality to prove the weak law of large numbers for i.i.d. Xi with expecta-
tion value µ and variance σ2 ≤∞:

lim
n→∞P





�

1
n

∑

i

Xi −µ
�2

≥ ε


= 0 for any ε > 0. (2.38)

Exercise 2.4. Conditional probabilities: Knowing more does not always help → solution
You and your grandfather are trying to guess if it will rain tomorrow. All he knows is that it rains

on 80% of the days. You know that and you also listen to the weather forecast and know that it is
right 80% of the time and is always correct when it predicts rain.

a) What is the optimal strategy for your grandfather? And for you?

b) Both of you keep a record of your guesses and the actual weather for statistical analysis. After
some time, i.e. enough that you can apply the weak law of large numbers, who will have guessed
correctly more often?
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3Quantum Mechanics
In this chapter we present the formalism of quantum mechanics and investigate the similarities to and
differences from classical mechanics and classical probability theory.

3.1 The postulates of quantum mechanics

Despite more than one century of research, numerous questions related to the foundations of quan-
tum mechanics are still unsolved (and highly disputed). For example, no fully satisfying explanation
for the fact that quantum mechanics has its particular mathematical structure has been found so far.
As a consequence, some of the aspects to be discussed in the following, e.g., the postulates of quantum
mechanics, might appear to lack a clear motivation.

In this section, we describe one of the standard approaches to quantum mechanics. It is based
on a number of postulates formulated by Dirac1 and von Neumann2 regarding the states of physical
systems as well as their evolution. The postulates are as follows:

1) States:
The set of states of an isolated physical system is in one-to-one correspondence to the projective
space of a Hilbert3 spaceH . In particular, any physical state can be represented by a normalized
vector |φ〉 ∈H which is unique up to a phase factor. In the following, we will callH the state
space of the system.

2) Dynamics:
For any possible evolution of an isolated physical system with state spaceH and for any fixed
time interval [t0, t1] there exists a unitary U describing the mapping of states |φ〉 ∈H at time
t0 to the state |φ′〉=U |φ〉 at time t1. The unitary U is unique up to a phase factor. This is the
Schrödinger4 picture, and the unitary is determined from the Hamiltonian5 of the system by the
Schrödinger equation.

3) Observables:
Any physical property of a system that can be measured is an observable and all observables
are represented by self-adjoint linear operators acting on the state spaceH . Each eigenvalue x
of an observable O corresponds to a possible value of the observable. Since O is self-adjoint, it
takes the form O =

∑

x xΠx , where Πx is the projector onto the subspace with eigenvalue x.

4) Measurements:
The measurement of an observable O yields an eigenvalue x. If the system is in state |φ〉 ∈H ,
then the probability of observing outcome x is given by the Born6 rule:

PX (x) =Tr[Πx |φ〉〈φ|]. (3.1)

1Paul Adrien Maurice Dirac, 1902 – 1984, English physicist.
2John von Neumann, 1903 – 1957, Hungarian-American mathematician and polymath.
3David Hilbert, 1862 – 1943, German mathematician.
4Erwin Rudolf Josef Alexander Schrödinger, 1887 – 1961, Austrian physicist.
5William Rowan Hamilton, 1805 – 1865, Irish physicist, astronomer, and mathematician.
6Max Born, 1882 – 1970, German physicist and mathematician.
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3. QUANTUM MECHANICS

The state |φ′x〉 of the system after the measurement, conditioned on the event that the outcome
is x, is given by

|φ′x〉 :=
√

√

√
1

PX (x)
Πx |φ〉. (3.2)

5) Composition:
For two physical systems with state spacesHA andHB , the state space of the product system
is isomorphic toHA⊗HB . Furthermore, if the individual systems are in states |φ〉 ∈HA and
|φ′〉 ∈HB , then the joint state is

|Ψ〉= |φ〉⊗ |φ′〉 ∈HA⊗HB . (3.3)

3.2 Qubits

The simplest quantum system, the qubit, has just two levels, a state space ofH = C2. We typically
denote a “standard basis” for a qubit by the states |0〉 and |1〉. A qubit is any system, or more precisely
degree of freedom, whose state vector |ψ〉 can be written as

|ψ〉= a|0〉+ b |1〉, (3.4)

with a, b ∈C2 and |a|2+ |b |2 = 1. Any two vectors |ψ〉 and |ψ′〉 such that |ψ′〉= c |ψ〉 for some c ∈C
with |c |= 1 represent the same state. The following table lists several examples of qubit systems.

Degree of freedom Possible basis states |0〉 and |1〉
Spin-1/2 |m = 1/2〉 |m =−1/2〉
Photon polarization |horizontal〉 |vertical〉
“Two-level” atom |groundstate〉 |excitedstate〉
Position in a deep double well potential |left〉 |right〉

Table 3.1: Examples of qubit systems

A useful parameterization of states comes from the spin-1/2 picture. Any state |ψ〉 can be associ-
ated with a point on the unit sphere described by spherical coordinates (θ,ϕ) via the relation

|ψ〉= cos θ2 |0〉+ e iϕ sin θ
2 |1〉. (3.5)

This sphere of states is called the Bloch7 sphere, as depicted in Fig. 3.1.
Equivalently, we can label states by Bloch vectors, unit vectors n̂ = x̂ sinθ cosϕ + ŷ sinθ sinϕ +

ẑ cosθ. Then it is easy to see that the states |n̂〉 and |−n̂〉 are orthogonal. The states along the six
cardinal directions (±x̂,±ŷ, and±ẑ) form three orthogonal bases, and the states |± x̂〉= 1p

2
(|0〉±|1〉)

7Felix Bloch , 1905 – 1983, Swiss physicist.
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θ

x̂

ŷϕ

ẑ

|ψ〉

|0〉

|1〉

|+〉
|−〉

Figure 3.1: The Bloch sphere. Every qubit state can be associated with a point on the unit sphere.

are usually just denoted |±〉. These three bases are the eigenbases of the three Pauli8 operators:

σx = |0〉〈1|+ |1〉〈0|=
�

0 1
1 0

�

, (3.6)

σy =−i |0〉〈1|+ i |1〉〈0|=
�

0 −i
i 0

�

, (3.7)

σz = |0〉〈0| − |1〉〈1|=
�

1 0
0 −1

�

, (3.8)

here the matrices are the representations of the respective operators in the basis {|0〉, |1〉}. A linear
combination of Pauli operators with real coefficients leads to a Hermitian9 operator.

These three operators, together with the identity operator 1, form a very convenient basis for
operators on C2, i.e. a basis for End(C2). This follows because we can very easily construct the ma-

trices
�

1 0
0 0

�

,
�

0 1
0 0

�

, etc. from the Pauli operators, and the latter is evidently a basis for End(C2).

Writing A= a01+ ~a · ~σ for an operator A, with ~σ = x̂σx + ŷσy + ẑσz , it is straightforward to verify
that |± â〉 are the eigenstates of A, with eigenvalues λ± = a0±‖~a‖2. Here â is the normalized version
of ~a.

Using this relation, we can immediately infer that the projection operators Πn̂ := |n̂〉〈n̂| take the
form

Πn̂ =
1
2 (1+ n̂ ·σ). (3.9)

Then it is simple to verify that for the state |m̂〉, the probability of obtaining Πn̂ in a measurement is
just

P [Πn̂ |m̂] = 1
2 (1+ n̂ · m̂). (3.10)

8Wolfgang Ernst Pauli, 1900 – 1958, Austrian-born Swiss theoretical physicist.
9Charles Hermite, 1822 – 1901, French mathematician.
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Note that even though |+〉 looks like a probabilistic mixture of |0〉 and |1〉, and does give P [±ẑ |x̂] =
1
2 , it is not a mixture at all, since P [x̂|x̂] = 1. This distinction is what is meant by saying that |+〉 is a
coherent combination of |0〉 and |1〉. An incoherent combination is simply the probabilistic mixture,
which would have P [x̂] = 1

2 . In classical probability, this cannot occur: if a classical bit has probabil-
ity 1/2 to be in either state, then there is no other elementary event, likeΠx̂ , for which the probability
is one. Quantum-mechanically we can observe the relative phase between the two elementary states.

Another way to describe this phenomena is to say that σx and σz are complementary observables.
We have just seen that an eigenstate of one of these observables has no definite value of the other,
as a measurement in the other basis is completely random. But the situation is even stranger than
this. Since measurement disturbs the state, alternately measuring the two observables can lead to
a situation in which a once-certain outcome is made random. After a σz measurement of |+〉, for
instance, the state is either |0〉 or |1〉, both of which have only a probability of 1/2 of returning +
in a measurement of σx . Without the intervening σz measurement, the result would of course have
been + with certainty. Needless to say, this is also impossible in classical probability theory. While
measurement changes the probability distribution ~p, it does not disturb the underlying states ~b j .

Events ~ek which are certain (i.e. contain the actual state ~b j ), remain so after the measurement.

3.3 Comparison with classical probability theory

We can make an analogy between classical probability theory and the formalism of quantum mechan-
ics, as follows

Quantum Classical

state vector |φ〉 ≈ ~p probability distrib.∗
observable O ≈ X random variable

projector Πx ≈ E event
evolution operator U ≈ T transformation∗

probability rule Tr[Πx |φ〉〈φ|] ≈ ~e[E] · ~p
post-measurement state Πx |φ〉/

p

PX (x) ≈ P~e[E]~p/~e[E] · ~p
This table highlights the fact that not only are there analogs in the quantum domain of objects in
classical probability theory, but that they interact with each other in similar ways. Most notably, the
probability rule is a “linear pairing” of states and events in each case. The mathematical spaces in
which the objects live is quite different, but nonetheless linearity is at the heart of both.

A couple of caveats are in order, corresponding to the starred items. First, state vectors are anal-
ogous to “sharp” probability distributions, which are those such that p j = δ j k for some k. This
is because we can always find a measurement associated with a state |φ〉 for which one outcome
is certain, namely the measurement associated with the orthogonal projectors Πφ = |φ〉〈φ| and
Π
φ
= 1 − |φ〉〈φ|. Second, the unitary operators implementing time evolution are reversible, so

they are analogous to reversible transformations (permutations) of the classical sample space.
Despite the elegance of the above analogy, there is one glaring omission from the table: the sam-

ple space. Actually, we have implicitly used a classical sample space for measurement outcomes, in
defining the probability rule. But this gives many sample spaces for a quantum system, one for every
possible measurement, and it is not clear how these are related to one another. What could be the
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analog of the sample space in quantum theory? One is tempted to say that the |ψ〉 are the quantum
version of the ~bω, since sharp distributions ~p are essentially equivalent to ~bω. But then comes the
famous measurement problem. We are looking for a sample space to model the “real, physical state”
of the system. In that case, however, why does the state (now a physical thing) evolve unitarily un-
der “normal” dynamics but differently (collapse) for measurement? Is measurement not a dynamical
process?

The view of |ψ〉 as akin to a probability distribution does not have this problem; even in classical
probability theory the probability changes upon measurement. After all, the measurement reveals
something about they underlying state of the system. But quantum-mechanically this approach leaves
us in the awkward position of having only the jumble of sample spaces associated with measurement
outcomes to refer the probability to. What is it about a quantum system that a measurement is sup-
posed to reveal? Surely more than just “the event that the measurement outcome is ...”. If there is a
useful underlying sample space that relates all of the measurement spaces, why don’t we just formu-
late quantum mechanics directly in these terms? As we’ll see when discussing the Bell10 inequalities
in §3.9, there are essentially no good options for an underlying sample space in these terms.

So what should we do? Should we think of the state vector as a physical quantity, like ~bω, or just as
a nice way to encode the probability of various measurement events, like ~p? As far as I know, there’s
no satisfactory answer to this question, though many are convinced by their particular approaches
to solve the riddle. One could also hope that the very question is the wrong one to be asking, but it
is by no means clear what the right question would be. Thus we are forced to live with the strange
structure of quantum mechanics as we currently understand it.

In quantum information theory it is useful and common to take the latter approach above. This
is an operational or instrumental approach to interpreting the formal objects in quantum mechanics.
That is, we view the job of the theory as describing experimental setups, and the formal objects in
the theory therefore refer to the different parts of an experiment. In the most abstract setting, we
can think of an experiment as consisting of two parts, first preparation, in which we have set up
the experimental apparatus in some way, and then measurement, in which we run the experiment
and record the results. Most importantly, this point of view shifts our conception of the ‘state’ of a
system: Instead of referring to the “real degrees of freedom”, it instead refers to the preparation. The
Born rule now plays the central role, as it tells us the probability of that a given measurement will
result in a particular output, given a particular preparation. The analogy presented above reveals that
classical probability theory and quantum mechanics are very similar from this vantage point.

3.4 Bipartite states and entanglement

The analogy presented in the previous section also does not deal with the last postulate, dealing with
the structure of composite quantum systems. This structure is quite different than in the setting of
classical probability theory, in particular due to the existence of entangled states. As we shall see, in
one form or another entanglement is responsible for weirdness of quantum mechanics.

Consider an arbitrary state of a bipartite quantum system, i.e. a state |Ψ〉 on the spaceHA⊗HB .
Given orthonormal bases {|b j 〉} and {|b ′k〉} for these two spaces, any bipartite state can be written as

|Ψ〉=
dA
∑

j=1

dB
∑

k=1

Ψ j k |b j 〉⊗ |b ′k〉. (3.11)

10John Stewart Bell, 1928 – 1990, Northern Irish physicist.
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Here dA (dB ) is the dimension ofHA (HB ). In fact, we can always adapt the bases of A and B such that
the summation only contains “diagonal” elements, where the indices of the basis elements are equal.
This is called the Schmidt11 decomposition of the state. Formally, we have

Proposition 3.4.1: Schmidt decomposition

Given any bipartite state |Ψ〉AB ∈ HA⊗HB , there exist orthonormal bases {|ξ j 〉}A and {|η j 〉}B
forHA andHB , respectively, such that

|Ψ〉AB =
dmin
∑

j=1

λ j |ξ j 〉A⊗ |η j 〉B , (3.12)

where dmin =min{dA, dB} and the λ j are such that λ j ≥ 0 for all j and
∑

j λ
2
j = 1.

Proof. Thinking of the components Ψ j k as forming a dA× dB matrix, we may use the singular-value
decomposition to form the Schmidt decomposition. Let the singular value decomposition be Ψ j ,k =
Uj ,`D`,`[V

∗]`,k . The entries of D`,` are all positive; let their values be D`,` = λ`. At most there are
dmin =min(dA, dB ) nonzero singular values, so we may express |Ψ〉 as

|Ψ〉=
dA
∑

j=1

dB
∑

k=1

dmin
∑

`

Uj ,`λ`[V
∗]`,k |b j 〉⊗ |b ′k〉=

dmin
∑

`

λ`

�
dA
∑

j=1

Uj ,`|b j 〉
�

⊗
�

dB
∑

k=1

V ∗k ,`|b ′k〉
�

=
dmin
∑

`

λ`|ξ`〉⊗ |η`〉, (3.13)

where we have implicitly defined the states |ξ`〉 and |η`〉 in the last step. Since U and V are uni-
tary, these two sets are each orthonormal bases. Since the singular values are positive and the state is
assumed to be normalized,

∑

j λ
2
j = 1.

If there is only one nonzero Schmidt coefficient λ`, the state is a product state |Ψ〉= |ξ 〉⊗ |η〉. On
the other hand, if there is more than one nonzero Schmidt coefficient, the state is said to be entangled;
if λ` = 1/

p

dm , the state is said to be maximally entangled. Choosing a basis {|bk〉} forHA ' HB ,
the canonical maximally entangled state is given by

|Φ〉AB := 1p
dA

∑

k

|bk〉A⊗ |bk〉B . (3.14)

3.5 No cloning & no deleting

The possibility of entanglement is due to the linear structure of the state space, and is responsible for
the no-cloning argument we saw in §1.2. Attempting to clone a general qubit state |ψ〉= a|0〉+ b |1〉
results in the entangled state a|0〉⊗|0〉+b |1〉⊗|1〉. This argument works for systems of any dimension,
so we have the following

11Erhard Schmidt, 1876 – 1959, German mathematician.
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Proposition 3.5.1: No cloning

There exists no unitary operator UAB onHA⊗HB such that, for fixed |ϕ〉B and all |ψ〉A,

UAB |ψ〉A⊗ |ϕ〉B = |ψ〉A⊗ |ψ〉B , (3.15)

A similar argument shows that it is also not possible to delete arbitrary quantum states, i.e. turn two
copies into one. Here we need three systems to include the state of the deleting apparatus.

Proposition 3.5.2: No deleting

There exists no unitary operator UABC onHA⊗HB ⊗HC such that

UABC |ψ〉A⊗ |ψ〉B ⊗ |η〉C = |ψ〉A⊗ |ϕ〉B ⊗ |η′〉C (3.16)

for fixed |ϕ〉B , |η〉C , |η′〉C and all |ψ〉A.

Proof. Consider two different input states |ψ〉 and |ψ′〉 to the deleting machine. The overlap between
the initial states is simply 〈ψ|ψ′〉2, but at the output it is 〈ψ|ψ′〉, since the other states |ϕ〉, |η〉, and
|η′〉 are fixed. A unitary operation would however leave the overlap invariant.

3.6 Superdense coding and teleportation

There are two basic quantum information processing protocols involving entangled states of two
systems which have no classical analog: superdense coding and teleportation. Each is constructed
using a basis of maximally-entangled states of two qubits, called the Bell basis.

3.6.1 The Bell basis

The canonical maximally entangled state of two qubits is

|Φ〉AB =
1p
2
(|00〉+ |11〉)AB . (3.17)

Consider the action of one of the Pauli operators on system B , say σx :

|Φx〉AB = (1A⊗ (σx )B ) |Φ〉AB =
1p
2
(|01〉+ |10〉)AB . (3.18)

If the qubit is a spin- 1
2 particle, σx corresponds to a rotation by π around the x-axis. Clearly this state

is orthogonal to |Φ〉. What about σz?

|Φz〉AB = (1A⊗ (σz )B ) |Φ〉AB =
1p
2
(|00〉− |11〉)AB . (3.19)

Also orthogonal to |Φ〉, and to |Φx〉. And σy :

|Φy〉AB =
�

1A⊗ (−iσy )B
�

|Φ〉AB =
1p
2
(|01〉− |10〉)AB , (3.20)

orthogonal to all others. We have constructed a basis for C2⊗C2 comprised of maximally entangled
states, all related by Pauli operators on system B alone.
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As a side note, these four states turn out to be an interesting basis in terms of angular momentum.
|Φy〉 is the singlet, the state of two spin- 1

2 systems having total angular momentum zero. The other
states span the triplet space, having total angular momentum 1. |Φx〉 is the eigenstate having Jz = 0,
while |Φz〉 is the eigenstate with Jx = 0 and |Φ〉 Jy = 0. The latter two can be identified by direct
calculation or by starting with |Φy〉 and noticing that since σy commutes with rotations about the y
axis, it cannot change the value of Jy .

3.6.2 Superdense coding

Consider again our two separated parties from §1.4, Alice and Bob. Alice would like to send a message
to Bob, a message composed of two bits (sell stocks? buy gold?), but she only has enough postage for
either one classical bit or one quantum bit. Clearly one classical bit is insufficient. But quantum
postage was even cheaper in the past, and Alice predicting that it would go up, sent a qubit to Bob
back when the rates were cheap.

How does that help her now? Suppose she originally prepared |Φ〉AB and then sent system A using
the cheap postage. Now she can apply one of the 3 Pauli operators, or do nothing, to B and send this
qubit to Bob. This creates one of the 4 entangled basis states |Φ j 〉AB , and Bob can read out the message
using the measurement with projectors Π j = |Φ j 〉〈Φ j |

Notice that Alice managed to send 2 bits of information using just 1 qubit — when she sent the
first one she had not yet made up her mind about selling stocks and buying gold. That is why this
scheme is called superdense coding: one qubit is used to transfer 2 classical bits, though of course two
qubits are ultimately involved (Bob needs 4 orthogonal projectors to read out the message).

3.6.3 Teleportation

Now imagine Alice and Bob are in the opposite situation: Instead of Alice wanting to send 2 classical
bits and having only a quantum channel (plus preshared entanglement), she wants to send a qubit, but
only has access to a classical channel. Can she somehow send the state to Bob using only a classical
channel?

If that is all the resources they share, the answer is no. Alice could try to measure the qubit in
some way, for instance to learn the values of the coefficients a and b in the expression |ψ〉= a|0〉+b |1〉
by building up statistics (since Pr(0) = |a|2 and never mind she also needs the relative phase between
a and b ), but she only has 1 copy of |ψ〉.

On the other hand, if Alice and Bob already share an entangled state, then it is possible to transfer
|ψ〉 to Bob, and it only requires 2 bits! The “2 bits” are reminiscent of the 4 entangled states |Φ j 〉 used
in superdense coding, and they play the same role as measurement in teleportation.

The protocol is very simple. Alice has a qubit prepared in |ψ〉A′ as well as half of a maximally en-
tangled state |Φ〉AB . She then measures her two systems in the Bell basis, producing a two-bit outcome.
What happens when the outcome corresponds to |Φ〉?

A′A〈Φ|ψ〉A′ |Φ〉AB =A′A〈Φ| 1p
2
(a|000〉+ a|011〉+ b |100〉+ b |111〉)A′AB (3.21)

= 1
2 (〈00|+ 〈11|)A′A (a|000〉+ a|011〉+ b |100〉+ b |111〉)A′AB (3.22)

= 1
2 (a|0〉+ b |1〉)B = 1

2 |ψ〉B . (3.23)

The state has been transferred to Bob! The squared norm of the output tells us the probability, so the
chance that Alice obtains result |ψ〉 is 1/4. And what about the other results?
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Since |Φx〉AA′ = (σx )A′ |Φ〉AA′ , it follows that

A′A〈Φx |ψ〉A′ |Φ〉AB =A′A 〈Φ|(σx )A′ |ψ〉A′ |Φ〉AB =
1
2 (σx )B |ψ〉B , (3.24)

by repeating the above argument with |ψ〉 replaced with σx |ψ〉. This works similarly for the other
two outcomes. Thus, if Alice communicates the result of the Bell basis measurement to Bob, he can
apply the corresponding Pauli operator to obtain the input state |ψ〉. Alice needs 2 bits to describe
which outcome occurred, and since each projected state has the same weight, the probability of every
outcome is 1/4. The fact that the probability distribution does not depend on the input state is im-
portant, otherwise information about the state would essentially leak into other degrees of freedom,
and the state could not be properly reconstructed by Bob.

3.7 Complementarity

Complementarity of the particle and wave nature of light in the double slit experiment is one of
the most well-known examples of the difference between classical and quantum mechanics. Indeed,
Feynman12 starts off his treatment of quantum mechanics in his famous lectures with a treatment of
the double-slit experiment, stating

In this chapter we shall tackle immediately the basic element of the mysterious behavior
in its most strange form. We choose to examine a phenomenon which is impossible, abso-
lutely impossible, to explain in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery. We cannot make the mystery go away
by “explaining” how it works. We will just tell you how it works. In telling you how it
works we will have told you about the basic peculiarities of all quantum mechanics.[22]

3.7.1 Complementarity in the Mach-Zehnder interferometer

In our formalism, we can see that the mystery of the double-slit experiment is intimately related to
entanglement. Let’s simplify the physics and instead consider a Mach13-Zehnder14 interferometer
using polarizing beamsplitters (PBS), depicted in Fig. 3.2.

Imagine a single photon entering the interferometer. Its polarization could be horizontal, vertical,
or any linear combination of these, and its quantum state space is given by HP = C2 with a basis
|0〉P for horizontal and |1〉P for vertical polarization. As it travels through the interferometer it can
propagate in two spatial modes, call them mode 0 and mode 1 in accord with Fig. 3.2. These two
modes also form a two-dimensional state spaceHM with basis states |0〉M and |1〉M .

The beamsplitters separate horizontal from vertical polarization, meaning we can take the action
of the polarizing beamsplitter to be

UPBS :=
1
∑

z=0
|z〉〈z |P ⊗ |z〉M . (3.25)

This equation defines an isometry, not a unitary, since we are ignoring the spatial mode of the input
(i.e. we implicitly assume it is in |0〉M ). Also, we have ignored phases associated with transmission as
opposed to reflection from the beamsplitter.

12Richard Phillips Feynman, 1918 – 1988, American physicist.
13Ludwig Mach, 1868 – 1951, Austrian inventor (son of physicist Ernst Mach).
14Ludwig Louis Albert Zehnder, 1854 – 1949, Swiss physicist.
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PBS

PBS

mirror

mirror

mode 0

mode 1

Figure 3.2: A Mach-Zehnder interferometer. The first polarizing beamsplitter (PBS) transmits input
light into the two modes 0 and 1 according to its polarization state. The interferometer is constructed
to that the propagating light acquires the same phase in either mode. Then the second PBS reverses
the action of the first.

The action of the second polarizing beamsplitter is to reverse this process. Since the output mode
is not relevant, the second beamsplitter is described by U ∗PBS. That is to say, in the setup the mode
and polarization degrees of freedom are completely correlated for every possible input, so we do not
need to specify what the second PBS does to vertical polarization propagating the top mode. The two
beamsplitters together reproduce the input state, since U ∗PBSUPBS = 1P .

The polarization observable σz associated with horizontal and vertical is the “particle” property
of the photon, since a photon in a definite state (eigenstate) of this observable takes a definite path
through the interferometer. The first PBS is analogous to light being forced through the two slits
in the double slit experiment. The observable σx associated with polarization at ±45◦ is the “wave”
property of the photon. A photon in a definite state of σx does not take a definite path through
the interferometer (indeed, any σn̂ for n̂ in the x − y plane defines a wave property), but produces
a kind of “interference pattern” at the output. In an interference pattern, the intensity at any point
depends on the relative phases of the paths superimposed at that point. Here, there are two paths
and the relative phase at the output can be detected by measuring σx : The + outcome signifies zero
relative phase, − a relative phase of π. The second PBS mimics the interference of the two beams in
the double slit experiment, and a measurement of σx at the output is akin to the screen or film used
to record the interference pattern.

Moreover, just as in the double slit experiment, if we try to determine the particle property, we
inevitably destroy the wave property. Interference is possible only if no information about the path
has been acquired. To see why, observe that the first PBS enables us to measure σz of the photon
by measuring in which arm of the interferometer the photon is located. This is part of the von Neu-
mann picture of measurement, which we shall examine in more detail in §4.2.1. Imagine that we could
check which arm the photon is in without destroying it (which is the usual sort of photodetection
measurement). For instance, the photon might pass through an optical cavity, altering the state of an
atom present in the cavity. The atom can then be measured to determine if a photon passed through
the cavity or not. Abstracting away the details, this indirect measurement can be described by the
isometry

Uarm :=
∑

z
|z〉〈z |M ⊗ |ϕz〉A, (3.26)
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where the |ϕz〉A are the two states of the atom produced in the measurement process. Altogether, the
action of the interferometer and indirect measurement is described by the isometry

WP→PA :=U ∗PBSUarmUPBS =
∑

z
|z〉〈z |P ⊗ |ϕz〉A (3.27)

Now suppose the photon is initially polarized with a definite value of σx , say +45◦, so that its
quantum state is

|ψ0〉P = |+〉P = 1p
2
(|0〉+ |1〉)P . (3.28)

At the output, the experimental setup produces the state

|ψ1〉PA=WP→PA|ψ0〉P = 1p
2

1
∑

z=0
|z〉P |ϕz〉A. (3.29)

We then measure σx on P , obtaining outcomes according to the distribution PX . If the atomic states
are identical, |ϕ0〉 = |ϕ1〉, then PX is deterministic: PX (+) = 1. However, if the atomic states are
orthogonal, |ϕz〉= |z〉, then PX is uniform:

PX (±) =Tr[(|±〉〈±|P ⊗1M )|ψ1〉〈ψ1|P M ] =
1
2 . (3.30)

The interference pattern is completely washed out, and one says the coherence has been destroyed,
because there is no longer any way to determine the relative phase of the input state.

Notice that the output state |ψ1〉P M in this case is maximally entangled; the loss of the photon’s
coherence is due to its entanglement with the atom. However, the coherence is still present, but
only in the combined system. This follows because it is in principle possible to restore the photon’s
coherence, simply by applying the inverse isometry. This may be difficult in practice, but nothing
prohibits it in principle.

One reason it may be difficult is that we must completely erase all information about the particle
property, σz . And a more realistic description of the indirect measurement would include the fact
that the measurement result is stored in many degrees of freedom, such as many magnetized spins in
a region of a hard drive, not solely in one atom by itself. That is, the output state of a more realistic
description of the indirect measurement is of the form

|ψ1〉PA1,...,An
= 1p

2
(|0, . . . , 0〉+ |1, . . . , 1〉)PA1,...,An

, (3.31)

for some large n. For the present purposes, though, it suffices to consider n = 2. Even then, no
unitary action on the photon polarization P and the first measurement record A1 can restore the
coherence and allow us to infer the relative phase of the input polarization state. This is easily seen
by examining the density operator for the joint PA1 system. Density operators will be examined in
more detail in §4.1, but for the present purposes we can argue as follows.

Since we are ignoring A2, we could imagine that someone measures it in the |z〉 basis, but does
not tell us the measurement result. If the outcome were 0, then the state would be |00〉PA1

, while
outcome 1 leads to the state |11〉PA1

. Each of these outcomes is equally likely. But this is precisely
the same state of affairs that would result had the original polarization state had been |−〉P . In that
case, the state of PA1A2 would have been 1p

2
(|000〉−|111〉)PA1A2

, which indeed leads back to the same
two equally-likely possible states conditioned on the measurement outcome, |00〉 and |11〉. Therefore,
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there is no way to distinguish between the two possible original relative phases |±〉P . In the language
of density operators, coherence cannot be recovered because in either case the state of PA1 is given by

ρPA1
=TrA2

[|ψ1〉〈ψ1|PA1A2
] = 1

2 (|00〉〈00|+ |11〉〈11|)PA1
. (3.32)

Interestingly, returning to the case n = 1, it is not actually necessary to apply the inverse of V to
restore coherence. We can determine the relative phase of the input by comparing local measurements
made on the photon and the atom separately. Observe that the maximally entangled state also takes
the same form in the σx basis:

1p
2
(|00〉+ |11〉)PA=

1p
2
(|++〉+ | −−〉)PA. (3.33)

Thus, the interferometer produces |ψ+1 〉 = 1p
2
(|00〉+ |11〉)PA when the input is |ψ0〉 = |+〉. On the

other hand, if the input had been |−〉, an easy calculation shows the output would be

|ψ−1 〉PA=
1p
2
(|00〉− |11〉)PA=

1p
2
(|+−〉+ | −+〉)PA. (3.34)

Therefore, by measuring σx of the atom, the polarization state of the photon is transformed into
either |+〉 or |−〉. The photon will then display interference in the form of a biased distribution PX ,
and we can infer whether the input was |+〉 or |−〉 by comparing the measurements of the photon
and the atom. If the measurement results are identical, the original phase was +1, if they differ, −1.
This phenomenon is called the quantum eraser, as we have erased the original σz measurement record
in the atom by measuring σx .

3.7.2 A quantitative statement of complementarity

We can quantify the complementarity of the wave and particle nature of the photon in the above
setup. The particle nature corresponds to which path the photon took, and we may quantify this
by how well we can predict a hypothetical measurement of the mode (which produces the random
variable Z) by measuring the ancilla system to learn the value of z. From Exercise 3.2, when PZ (z) =
1
2 , the probability of correctly guessing the outcome of the hypothetical measurement is given by
pguess(Z |A) = 1

2 (1+
p

1− |〈ϕ0|ϕ1〉|2). This motivates the definition of the distinguishability of the
two paths by

D :=
Æ

1− |〈ϕ0|ϕ1〉|2. (3.35)

Its value ranges from zero (complete indistinguishability) to one (complete distinguishability).
On the other hand, interference at the output of the interferometer corresponds to the wave

nature. Specifically, if the measurement of the interferometer output in the basis |±〉 is more likely
to produce |+〉 than |−〉, this can be taken as an indication of the wave nature of the photon. Calling
the measurement result X , we denote the probability of X given the input state |ψ〉 as PX |ψ. Then
the above motivates the definition of the visibility as

V :=max
|ψ〉
|PX |ψ(+)− PX |ψ(−)|. (3.36)

Again, the value ranges from zero to one. The terminology comes from the visibility of fringe pat-
terns in the double slit experiment. Our definition corresponds to the difference between intensities
at the maxima and minima in that case.

With the above definitions, we can then show the following trade-off between the distinguisha-
bility and the visibility.
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Proposition 3.7.1: Wave–Particle Complementarity Relation

D2+V 2 = 1. (3.37)

Proof. Supposing the input state is |ψ〉P =
∑

z ψz |z〉P forψz ∈C such that |ψ0|2+ |ψ1|2 = 1, the total
output state is just

|ψ′〉PA=
∑

z
ψz |z〉P |ϕz〉A. (3.38)

Then we have
�

�

�PX |ψ(+)− PX |ψ(−)
�

�

�=
�

�Tr[(|+〉〈+|P ⊗1A)|ψ′〉〈ψ′|PA]−Tr[(|+〉〈+|P ⊗1A)|ψ′〉〈ψ′|PA]
�

�

=
�

�〈ψ′|(σx )P ⊗1A|ψ′〉PA
�

�=
�

�

�

1
∑

z,z ′=0

ψ∗z ′ψz〈z ′|z ⊕ 1〉〈ϕz ′ |ϕz〉
�

�

�

=
�

�

1
∑

z=0
ψzψ

∗
z⊕1〈ϕz⊕1|ϕz〉

�

�≤ |ψ0ψ
∗
1〈ϕ1|ϕ0〉|+ |ψ1ψ

∗
0〈ϕ0|ϕ1〉|

= 2|ψ0ψ
∗
1| · |〈ϕ0|ϕ1〉| ≤ |〈ϕ0|ϕ1〉|. (3.39)

The first inequality is the triangle inequality for complex numbers, while the second is the fact
that |ψ0ψ

∗
1| ≤ 1

2 . This holds because we can express the two coefficients as ψ0 =
p

peθ0 and ψ0 =
p

1− peθ1 for 0≤ p ≤ 1 and two arbitrary angles θ0 and θ1. Thus |ψ0ψ
∗
1|= |

p
p
p

1− p| ≤ 1
2 .

Choosing ψ0 = ψ1 =
1p
2

saturates this bound, and therefore V = |〈ϕ0|ϕ1〉|. From the expression

for the distinguishability, |〈ϕ0|ϕ1〉|2 = 1−D2, completing the proof.

3.8 The EPR paradox

Complementarity and uncertainty relations assert that physical systems cannot simultaneously dis-
play two complementary properties or at least that two such properties cannot both be known to an
observer simultaneously. This raises the question: Do systems have these complementary properties
and they just refuse to tell us, or do they not have these properties in the first place? Put differently,
the question is whether complementarity just results from some kind of inevitable disturbance to a
system upon measurement or whether complementary properties somehow do not exist in the first
place, and hence cannot be simultaneously known.

Is there any way to tell which of these two options is correct? Before we attempt to answer this
question, it is worth specifying more precisely what we mean by “real properties” in the first place.
A very concise notion is given by Einstein15, Podolsky16, and Rosen17 (EPR) in their celebrated 1935
paper in the Physical Review:

If, without in any way disturbing a system, we can predict with certainty (i.e., with prob-
ability equal to unity) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.[23]

15Albert Einstein, 1879 – 1955, German-born theoretical physicist and philosopher of science.
16Boris Yakovlevich Podolsky, 1896 – 1966, Russian-American physicist.
17Nathan Rosen, 1909 – 1995, American-Israeli physicist.
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Now, if disturbance to elements of reality is caused by measurement, then one thing measurement
ought not do is disturb such elements of reality in systems far from where the measurement takes
place. This is the principle of locality, one of the basic principles of modern physics.

Entangled states have a peculiar relation to locality, as noticed by EPR, Einstein in particular.
EPR considered two different expansions of a given bipartite state

|Ψ〉AB =
∑

k

|ψk〉A⊗ |uk〉B =
∑

s
|ϕs 〉A⊗ |vs 〉B , (3.40)

where the |ψk〉 and |ϕs 〉 are arbitrary states, while the |uk〉 and |vs 〉 are unnormalized, but mutually
orthogonal states. According to the postulates, measurement of system B in the |uk〉 basis will result
in the post-measurement state |ψk〉A in A with probability 〈uk |uk〉. Similarly, measurement of system
B in the |vs 〉 basis will result in the post-measurement state |ϕs 〉A in Awith probability 〈vs |vs 〉. Indeed,
by measuring system B in yet another basis, still other post-measurement states can be prepared in
system A. Schrödinger termed this sort of phenomenon steering and noted the conflict with locality
by saying

It is rather discomforting that the theory should allow a system to be steered or piloted
into one or the other type of state at the experimenter’s mercy in spite of his having no
access to it.[24]

Note that steering does not imply the possibility of superluminal signalling. Although it is true
that if Bob measures system B , his description of Alice’s system A changes upon obtaining the out-
come of the measurement. But Alice does not know the measurement result, and thus the probability
of any particular experiment she might do is unchanged by the fact that Bob has or has not measured
system B . For a measurement with projection operators Πx , Alice anticipates that outcome x will
occur with probability PX (x) = Tr[((Πx )A⊗ 1B )|Ψ〉〈Ψ|AB] in either case. Since the probability dis-
tribution contains no information about Bob’s measurement choice or outcome, no communication
of any kind is possible, superluminal or otherwise.

Returning to the EPR argument, observe that the various different post-measurement states could
correspond to eigenvectors of noncommuting observables on B . But then the values taken by these
observables should therefore all be elements of reality, at least if the action taken at A does not influ-
ence the elements of reality at B . But, recall the Robertson18 uncertainty relation,

∆A∆B ≥ 1
2 |Tr[[A,B]|ψ〉〈ψ|]| , (3.41)

for ∆A (∆B)) the standard deviation of observable A (B) in state |ψ〉 and [A,B] the commutator. It
implies that noncommuting observables cannot simultaneously take on well-defined values, in con-
tradiction to the EPR argument. This is the EPR paradox.

The conclusion of the EPR paper is that the quantum-mechanical description of systems in terms
of state vectors is incomplete, that is, there are elements of reality associated with noncommuting
observables, the uncertainty principle notwithstanding, but that these are not encapsulated in the
state vector |ψ〉. The state vector should contain all elements of reality, but does not.

Einstein stated a slightly different conclusion in a letter to Schrödinger, eschewing the argument
regarding elements of reality and taking aim directly at the state vector as a description of reality:

Now what is essential is exclusively that [|ψk〉B] and [|ϕs 〉B] are in general different from
one another. I assert that this difference is incompatible with the hypothesis that the

18Howard Percy Robertson, 1903 – 1961, American mathematician and physicist.
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description is correlated one-to-one with the physical reality (the real state). After the
collision [which in the EPR model produces the entangled state], the real state of (AB)
consists precisely of the real state of A and the real state of B , which two states have
nothing to do with one another. The real state of B thus cannot depend upon the kind of
measurement I carry out on A. (“Separation hypothesis” from above.) But then for the
same state of B there are two (in general arbitrarily many) equally justified [|ψ〉B] , which
contradicts the hypothesis of a one-to-one or complete description of the real states.19

Clearly what Einstein has in mind here is that each system has its own elements of reality, or real state,
and these should obey locality. We call this sort of description locally realistic. If a locally realistic
description of quantum phenomena is possible, it is not to be found in the use of state vectors.

An important aspect of the EPR argument to note is their reasoning from counterfactuals, that is
measurements that were not performed. They themselves acknowledge this, noting that

One could object to this conclusion on the grounds that our criterion of reality is not
sufficiently restrictive. Indeed, one would not arrive at our conclusion if one insisted
that two or more physical quantities can be regarded as simultaneous elements of reality
only when they can be simultaneously measured or predicted. On this point of view,
since either one or the other, but not both simultaneously, of the quantities P and Q can
be predicted, they are not simultaneously real. This makes the reality of P and Q depend
upon the process of measurement carried out on the first system, which does not disturb
the second system in any way. No reasonable definition of reality could be expected to
permit this.

3.9 Bell inequalities

The EPR argument perhaps raises our hopes that complementarity is due to the inevitable disturbance
of measurement, by “revealing” the existence of elements of reality obscured by the uncertainty rela-
tion and complementarity. But the elements of reality must be partly in the form of hidden variables
not contained in the state vector description of a system. Is such a description possible? Is a locally
realistic formulation of quantum mechanics possible, one possibly making use of hidden variables?
By showing that local realism constrains the possible correlations between measurements made on
two separated systems, Bell demonstrated that such a description is not possible. Thus, we face two
unpalatable alternatives. Either the source of complementarity should be attributed to a lack of exis-
tence of local elements of reality, or these independent elements of reality must be nonlocal.

19“Wesentlich ist nun ausschliesslich, dass ψB und ψB überhaupt voneinander verschieden sind. Ich behaupte, dass
diese Verschiedenheit mit der Hypothese, dass die ψ-Beschreibung ein-eindeutig der physikalischen Wirklichkeit (dem
wirklichen Zustande) zugeordnet sei, unvereinbar ist. Nach dem Zusammenstoss besteht der wirkliche Zustand von (AB)
nämlich aus dem wirklichen Zustand von A und dem wirklichen Zustand von B, welche beiden Zustände nichts miteinan-
der zu schaffen haben. Der wirkliche Zustand von B kann nun nicht davon abhängen, was für eine Messung ich an A
vornehme. (‘Trennungshypothese’ von oben.) Dann aber gibt es zu demselben Zustände von B zwei (überhaupt bel. viele)
gleichberechtigte ψ, was der Hypothese einer ein-eindeutigen bezw. vollständigen Beschreibung der wirklichen Zustände
widerspricht.”[25, 26]
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3.9.1 The CHSH inequality

A simplified version of Bell’s argument was put forth by Clauser20, Horne21, Shimony22, and Holt23,
and is known as the CHSH inequality. It involves two systems, upon which the experimenters Alice
and Bob can each make one of two possible measurements. Every measurement has two possible
outcomes, which we will label ±1. Abstractly, this defines four observables a0, a1, b0 and b1.

According to local realism, deterministic values±1 can be assigned to all observables, even though
it might be that a0 and a1 (and b0 and b1) cannot be simultaneously measured (this is an instance of
the reasoning from counterfactuals described above). From this, it immediately follows that

C = (a0+ a1)b0+(a0− a1)b1 =±2. (3.42)

Now imagine that the values of these observables are not directly given in a model of the situation, but
require additional hidden variables to pin them down exactly. Calling the hidden variable λ and its
distribution PHV(λ), we can express the probability for the observables to take on the definite values
a0, a1, b0, and b1 as

P (a0 = a0,a1 = a1, b0 = b0, b1 = b1|λ)PHV(λ). (3.43)

But since (3.42) is an equality, averaging over λ like so will only lead to

|〈C 〉|= |〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉− 〈a1b1〉| ≤ 2. (3.44)

This is the CHSH inequality, an instance of a generic Bell inequality.
The CHSH inequality can be violated in quantum mechanics, by making use of entangled states.

Suppose the bipartite state of two qubit systems A and B is the state |Ψ〉= 1p
2
(|01〉AB−|10〉AB ) and let

the observables be associated with Bloch vectors â0, â1, b̂0 and b̂1 so that a0 = ~σ ·â0 and so forth, where
~σ = x̂σx+ ŷσy+ ẑσz The state |Ψ〉AB , which is the spin-singlet combination of two spin- 1

2 particles, is
rotationally invariant, meaning that UA⊗UB |Ψ〉AB = |Ψ〉AB for any unitary U with detU = 1. From
rotation invariance it follows that

〈Ψ|(~σA · â)(~σB · b̂ )|Ψ〉AB =−â · b̂ . (3.45)

To see this, compute

(~σA · â)(~σB · b̂ )|Ψ〉AB =
∑

j k

a j bk (σ j ⊗σk )|Ψ〉AB =−
∑

j k

a j bk (1⊗σkσ j )|Ψ〉AB . (3.46)

The second equality holds because σ j ⊗σ j |Ψ〉 = −|Ψ〉; det(σ j ) = −1, so it is iσ j that has unit deter-
minant. Then, in the inner product above only the terms with j = k contribute to the sum, since
states of the form 1⊗σk |Ψ〉AB have nonzero angular momentum.

Now choose â0 = x̂, â1 = ŷ, b̂0 =
1p
2
(x̂ + ŷ), and b̂1 =

1p
2
(x̂ − ŷ). This gives

〈a0b0〉= 〈a1b0〉= 〈a0b1〉=− 1p
2

and 〈a1b1〉= 1p
2
, (3.47)

20John Francis Clauser, born 1942, American physicist.
21Michael A. Horne, American physicist
22Abner Shimony, born 1928, American physicist and philosopher of science.
23Richard A. Holt, American physicist.
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so that |〈C 〉|= 2
p

2� 2. Therefore, Einstein’s goal of a locally realistic version of quantum mechanics
is impossible.

However, it is important to point out that this does not immediately rule out all “classical” de-
scriptions of the whole experiment, just those most similar to our description of classical mechanical
systems. The locally realistic model leaves out several aspects of the experiment, presuming them
to be irrelevant. One is the fact that Alice and Bob need to transmit their measurement results to a
common location in order to compare them. Another is that they need to have access to synchro-
nized reference frames in order to properly carry out their measurements. Perhaps by including these
additional features one can recover a more classical understanding of the CHSH experiment.

The use of entangled states is necessary in the CHSH argument; no non-entangled states can
violate the CHSH inequality. Schrödinger explained the importance of entangled states quite well,
though before the advent of Bell inequalities:

When two systems, of which we know the states by their respective representatives, enter
into temporary physical interaction due to known forces between them, and when after a
time of mutual influence the systems separate again, then they can no longer be described
in the same way as before, viz. by endowing each of them with a representative of its own.
I would not call that one but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought. By the interaction the
two representatives (or ψ-functions) have become entangled.[24]

The violation of the CHSH inequality also highlights the danger of reasoning from counterfac-
tuals in quantum mechanics. It simply is not possible to consider the consequences of hypothetical
operations or measurements in quantum mechanics that are not actually performed. Peres24 put it
best in the title of a paper on the subject of Bell inequalities: Unperformed experiments have no re-
sults.[27]

3.9.2 Tsirel’son’s inequality

The value |〈C 〉|= 2
p

2 is actually the largest possible in quantum mechanics, a fact known as Tsirel’son’s25

inequality. To prove it, consider the quantity C 2 for a0, a1, b0, and b1 arbitrary Hermitian operators
which square to the identity (so that their eigenvalues are ±1), and for which [ax , by] = 0. By direct
calculation we find

C 2 = 41− [a0,a1][b0, b1]. (3.48)

Now compute the infinity norm of C 2, which is defined by

||C 2||∞ := sup
|ψ〉

� ||C 2|ψ〉||
|||ψ〉||

�

. (3.49)

The infinity norm has the following two properties, (i) ||AB ||∞ ≤ ||A||∞||B ||∞ and (ii) ||A+B ||∞ ≤
||A||∞+ ||B ||∞. Then, we have

||C 2||∞ = ||41− [a0,a1][b0, b1]||∞ ≤ 4+ ||[a1,a0]||∞+ ||[b0, b1]||∞ (3.50)
≤ 4+ ||a1||∞ (||a0||∞+ || − a0||∞)+ ||b0||∞ (||b1||∞+ || − b1||∞) = 8. (3.51)

In the last step we used the fact that || ± c ||∞ = 1 for c having eigenvalues ±1.
24Asher Peres, 1934 – 2005, Israeli physicist,
25Boris Semyonovich Tsirelson, Russian-Israeli mathematician.
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3.9.3 The CHSH game

There is a slightly different way to formulate the CHSH setup which directly reveals the connection
to the principle of no superluminal signalling. Abstractly, the CHSH scenario consists of Alice and
Bob choosing inputs x and y (their choice of measurements) and then receiving outputs a and b (the
measurement results). For later convenience, here we change the convention slightly and regard a
and b as also taking on values 0 or 1.

Now consider a game whose goal is to produce outputs a and b given inputs x and y such that
a⊕ b = x · y. If the outputs ax and by have fixed values, then it is easy to see that there is no way to
win the game for all possible inputs x and y. This is because ax and by must satisfy ax ⊕ by = x · y,
but

∑

xy
ax ⊕ by = 2 while

∑

xy
x · y = 1. (3.52)

Examination of the 16 possible settings of ax and by shows that at best Alice and Bob can win with
probability 3/4. For instance, a0 = 1, a1 = 0, b0 = 0, and b1 = 1 obeys ax ⊕ by = x · y in only three
cases, with x = y = 0 giving a0 + b0 = 1. Similarly, a0 = 0, a1 = 1, b0 = 0, and b1 = 1 fails in three
cases, only x = y = 0 being correct. Mixing these deterministic assignments does not change the
bound, so we have found that

P (a⊕ b = x · y) = 1
4

∑

a,b ,x,y

δa⊕b=x·y
∑

λ

p(λ)P (a|x,λ)P (b |y,λ)≤ 3
4 , (3.53)

where the conditional distributions P (a|x,λ) and P (b |y,λ) are deterministic.
But the form of the distribution is the most general possible for a deterministic local hidden vari-

able theory, so P (a⊕ b = x · y)≤ 3
4 is a Bell inequality. Actually it is just a restatement of the CHSH

inequality. To see this, let pxy = P (a ⊕ b = x · y|x, y). Then each term in C is related to a different

pxy . Consider p0,1. Denoting by a′x = (−1)ax and b ′y = (−1)by the original±1-valued observables, we
have

〈a′0b ′1〉= 〈(−1)a0+b1〉= p01− (1− p01) = 2 p01− 1, (3.54)

since x = 0, y = 1 means the value of a′0b ′1 will be +1 if they win and −1 if they lose. Similarly,
〈a′0b ′0〉= 2 p00− 1, 〈a′1b ′0〉= 2 p10− 1, while 〈a′1b ′1〉= 1− 2 p11. In the last case, a′1b ′1 is −1 if they win
and +1 if they lose. The CHSH inequality |〈C 〉| ≤ 2 then translates into

|〈C 〉|= 2
∑

xy
pxy − 4= 2 · 4 p DLHV

win − 4≤ 2, (3.55)

or p DLHV
win ≤ 3

4 , where p DLHV
win denotes the probability of winning the game when x and y are chosen

randomly, when using a strategy described by a deterministic local hidden variable theory. Using
quantum mechanics, we have |〈C 〉| ≤ 2

p
2, so pQM

win ≤ 1
2 +

1
2
p

2
.

The maximum winning probability is 1, of course, and is achieved by the distribution P (a, b |x, y) =
1
2δa⊕b ,x·y . Interestingly, this distribution also does not allow for superluminal signalling, even though
the non-local correlations are much stronger than in quantum mechanics. Here, |〈C 〉| = 4. Never-
theless, the distribution obeys P (a|x, y) = P (a|x), so that the marginal probability of outcome a
depends only on the x setting and not the y setting. As much holds in the other direction. This
precludes signalling from one party to the other.
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3.10 Notes & Further reading

The axioms of quantum mechanics were laid out by Dirac in 1930 [28] and von Neumann in 1932 [29].
A more recent and very lucid treatment of quantum mechanics as a whole is given by Ballentine [30];
more mathematical treatments are offered by Hall [31] and Takhtajan [32]. Here we follow the
treatment by Nielsen and Chuang [2], tailored to quantum information theory’s focus on finite-
dimensional systems.

For more on interpretations of quantum mechanics, the reader could do worse than consulting
the Stanford Encyclopedia of Philosophy, the Compendium of Quantum Physics by Greenberger,
Hentschel, and Weinert [33], or the book of Hughes [34]. The recent books of Jaeger [35] and
Timpson [36] discuss issues of interpretation in the context of quantum information theory.

The wave-particle complementarity relation is adapted from Englert [37].
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3.11 Exercises

Exercise 3.1. Hadamard gate → solution
An important qubit transformation in quantum information theory is the Hadamard gate. In the

basis of σẑ , it takes the form

H = 1p
2

�

1 1
1 −1

�

.

That is to say, if |0〉 and |1〉 are the σẑ eigenstates, corresponding to eigenvalues +1 and −1, respec-
tively, then

H = 1p
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) .

a) Show that H is unitary.

b) What are the eigenvalues and eigenvectors of H ?

c) What form does H take in the basis of σx̂? σŷ?

d) Give a geometric interpretation of the action of H in terms of the Bloch sphere.

Exercise 3.2. State distinguishability → solution
One way to understand the cryptographic abilities of quantum mechanics is from the fact that

non-orthogonal states cannot be perfectly distinguished.

a) In the course of a quantum key distribution protocol, suppose that Alice randomly chooses
one of the following two states and transmits it to Bob:

|φ0〉= 1p
2
(|0〉+ |1〉), or |φ1〉= 1p

2
(|0〉+ i |1〉).

Eve intercepts the qubit and performs a measurement to identify the state. The measurement
consists of the orthogonal states |ψ0〉 and |ψ1〉, and Eve guesses the transmitted state was |φ0〉
when she obtains the outcome |ψ0〉, and so forth. What is the probability that Eve correctly
guesses the state, averaged over Alice’s choice of the state for a given measurement? What is the
optimal measurement Eve should make, and what is the resulting optimal guessing probability?

b) Now suppose Alice randomly chooses between two states |φ0〉 and |φ1〉 separated by an angle
θ on the Bloch sphere. What is the measurement which optimizes the guessing probability?
What is the resulting probability of correctly identifying the state, expressed in terms of θ? In
terms of the states?

Exercise 3.3. Fidelity → solution

a) Given a qubit prepared in a completely unknown state |ψ〉, what is the fidelity F 2 of a random
guess |φ〉, where F (|φ〉, |ψ〉)2 = |〈φ|ψ〉|2? The fidelity (squared) can be thought of as the prob-
ability that an input state (the guess) |φ〉 passes the “ψ” test, which is the measurement in the
basis |ψ〉, |ψ⊥〉.

b) In order to improve the guess, we might make a measurement of the qubit, say along the ẑ axis.
Given the result k ∈ {0,1}, our guess is then the state |k〉. What is the average fidelity of the
guess after the measurement, i.e. the probability of passing the “ψ” test?
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Exercise 3.4. Indirect measurement → solution
Suppose a quantum system is prepared in one of two nonorthogonal states |φ1〉 or |φ2〉. We would

like to make a measurement to determine which state was prepared, but do so without disturbing the
state. To this end, we could consider making an indirect measurement in which we also prepare an
auxiliary state |blank〉, apply a unitary UAB which has the action

|φ j 〉A|blank〉B →UAB |φ j 〉A|blank〉B = |φ j 〉A|β j 〉B ,

and then measure system B in some way. This scheme evidently does not disturb the state of system
A. What is the most we can learn about which state was prepared? What if the two states |φ j 〉 are
orthogonal?

Exercise 3.5. Broken measurement → solution
Alice and Bob share a state |Ψ〉AB , and Bob would like to perform a measurement described by

projectors Π j on his part of the system, but unfortunately his measurement apparatus is broken. He
can still perform arbitrary unitary operations, however. Meanwhile, Alice’s measurement apparatus
is in good working order. Show that there exist projectors Π′j and unitaries Uj and V j so that

|Ψ j 〉=
�

1⊗Π j

�

=
�

Uj ⊗V j

��

Π′j ⊗1
�

|Ψ〉.

(Note that the state is unnormalized, so that it implicitly encodes the probability of outcome j .) Thus
Alice can assist Bob by performing a related measurement herself, after which they can locally correct
the state.
Hint: Work in the Schmidt basis of |Ψ〉.
Exercise 3.6. Remote copy → solution

Alice and Bob would like to create the state |Ψ〉AB = a|00〉AB + b |11〉AB from Alice’s state |ψ〉A=
a|0〉A+ b |1〉A, a “copy” in the quantum-mechanical sense. Additionally, they share the canonical en-
tangled state |Φ〉. Can they create the desired state by performing only local operations (measurements
and unitary operators), provided Alice can only send one bit of classical information to Bob?

Exercise 3.7. Measurements on a bipartite state → solution
Consider a 2-qubit Hilbert spaceHAB =HA⊗HB with basis {|00〉, |01〉|10〉, |11〉} in the Bell state

|Φ〉AB =
1p
2
(|0〉A|0〉B + |1〉A|1〉B ) . (3.56)

Two parties, called Alice and Bob, get half of the state |Φ〉 so that Alice has qubit A and Bob has qubit
B . Alice then performs a measurementM θ

A := {|θ〉〈θ|, |π2 −θ〉〈π2 −θ|}, with |θ〉 := cosθ|0〉+sinθ|1〉,
on her qubit.

a) What description does Alice give to system B , given the outcome of her measurement?

b) If Bob performs the measurementM 0
B = {|0〉〈0|, |1〉〈1|} on B , what is the probability distribu-

tion for his outcomes? How would Alice describe his probability distribution?

Exercise 3.8. The Hilbert-Schmidt inner product → solution
Suppose R and Q are two quantum systems with the same Hilbert space. Let {|i〉R}i and {|i〉Q}i

be two orthonormal basis sets for R and Q. Let A be an operator on R and B an operator on Q.
Define |Ω〉=∑i |i〉R|i〉Q .
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a) Show that A⊗1|Ω〉= 1⊗AT |Ω〉.
b) Show that Tr(AT B) = 〈Ω|A⊗B |Ω〉. This is the Hilbert-Schmidt inner product of operators on

R (or Q), and the result shows that it can be thought of as the inner product between the states
A⊗1|Ω〉 and 1⊗B |Ω〉.

Exercise 3.9. Teleportation redux → solution

a) Show that for the canonical entangled state |Φ〉= 1p
2
(|00〉+ |11〉) and any unitary operator U

�

UA⊗U B

�

|Φ〉AB = |Φ〉AB ,

where U denotes complex conjugation in the |0〉, |1〉 basis.

b) Show that for any state |ψ〉

A〈ψ|Φ〉AB =
1p
2
|ψ〉B .

c) What happens if Alice and Bob use the state (1A ⊗ UB )|Φ〉AB for teleportation? Or if Alice
measures in the basis U ∗A′ |Φ j 〉A′A?

d) Instead of a single system state |ψ〉A′ , Alice has a bipartite state |ψ〉A1A2
. What happens if she

performs the teleportation protocol on system A2?

Exercise 3.10. “All-or-nothing” violation of local realism → solution
Consider the three qubit state |GHZ〉 = 1p

2
(|000〉− |111〉)123, the Greenberger-Horne-Zeilinger

state.

a) Show that |GHZ〉 is a simultaneous eigenstate of X1Y2Y3, Y1X2Y3, and Y1Y2X3 with eigenvalue
+1, where X and Y are the corresponding Pauli operators.

b) Use the results of part (a) to argue by Einstein locality that each qubit has well-defined values
of X and Y . For qubit j , denote these values by x j and y j . We say that these values are elements
of reality. What would local realism, i.e. the assumption of realistic values that are undisturbed
by measurements on other qubits, predict for the product of the outcomes of measurements of
X on each qubit?

c) What does quantum mechanics predict for the product of the outcomes of measurements of X
on each qubit?
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4Quantum States, Measurements, and Channels
The postulates of quantum mechanics presented in the previous chapter deal only with isolated sys-
tems. Moreover, they do not directly allow classical information to be included in the quantum de-
scription. But such a description should be possible, according to the theme of the course. In this
chapter we shall see that for parts of a larger system or when including classical information, states are
no longer rays, measurements are no longer projectors, and dynamics is no longer given by unitary
operators. Nevertheless, we will also find that the more general notions of quantum states, measure-
ments, and dynamics are consistent with simply treating a non-isolated system as part of a larger
isolated system and applying the postulates.

4.1 Quantum states

4.1.1 Mixtures of states

Consider a quantum systemHA whose state depends on a classical value (random variable) Z and let
|φz〉〈φz |A ∈ S (HA) be the pure state of the system conditioned on the event Z = z. Note that the
states |φz〉 need not be orthogonal. Furthermore, consider an observer who does not have access to
Z , that is, from his point of view, Z can take different values distributed according to a probability
mass function PZ . This setup is described by the ensemble of states {PZ (z), |φz〉}.

Assume now that the systemHA undergoes an evolution UA followed by a measurement OA =
∑

x xΠx . Then, according to the postulates of quantum mechanics, the probability mass function of
the measurement outcomes x conditioned on the event Z = z is given by

PX |Z=z (x) =Tr[Πx UA|φz〉〈φz |AU ∗A]. (4.1)

Hence, from the point of view of the observer who is unaware of the value Z , the probability mass
function of X is given by

PX (x) =
∑

z
PZ (z)PX |Z=z (x). (4.2)

By linearity, this can be rewritten as

PX (x) =Tr[Πx UAρAU ∗A]. (4.3)

where we have implicitly defined

ρA=
∑

z
PZ (z)|φz〉〈φz |A. (4.4)

Observe that ρA is positive, ρA≥ 0, and has Tr[ρA] = 1. These two conditions are all we really need
to get sensible results from the Born probability rule PX (x) = Tr[Πxρ], and operators satisfying
these conditions are termed density operators. We can then generalize the quantum state postulate as
follows.
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Definition 4.1.1: Quantum states

The state of a system associated with Hilbert space H is given by a density operator, a linear
operator ρ onH satisfying

ρ≥ 0, (4.5)
Tr[ρ] = 1. (4.6)

We denote the set of density operators by S (H ); observe that it is convex. By the spectral decom-
position, we can always express ρ in terms of eigenvalues and eigenvectors as ρ =

∑

k pk |bk〉〈bk |;
the eigenvalues form a probability distribution since the operator is normalized. States as we defined
them originally are equivalent to density operators of the form ρ= |φ〉〈φ| and are called pure states.
Pure states have only one nonzero eigenvalue and therefore satisfy Trρ2 = 1. They are extreme points
in the setS (H ). States with more than one nonzero eigenvalue are called mixed states since they are
mixtures (convex combinations) of their eigenvectors.

Alternatively, expression (4.3) can be obtained by applying the postulates of Section 3.1 directly
to the density operator ρA defined above. In particular, by replacing |φ〉〈φ|with the density operator
ρ in (3.1). In other words, from the point of view of an observer with no access to Z , the situation is
consistently characterized by ρA.

4.1.2 “Classical” states

According to the theme of this course, the information contained in the classical random variable Z
should be manifested physically. It is an important feature of the framework we are developing that
Z can also be described in the density operator formalism. More precisely, the idea is to represent
the states of classical values Z by mutually orthogonal vectors on a Hilbert space. For Z distributed
according to PZ , the associated density operator is

ρZ =
∑

z∈Z
PZ (z)|bz〉〈bz |, (4.7)

for some orthonormal basis {|bz〉}. When the state of a different system A depends on the value of
Z , the overall state is called a classical-quantum state.

Definition 4.1.2: Classical-quantum states

A state ρZA is called a classical-quantum (CQ) state with Z classical if it is of the form

ρZA=
∑

z
PZ (z)|bz〉〈bz |Z ⊗ (ϕz )A, (4.8)

with {|bz〉}z a family of orthonormal vectors onHZ and ϕz a set of arbitrary density operators.

In the previous chapter we defined entanglement of bipartite pure states, but mixed states can be
entangled, too. Entanglement in the pure state case was defined by any state which is not the tensor
product of states on the constituent systems. In general, product states take the form ρAB = θA⊗ϕB
and can be regarded as classical in the sense that there is a well-defined state for each constituent
system. This notion continues to hold for mixtures of product states, since then each system again
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has a well-defined state conditional on the parameter of the mixture:

σ =
∑

k

pkρk ⊗ϕk . (4.9)

Any quantum state of the form (4.9) is called separable and any state which is not separable is said to
be entangled.

4.1.3 Reduced states

Another motivation for density operators comes from examining a subsystem of a larger composite
system in a pure quantum state. One striking feature of entangled states onHA⊗HB is that, to an
observer with no access to B , the state of A does not correspond to a fixed vector |φ〉 ∈HA, but rather
a density operator. To see this more concretely, consider the measurement of an observable OA on
one part of a bipartite system in state |Ψ〉 ∈HA⊗HB . The expectation value of OA is given by

〈OA〉Ψ =Tr[OA⊗1B |Ψ〉〈Ψ|] =Tr[OATrB[|Ψ〉〈Ψ|]], (4.10)

where we have used the partial trace from §A.5. Thus we can defineρA=TrB[|Ψ〉〈Ψ|], which pertains
only to system A which allows us to calculate all expectation values and probabilities. It is often called
the reduced state. The existence of reduced states is an important locality feature of quantum theory.
Since any action performed on B will not affect ρA, it is impossible to influence system A by local
action on B .

Using the Schmidt decomposition, we can write the above calculation out in terms of compo-
nents, like so:

〈OA〉Ψ = 〈Ψ|(OA⊗1B )|Ψ〉=
∑

j k

λ jλk〈ξ j | ⊗ 〈η j |(OA⊗1B )|ξk〉⊗ |ηk〉

=
∑

j k

λ jλk〈ξ j |OA|ξk〉〈η j |ηk〉=
∑

k

λ2
k〈ξk |OA|ξk〉=Tr[OA

∑

k

λ2
k |ξk〉〈ξk |]. (4.11)

Comparing with the above, we have found that ρA = TrB[|Ψ〉〈Ψ|] =
∑

k λ
2
k |ξk〉〈ξk |. This clearly

satisfies (4.5) and (4.6) and is therefore a density operator. Moreover, since the |ξ 〉 are orthonormal,
this expression is in fact the eigendecomposition of ρA.

4.1.4 Purification of mixed states

The notion of a density operator was motivated by examining mixtures of pure quantum states. In the
previous section we have also seen that all reduced states of a composite system are density operators.
Can we connect these two viewpoints and regard any density operator ρ as the reduced state ρA
of a pure state |Ψ〉AB on a larger system? The answer is yes, and such a pure state |Ψ〉AB is called a
purification of ρ. Formally, we make the following definition.
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Definition 4.1.3: Purification

Given a density operator ρA on Hilbert spaceHA, a purification |Ψ〉AB is a state onHA⊗HB
for someHB such that

ρA=TrB[|Ψ〉〈Ψ|AB] (4.12)

Regarding a mixed state as part of a pure state in this way is done very often in quantum information
theory and is called “going to the church of the larger Hilbert space”. It is an instance of a dilation as
described in §2.5.3.

Given an ensemble decomposition of a density operator ρ=
∑n

z=1 PZ (z)|φz〉〈φz | as in (4.4), it is
easy to construct a purification of ρ. Simply invent an additional system B of dimension at least n
and define

|Ψ〉AB =
n
∑

z=1

Æ

PZ (z) |φz〉A⊗ |bz〉B , (4.13)

where |bz〉B is a basis forHB . This also works for CQ states, like ρAZ =
∑

z PZ (z)(ρz )A⊗ |bz〉〈bz |Z
in (4.8). Now invent two additional systems B and Z ′ and define

|Ψ〉ABZZ ′ =
∑

z

Æ

PZ (z) |ϕz〉AB ⊗ |bz〉Z ⊗ |bz〉Z ′ , (4.14)

where |ϕz〉AB is a purification of (ρz )A. System Z ′ is identical to Z and is responsible for making the
AZ state classical. Equally well, then, the state of AZ ′ is a CQ state, with the classical information
stored in Z ′. Thus, classical information is in a sense information that can be, and indeed has already
been, copied to another system.

The Schmidt decomposition of a purification |Ψ〉AB of ρA is directly related to the eigendecom-
position of ρ itself as we saw in (4.11). Moreover, the Schmidt decomposition immediately implies
that any two purifications of a state ρmust be related by a partial isometry connecting the respective
purifying systems. Suppose |Ψ〉AB and |Ψ ′〉AB ′ are two purifications of ρA, with dim(HA) = d and
dim(H ′

B ) ≥ dim(HB ) ≥ d . Note thatHB is free to have dimension larger than d and indeed must
have as in (4.13). In view of the relation to the eigendecomposition, the Schmidt forms of the two
states must be

|Ψ〉AB =
d
∑

k=1

p
pk |ξk〉A⊗ |ηk〉B and |Ψ ′〉AB ′ =

d
∑

k=1

p
pk |ξk〉A⊗ |η′k〉B ′ . (4.15)

Both {|ηk〉} and {|η′k〉} are orthonormal bases forHB andH ′
B . Therefore, the operation VB→B ′ de-

fined by VB→B ′ |η j 〉B = |η′j 〉B ′ is a partial isometry since V ∗V = 1. This means it preserves the inner
product; see §A.1. Therefore, we have shown

Proposition 4.1.1: Unitary relation of purifications

For any two purifications |Ψ〉AB and |Ψ ′〉AB ′ of a state ρA with dim(HB )≤ dim(HB ′), there exists
a partial isometry VB→B ′ such that |Ψ ′〉AB ′ = (1A⊗VB→B ′)|Ψ〉AB . By embeddingHB intoHB ′ ,
the partial isometry can be extended to a unitary.
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The unitary freedom in choosing a purification of a density operator translates into a freedom in
the decomposition of the density operator into pure states. Equation (4.4) presents a generic decom-
position, but for concreteness consider the state ρA=

1
2 |b0〉〈b0|+ 1

2 |b1〉〈b1|, which we may interpret
as describing the fact that A is prepared in one of the two basis states |bk〉 with equal probability.
However, the decomposition is not unique, as the same state could be written as

ρA=
1
2
|b̃0〉〈b̃0|+

1
2
|b̃1〉〈b̃1| (4.16)

where |b̃0〉 := 1p
2
(|b0〉+ |b1〉) and |b̃1〉 := 1p

2
(|b0〉 − |b1〉). That is, the system could equally-well be

interpreted as being prepared either in state |b̃0〉 or |b̃1〉, each with probability 1
2 .

All possible pure state ensemble decompositions of a density operator are related in a unitary way,
via the purification. Suppose that

ρ=
n
∑

k=1

pk |φk〉〈φk |=
m
∑

j=1

q j |ψ j 〉〈ψ j | (4.17)

are two decompositions of ρ. From these, we can construct the purifications

|Ψ1〉AB =
n
∑

k=1

p
pk |φk〉A⊗ |b ′k〉B and |Ψ2〉AB =

m
∑

j=1

p

q j |ψ j 〉A⊗ |b ′j 〉B . (4.18)

Here we have chosenHB such that its dimension is the greater of n and m. As these pure states are
purifications of the same density operator, there must be a unitary U such that 1A⊗ UB |Ψ1〉AB =
|Ψ2〉AB . But then we have

p
qk |ψk〉=

∑

j

p

q j |ψ j 〉〈b ′k |b ′j 〉= B〈b ′k |Ψ2〉AB

=
∑

j

p

p j |φ j 〉〈b ′k |U |b ′j 〉=
∑

j

Uk j
p

p j |φ j 〉. (4.19)

Thus, we have shown the following statement.

Proposition 4.1.2: Unitary relation of ensemble decompositions

For a density operator ρ with ensemble decompositions {pk , |φk〉} and {qk , |ψk〉}, there exists a
unitary matrix U such that

p
qk |ψk〉=

∑

j

Uk j
p

p j |φ j 〉. (4.20)

Moreover, this argument establishes that that any particular ensemble decomposition can be realized
by appropriate measurement of the purifying system. That is, measuring system B of (4.18) with
projectors Πk = |bk〉〈bk | produces the CQ state

ρAZ =
n
∑

z=1
pz |φz〉〈φz |A⊗ |bz〉〈bz |Z . (4.21)
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But measuring system B with projectors Πk =U ∗|bk〉〈bk |U produces the CQ state

ρ′AZ =
n
∑

z=1
qz |ψz〉〈ψz |A⊗ |bz〉〈bz |Z . (4.22)

Since all ensemble decompositions are related by unitaries, any of them can be obtained in this way.
This phenomenon is sometimes called steering: someone with access to the purifying system can steer
the state of A into any one of the possible ensembles. Steering provides more evidence for the fact
that one cannot attach any physical importance to a particular ensemble decomposition of a system.

4.1.5 Comparison of probability distributions and quantum states

Looking back at the analogy of quantum theory with classical probability theory, it becomes apparent
that density operators are the proper quantum version of probability distributions. This holds for
two reasons. First, just as ~p can be regarded as a convex combination of sharp distributions, so too
are density operators mixtures of pure states. Pure states are pure and sharp distributions sharp,
because they cannot be expressed as a nontrivial convex combination of other states or distributions.
Secondly, neither for unsharp ~p nor for mixed ρ can find an event which is certain to occur.

Purifications do not exist in classical probability theory. That is, given a distribution ~pA, there
is no sharp joint distribution ~pAB over two random variables whose marginal is ~pA. Any sharp dis-
tribution on ~pAB has components (~pAB ) j k = δ j j ′δkk ′ for some j ′ and k ′. The marginal is clearly
(~pA) j = δ j j ′ , which is itself sharp. Only in the formalism of quantum theory can the “distribution”
of the compound system be sharp, even though the marginal “distributions” are not.

4.2 Generalized measurements

We have seen in the previous section that, as long as we are only interested in the observable quantities
of subsystemHA of a larger state spaceHA⊗HB , it is sufficient to consider the corresponding reduced
state ρA. So far, however, we have restricted our attention to scenarios where the evolution of this
subsystem is isolated and the measurement process is not modelled as a physical operation.

In the following, we introduce tools that allow us to consistently describe the behavior of sub-
systems in the general case where there is interaction betweenHA andHB . The basic mathematical
objects to be introduced in this context are completely positive maps (CPMs) and positive operator valued
measures (POVMs).

4.2.1 The von Neumann picture of measurement

The description of measurement in the axioms is an awkward mixture of quantum and classical. The
central problem is that if “measurement” produces a (classical) outcome, should this information not
be manifested physically, presumably as a quantum system? So how can there be an “outcome” at all?
These are tricky conceptual problems that we will not attempt to answer in this course. However,
we should look at the (formal) measurement procedure a little more carefully to see how it fits with
the notions both of decompositions and purifications of mixed states. What we will end up with is
the von Neumann picture of measurement, introduced in [29].

We have said that measurements are described by a set of projection operators {Πx}, one Πx for
every outcome x. Given a state ρ, we saw in §4.1 that the xth outcome occurs with probability
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PX (x) = Tr[Πxρ]. But what about the post-measurement state? Since any density operator has a de-
composition into a convex combination of pure states, we can “lift” the structure of post-measurement
states from the case of pure to mixed inputs.

Suppose ρ=
∑

z PZ (z)|φz〉〈φz | for some pure states |φz〉. For each z, the measurement produces
the state |ψx,z〉 = Πx |φz〉/

p〈φz |Πx |φz〉 with probability PX |Z=z (x) = 〈φz |Πx |φz〉. From the dis-
cussion in §4.1.1, the density operator describing the post-measurement state must be the mixture of
the |ψx,z〉 according to the distribution PZ |X=x . Therefore, we find

ρx =
∑

z
PZ |X=x (z)|ψx,z〉〈ψx,z |=

∑

z

PZ |X=x (z)

PX |Z=z (x)
Πx |φz〉〈φz |Πx

=
∑

z

PZ (z)
PX (x)

Πx |φz〉〈φz |Πx =
1

PX (x)
ΠxρΠx . (4.23)

The final expression is independent of the decomposition, as it ought to be if density operators are a
complete description of the quantum state, which we argued in the previous section.

The above calculation is only for one outcome x, but of course the measurement produces an en-
tire ensemble of states,ρx with probability PX (x). We may describe the ensemble of post-measurement
states and their probabilities with the cq state

ρ′XQ =
∑

x
PX (x)|bx〉〈bx |X ⊗ (ρx )Q , (4.24)

where Q is the original quantum system and X is a system that stores the measurement result. To an
observer without access to the measurement result, the description of the state after the measurement
is given by

ρ′Q =
∑

x
PX (x)ρx =

∑

x
ΠxρΠx =TrX [ρ

′
XQ]. (4.25)

This is often called a non-selective measurement. Generally, ρ′Q 6= ρQ : In quantum mechanics, per-
forming a measurement and forgetting the result nonetheless changes the state of the system!

Let us assume for the moment that both the input state ρ = |φ〉〈φ| and the ρx are pure states
and consider the purification of average post-measurement state in (4.25). Does it have any physical
meaning? A purification is given by

|Ψ〉QX =
∑

x
Πx |φ〉Q ⊗ |bx〉X . (4.26)

The interesting thing is that we can describe the transformation

|φ〉Q ⊗ |b0〉X 7→ |Ψ〉QX (4.27)

with an operator U =
∑

x (Πx )Q ⊗ (Vx )X which is unitary. Here Vk is a unitary operator taking |b0〉
to |bx〉. For concreteness, we can set Vk =

∑

j |b j⊕k〉〈b j |. Unitarity of U is then easy:

U U ∗ =
∑

x x ′
Πx ′Π

∗
x ⊗Vx ′V

∗
x =

∑

x
Πx ⊗VxV ∗x =

∑

x
Πx ⊗1= 1⊗1. (4.28)

We have arrived, in a somewhat nonstandard fashion, at von Neumann’s picture of measurement.
The idea is that measurement can be viewed as a fully coherent process (just involving unitary trans-
formations) which establishes a correlation between the system being measured (Q) and a system
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storing the measurement result (X ). Actually, this procedure does more than correlate Q and X , it
entangles them.

The measurement process is not quite finished though, since |Ψ〉QX describes a coherent superpo-
sition of all possible outcomes. To realize a particular outcome, we have to assume that X is somehow
itself measured in the {|bx〉} basis. So how does this really solve the measurement problem? In order
to measure X , we need to correlate it with X ′, and then we will need to measure X ′, requiring cor-
relation with X ′′, and so on ad infinitum! All true, but this is the best we are going to be able to do
with a fully coherent description.

The unitary part of the measurement process produces the state in (4.26), and

|ξ 〉QX X ′ =
∑

x
Πx |φ〉Q ⊗ |bx〉X ⊗ |bx〉X ′ (4.29)

if taken to the next step. In the former case, tracing out system X leaves the density operator ρ′Q =
∑

x Πx |φ〉〈φ|Πx , while in the latter case tracing out X ′ leaves the classical-quantum state ρ′QX =
∑

x Πx |φ〉〈φ|Πx ⊗ |bx〉〈bx |.

4.2.2 Mixtures of measurements & POVMs

Measurements can themselves be “mixed” in the way we saw quantum states can be mixed in §4.1.1.
In fact, we already implicitly saw an example of this in the introduction, when discussing quantum
key distribution in §1.4. Recall that Bob’s task was to measure either {Π0 = |0〉〈0|,Π1 = |1〉〈1|} or
{Π± = |±〉〈±|} with equal probability. If we let X be the bit describing which measurement is made
and Y its outcome (+ counts as 0,− as 1), andΠx,y the corresponding projector, then the probability
distribution when the state is ρ is given by

PX Y (x, y) = 1
2Tr[Πx,yρ] =Tr[Λx,yρ]. (4.30)

Here we have implicitly defined the operators Λx,y . Observe that these sum to 1, just as we insisted
for any projective measurement, although they are no longer disjoint.

Just as with quantum states, this example suggests that we should allow arbitrary operators {Λx}x∈X
as long as they yield sensible results in the probability rule PX (x) =Tr[Λxρ]. For this we need theΛx
to be positive and sum to identity. We thus modify the quantum measurement postulate as follows

Definition 4.2.1: Quantum measurements

The outcome of a measurement on a quantum system is a random variable X on the set of out-
comes X . Each particular outcome x is associated with an operator Λx , the set of which must
obey the conditions

Λx ≥ 0 ∀x ∈X , (4.31)
∑

x∈X
Λx = 1. (4.32)

The probability of outcome x for quantum state ρ is given by PX (x) =Tr[Λxρ].

Such a set of Λx is called, somewhat awkwardly, a positive operator-valued measure or POVM. The
name comes from more a more generic context in which the measurement outcomes are elements
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of an arbitrary measure space, not a discrete set as we have implicitly chosen here. For instance,
the outcome of the measurement might be the position of a particle, which we would associate with
elements of R. Then, to each measurable set in the measure space corresponds a positive operator,
with the constraint that the operator corresponding to the whole space be the identity.

4.2.3 The Naimark extension

Generalized measurements—POVMs—are consistent with the original axioms in the same way that
density operators are: They are equivalent to usual projection measurements on a larger space, like
density operators are equivalent to pure states on a larger space. This construction is known as the
Naimark1 extension, another instance of a dilation from §2.5.3.

In fact, we have already met the Naimark extension in §4.2.1: One method of realizing a POVM
is the von Neumann approach. For a set of projectors Πx we saw that UAB =

∑

x (Πx )A⊗ (Vx )B is a
unitary operator taking |ψ〉A⊗|0〉B to |ψ′〉AB such that measuring B with (Πx )B realizes measurement
of (Πx )A on A. To extend this to an arbitrary POVM with elements Λx , define UAB implicitly by the
action

UAB |ψ〉A⊗ |0〉B =
∑

x

p

Λx |ψ〉A⊗ |bx〉B = |ψ′〉AB . (4.33)

The probability of outcome x when measuring B with Πx is

PX (x) =Tr[ψ′AB1A⊗ (Πx )B] =Tr[UAB (|ψ〉〈ψ|A⊗ |0〉〈0|B )U ∗AB (1A⊗ (Πx )B] =Tr[ψΛx], (4.34)

as intended. But is UAB unitary? Its action is not fully specified, but note that as a map fromHA to
HA⊗HB it is a partial isometry. Letting |φ′〉AB =UAB |φ〉A⊗ |0〉B , it follows that

〈φ′|ψ′〉=∑
x,x ′
(〈φ|pΛx ′ ⊗〈bx ′ |)(

p

Λx |ψ〉⊗ |bx〉) =
∑

x
〈φ|Λx |ψ〉= 〈φ|ψ〉. (4.35)

Partial isometries from one spaceH to another, bigger spaceH ′ can always be extended to be uni-
taries fromH ′ to itself. HereH =HA⊗ |0〉B andH ′ =HA⊗HB .

Returning to (4.34), the fact that UAB can be seen as a partial isomtery means that the original
POVM elements are essentially equivalent to a set of projection operators as in the following theorem.

Theorem 4.2.1: Naimark extension

A Naimark extension of a POVM {Λx} onHA is given by

(Πx )AB =U ∗AB (1A⊗ |bx〉〈bx |B )UAB , (4.36)

for UAB satisfying UAB |ψ〉A⊗ |0〉B =
∑

x
p

Λx |ψ〉A⊗ |bx〉B with any |ψ〉 ∈HA.

The original formulation of the Naimark extension is the statement that any POVM can be ex-
tended to a projection measurement in a larger space, where the projectors may be of arbitrary rank,
but the larger space need not come from the tensor product of the original space with an ancilla (extra)
system. In our presentation the projectors in the larger space all have rank equal to the dimension
of A, since they are of the form 1A⊗ |bx〉〈bx |. In the finite-dimensional case we are studying it is
actually possible to find a Naimark extension of any POVM to a projective measurement consisting
of rank-one elements, but we will not go into this here. For more details, see [9, §9-6] or [38, §3.1.4].

1Mark Aronovich Naimark, 1909-1978, Soviet mathematician.
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4.2.4 Post-measurement states and quantum instruments

A POVM does not uniquely specify the post-measurement state, as there is some ambiguity in how
the POVM is implemented, as follows. Given a POVM {Λ j }, suppose we find a set of operators {M j k}
such that

∑

k

M ∗j k M j k =Λ j . (4.37)

The M j k are sometimes called measurement operators (not to be confused with POVM elements Λ j ).
Now suppose that we apply the unitary operator VABC defined by

VABC |ψ〉A|b0〉B |b0〉C =
∑

j k

M j k |ψ〉A|b j 〉B |bk〉C , (4.38)

and then measure B with projectorsΠ j = |b j 〉〈b j |. This gives the same probability distribution as the
original POVM:

BC 〈b0, b0|A〈ψ|V ∗ABC (Π j )BVABC |ψ〉A|b0, b0〉BC =
∑

k

〈ψ|M ∗j k M j k |ψ〉= 〈ψ|Λ j |ψ〉. (4.39)

This is just a reflection of the fact that there are many appropriate “square-roots” of the operator Λx
in (4.33). However, the output of the two implementations is different:

|ψ〉 U−→ ρ j =

Æ

Λ j |ψ〉〈ψ|
Æ

Λ j

p j
, (4.40)

|ψ〉 V−→ ρ′j =

∑

k M j k |ψ〉〈ψ|M ∗j k

p j
. (4.41)

The specification of the postmeasurement state (along with the measurement outcome) of a POVM
is called a quantum instrument. The formal definition is as follows.

Definition 4.2.2: Quantum instruments

Consider a quantum measurement with measurement operators Mxy and POVM elements Λx =
∑

y M ∗xy Mxy . For a system Q initially in state ρQ , the measurement process produces the state

ρ′XQ =
∑

x∈X
|bx〉〈bx |X ⊗

∑

y∈Y
Mx,yρM ∗x,y , (4.42)

which encodes both the outcome in X and the conditional state in Q. The probability of each
outcome is given by PX (x) =Tr[

∑

y∈Y Mx,yρM ∗x,y].

Unlike projection measurements, POVMs are not repeatable; that is, subsequent measurement
with the same POVM does not always yield the same answer since the measurement operators M j k
are not necessarily mutually orthogonal.
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4.3 Quantum operations

4.3.1 Superoperators

LetHA andHB be the Hilbert spaces describing certain (not necessarily disjoint) parts of a physical
system. The evolution of the system over a time interval [t0, t1] induces a mapping E from the set of
states S (HA) on subsystemHA at time t0 to the set of states S (HB ) on subsystemHB at time t1.
This and the following sections are devoted to the study of this mapping.

Obviously, not every function E from S (HA) to S (HB ) corresponds to a physically possible
evolution. In fact, based on the considerations in the previous sections, we have the following require-
ment. From the ensemble interpretation of mixtures of states, if ρ is a mixture of two states ρ0 and
ρ1, then we expect that E (ρ) is the mixture of E (ρ0) and E (ρ1). In other words, a physical mapping
E needs to conserve the convex structure of the set of density operators, as in

E �λρ0+(1−λ)ρ1
�

= λE (ρ0)+ (1−λ)E (ρ1), (4.43)

for any ρ0,ρ1 ∈S (HA) and any λ ∈ [0,1]. If we do not require convexity in this manner, the trouble
is that the transformation of a particular ensemble member depends on the other members, even
though only one element of the ensemble is actually realized. In other words, the dynamics of the
true state would depend on the nonexsistent states!

Any mapE fromS (HA) toS (HB ) can be uniquely extended to a linear mapEext taking End(HA)
to End(HB ), which agrees with E on S (HA). Therefore, we broaden our focus to linear maps from
operators to operators, often called superoperators, quantum operations, or just channels.

Two criteria for any mapping E to map density operators to density operators are immediate:

1) ρ′ = E (ρ)≥ 0 for ρ≥ 0, and

2) Tr[E (ρ)] = 1 for Tr[ρ] = 1.

Superoperators fulfilling the first condition are called positive and the second trace-preserving. A
trivial example of a map satisfying both conditions is the identity map on End(H ), in the following
denoted I . A more interesting example is the transpose map T , defined by

T : S 7→ ST , (4.44)

where ST denotes the transpose with respect to some fixed basis {|bk〉}. Clearly,T is trace-preserving,
since the transpose does not affect the diagonal elements of a matrix. To see that T is positive, note
that

〈φ|ST |φ〉= 〈φ|S∗φ〉= 〈Sφ|φ〉= 〈φ|Sφ〉= 〈φ|S |φ〉 ≥ 0, (4.45)

from which we conclude ST ≥ 0. Here |φ〉 denotes the vector formed from |φ〉 by taking the complex
conjugate of the components of |φ〉 in the basis defining the transpose, {|bk〉}.

Somewhat surprisingly, positivity by itself is not compatible with the possibility of purifying any
mixed state. More concretely, positivity of two maps E andF does not necessarily imply positivity
of the tensor map E ⊗F defined by

(E ⊗F )(S ⊗T ) := E (S)⊗F (T ). (4.46)
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A simple example is provided by the superoperatorIA⊗TB applied to |Φ〉〈Φ|AB , for |Φ〉AB the canon-
ical maximally-entangled state defined in (3.14). This state is a purification of the maximally-mixed
state. The state resulting from the map is simply

ρ′AB =IA⊗TB (|Φ〉〈Φ|AB ) =
1
d

∑

j k

|k〉〈 j |A⊗ | j 〉〈k|B . (4.47)

Direct calculation reveals that UAB = dρ′AB is the swap operator, i.e. UAB |ψ〉A|φ〉B = |φ〉A|ψ〉B . But
any antisymmetric combination of states, such as |ψ〉A|φ〉B − |φ〉A|ψ〉B , is an eigenstate of the swap
operator with eigenvalue −1; hence ρ′AB � 0.

4.3.2 Completely positive maps (CPMs)

In order to ensure compatibility with purification, we must demand that quantum operations be
completely positive: positive on ρ and all its purifications:

Definition 4.3.1: Completely positive superoperator

A linear map E ∈ Hom(End(HA),End(HB )) is said to be completely positive if for any Hilbert
spaceHR, the map E ⊗IR is positive.

Clearly, IA is completely positive, and it is easy to see that the partial trace TrA is as well. We will
use the abbreviation CPM to denote completely positive maps. Moreover, we denote byCPTP(HA,HB )
the set of completely positive, trace-preserving maps from End(HA) to End(HB ).

We have already encountered an example of a CPTP map in §4.2. Performing a measurement
described by measurement operators {Mk}with

∑

k M ∗k Mk = 1 results in the ensemble {pk ,ρk}with
pk =Tr[MkρM ∗k ] and ρk = (MkρM ∗k )/pk . Averaging over the outputs, i.e. forgetting which outcome
occurred, leads to the average state

E (ρ) =∑
k

MkρM ∗k . (4.48)

The map E must be a completely positive superoperator because, as we saw, it can be thought of as a
unitary operator UAB followed by tracing out system B , for UAB defined by

UAB |ψ〉A|0〉B =
∑

k

Mk |ψ〉A|k〉B . (4.49)

Both of these operations are CPTP maps, so E is, too.
In fact, all CPTP maps are of the form (4.48), often called the operator-sum representation. This

statement is known as the Kraus2 representation theorem, and we can easily prove it using the Choi3

isomorphism. The Kraus form implies the existence of a unitary as in (4.49), called the Stinespring4

dilation. The fact that any CPTP map has a Stinespring dilation is the content of the Stinespring
representation theorem, and by appealing to the postulates on unitary dynamics, it shows that CPTP
maps encompass all possible physical transformations that could be performed on a quantum system.
Historically, the Stinespring representation theorem was established first (as a generalization of the
Naimark extension, it so happens), but we shall follow the route via the Choi isomorphism and Kraus
representation theorem, as this is simpler for finite-dimensional vector spaces.

2Karl Kraus, 1938 – 1988, German physicist.
3Man-Duen Choi, Canadian mathematician.
4William Forrest Stinespring, American mathematician.

56

http://en.wikipedia.org/wiki/Karl_Kraus_%28physicist%29
http://www.math.toronto.edu/cms/choi-man-duen/


4.3. Quantum operations

4.3.3 The Choi isomorphism

The Choi isomorphism is a mapping that relates superoperators to operators and CPMs to density
operators. It gives rise to a representation of the action of superoperators as operator multiplication
and partial trace, and its importance results from the fact that it essentially reduces the study of CPMs
to the study of density operators. In other words, it allows us to translate mathematical statements
that hold for density operators to statements for CPMs and vice versa.

Actually, we have already encountered the Choi isomorphism in (4.47). In general, the Choi
map takes a given channel EA→B to the bipartite operator onHA⊗HB which results from applying
EA→B to one subsystem of a maximally-entangled state. Eq. (4.47) shows that the Choi map of the
transpose superoperator is proportional to the swap operator. In the following definition we make
use of a “copy” of the state spaceHA, calledHA′ . Note that the Choi map depends on the choice of
basis used to define the state |Φ〉A′A of (3.14).

Definition 4.3.2: Choi map

ForHA'HA′ , the Choi map (relative to the basis {|bi 〉}i ) is the linear function C from superop-
erators Hom(End(HA),End(HB )) to operators End(HA⊗HB ), defined by

C : EA→B 7→ (IA⊗EA′→B )(|Φ〉〈Φ|AA′). (4.50)

The Choi map gives us a way to represent the action of any given superoperator in terms of
multiplication of ordinary bipartite operators and taking partial traces. This is formalized in the
following.

Theorem 4.3.1: Choi representation

For any superoperatorE ∈Hom(End(HA),End(HB )), there exists an operator OAB ∈ End(HA⊗
HB ) such that

EA→B (SA) = dA ·TrA

h

�TA(SA)⊗1B
�

OAB

i

. (4.51)

Indeed, OAB = C(EA→B ).

Proof. First, recall that ST
A ⊗ 1A′ |Φ〉AA′ = 1A ⊗ SA′ |Φ〉AA′ for arbitrary SA ∈ End(HA), where the

transpose is defined in the basis defining |Φ〉AA′ , and that TrA′[|Φ〉〈Φ|AA′] = 1A/dA. For convenience,
let us simply write ΦAA′ for |Φ〉〈Φ|AA′ . Then we have

EA→B (SA) = EA′→B (SA′) = EA′→B
�

SA′TrA[ΦA′A]
�

= dA ·TrA

h

EA′→B ⊗IA
�

(SA′ ⊗1A)ΦA′A
�

i

= dA ·TrA

h

EA′→B ⊗IA
�

(1A′ ⊗ ST
A )ΦA′A

�

i

= dA ·TrA

h

(T (SA)⊗1B )
�EA′→B ⊗IA(ΦA′A)

�

i

. (4.52)

We recognize C(EA→B ) as the second factor in the final expression, completing the proof.

Using the Choi representation it is easy to see that the Choi map is an isomorphism.
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Corollary 4.3.1: Choi isomorphism of superoperators and bipartite operators

The Choi mapC is an isomorphism from superoperators Hom(End(HA),End(HB )) to operators
End(HA⊗HB ). Its inverse C−1 takes any OAB to the map EA→B defined by (4.51).

Proof. The Choi map is linear, so it is a homomorphism of vector spaces. To be an isomorphism,
it must also be both one-to-one (injective) and onto (surjective). The latter holds since any bipartite
operator OAB is the image of some superoperator under C, namely, the superoperator defined by the
Choi representation (4.51). For the former, observe that, as a linear map, C is one-to-one if and only
if C(E ) = 0 implies E = 0. This is clearly the case, again by (4.51).

Alternately, we may infer that C is an isomorphism by showing that C−1 ◦C(EA→B ) = EA→B for
all EA→B and C ◦ C−1(OAB ) = OAB for all OAB . The former is established in the proof of the Choi
representation. For the latter, we compute

C ◦C−1(OAB ) =
∑

j k

|b j 〉〈bk |A ·TrA′
�

(|bk〉〈b j |A′ ⊗1B )OA′B
�

=
∑

j k

(|b j 〉A〈b j |A′ ⊗1B )OA′B (|bk〉A′〈bk |A⊗1B )

=
�

∑

j

|b j 〉A〈b j |A′ ⊗1B

�

OA′B

�

∑

k

(|bk〉A′〈bk |A⊗1B )
�

=OAB , (4.53)

which establishes the claim.

Choi’s interest in considering the isomorphism was to give a means of determining whether a
superoperator is completely positive. Since we have just shown that C is indeed an isomorphism, it
follows that EA→B is completely positive only if C(EA→B ) is positive. In this case, we call C(EA→B ) the
Choi state. We shall return to the ‘if’ condition later, in Prop. 4.3.2.

In contemporary journal articles on quantum information theory it is common for the above iso-
morphism to be called the “Choi-Jamiołkowski5” isomorphism. However, this conflates two distinct
isomorphisms. The Jamiołkowski isomorphism J is defined by

J : EA→B 7→ (TA⊗EA′→B )(|Φ〉〈Φ|AA′). (4.54)

Despite the appearance of the transpose map, this isomorphism is actually basis independent, owing
to the fact that TA⊗IA′(ΦAA′) is the swap operator (up to normalization) no matter which basis is
used to define |Φ〉AA′ . In turn, this property follows from UA⊗U T

A′ |Φ〉AA′ = |Φ〉AA′ . The inverse J−1

takes any OAB to the map E = J−1(OAB ) whose action is specified by

E : SA 7→ dA ·TrA

h

�

SA⊗1B
�

OAB

i

. (4.55)

4.3.4 The Kraus representation theorem

Now we are ready to establish the Kraus representation theorem.

5Andrzej Jamiołkowski, born 1946, Polish physicist.
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Theorem 4.3.2: Kraus representation

For any E ∈CPTP(HA,HB ) there exists a family {M`}` of operators M` ∈Hom(HA,HB ) such
that

E : SA 7→
∑

`

M`SAM ∗` (4.56)

and
∑

` M ∗
`

M` = 1A. Conversely, any mapping E of the form (4.56) is in CPTP(HA,HB ).

Proof. The converse follows from the discussion surrounding (4.49), and will be formally shown later,
using the Stinespring representation.

For the forward direction, let ρAB = C(EA→B ). Since ρAB ≥ 0, it has eigendecomposition ρAB =
∑

`λ`|λ`〉〈λ`|AB . Now define the map

M` : |φ〉 7→
Æ

λ`dA A〈φ|λ`〉AB , (4.57)

where complex conjugation is taken in the basis which defines the Choi map. The map is linear, since

M`

�

∑

k

φk |bk〉
�

=M`|φ〉=
Æ

λ`dA A〈φ|λ`〉AB

=
Æ

λ`dA

∑

k

φk A〈bk |λ`〉AB =
∑

k

φk M`|bk〉. (4.58)

Using the eigendecomposition of ρAB in the Choi representation (4.51) gives, for an arbitrary SA,

EA→B (SA) = dA ·TrA

h

(ST
A ⊗1B )

∑

`

λ`|λ`〉〈λ`|AB

i

(4.59)

= dA

∑

`

λ`TrA

h

∑

j k

〈bk |S |b j 〉 (|b j 〉〈bk |A⊗1B )|λ`〉〈λ`|AB

i

(4.60)

= dA

∑

`

λ`
∑

j k

〈bk |S |b j 〉 AB〈λ`|b j 〉A A〈bk |λ`〉AB (4.61)

=
∑

j k`

〈bk |S |b j 〉 M`|bk〉〈b j |M ∗` =
∑

`

M`SAM ∗` . (4.62)

Since EA→B is trace preserving, the following holds for arbitrary ρ:

Tr[EA→B (ρ)] =
∑

`

Tr[M`ρM ∗` ] =Tr[
∑

`

M ∗`M`ρ]. (4.63)

This implies that
∑

` M ∗
`

M` = 1, completing the proof.

There are two important corollaries to the Kraus representation theorem, both following from
the form of the Choi state. First, since ρAB = C(EA→B ) ∈ Hom(HA ⊗HB ), it has at most dAdB
eigenvectors. Therefore, the map EA→B always has a Kraus representation with at most dAdB Kraus
operators M`. Secondly, in the construction of the Kraus operators we are free to use any decomposi-
tion of the Choi state into pure states, not only the eigendecomposition. The result would be another
set of Kraus operators {M ′

`
}, generally having more elements. But, by the unitary relation of all pos-

sible pure state decompositions, Prop. 4.1.2, a similar unitary relation holds among all possible sets
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of Kraus operators as well. In particular, if
Æ

λ′
`
|λ′
`
〉=∑m U`m

p

λm |λm〉 for U`m a unitary matrix,
then

q

λ′
`
〈φ|λ′`〉=

∑

m

Æ

λm U`m〈φ|λ`〉, (4.64)

and we therefore have the following.

Proposition 4.3.1: Unitary relation of Kraus decompositions

Given any two operator-sum representations of EA→B involving Kraus operators Mm and M ′
`
,

there exists a unitary U such that

M ′` =
∑

m
U`m Mm . (4.65)

A careful reading of the proof reveals that we really only used complete positivity to assert that the
Choi state is Hermitian, and therefore has a spectral decomposition. The positivity of the eigenvalues
is not used in the proof. Since completely positive maps are also Hermiticity-preserving maps, we
could have used the Jamiołkowski isomorphism instead of the Choi isomorphism. This is slightly
more elegant mathematically, since the former does not depend on the basis choice. The construction
proceeds almost exactly as before, only now the Kraus operators are defined by

M`|φ〉=
Æ

η`dA AB〈η`|φ〉A, (4.66)

for |η`〉 and η` the eigenvectors and eigenvalues of J(EA→B ). Defined this way, the Kraus operators are
manifestly linear, but they mapHA to its dualH ∗

A . This removes the need for transposition in the
representation of the channel: compare (4.55) with (4.51). The proof using the Choi isomorphism,
however, lets us recycle the result on ambiguity in the decomposition of density operators to infer
the structure of sets of Kraus operators corresponding to a fixed CPTP map.

4.3.5 The Stinespring representation theorem

The Stinespring representation theorem now follows immediately from the Kraus representation the-
orem.

Theorem 4.3.3: Stinespring representation

Let EA→B be a CPTP map from End(HA) to End(HB ). Then there exists an isometry UA→BR ∈
Hom(HA,HB ⊗HR) for some Hilbert spaceHR such that

EA→B : SA 7→TrR(UA→BRSAU ∗A→BR). (4.67)

The dimension ofHR can be taken to be at most dAdB .

Proof. One possible isometry UA→BR is defined by the action

UA→BR|ψ〉A|0〉R =
∑

k

Mk |ψ〉A|k〉R, (4.68)
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just as in (4.49). That this is an isometry was already established in (4.35), but we repeat the calculation
here for completeness:

〈φ′|ψ′〉=∑
`,`′
(〈φ|M ∗`′ ⊗〈b`′ |)(M`|ψ〉⊗ |b`〉) =

∑

`

〈φ|M ∗`M`|ψ〉= 〈φ|ψ〉. (4.69)

Since at most dAdB Kraus operators are needed, dim(HR) need not be larger than this value.

The Stinespring dilation shows that general quantum operations (CPTP maps) can be regarded as
unitary operations on a larger system: Any CPTP map EA→A can be dilated to an isometry UA→AR,
which can be extended to a unitary on AR. Unitaries describe dynamical evolution according to the
postulates, and therefore CPTP maps describe all possible physical operations on quantum systems.

We have successfully altered the postulates to describe open systems, systems in contact with their
surrounding environment, by essentially requiring that the original postulates be satisfied when in-
cluding the environmental degrees of freedom. We have not been so explicit about this requirement
in the preceding discussion, but it is implicit whenever we make use of the purification, as the purifi-
cation gives the most general quantum description of a system and its environment. Indeed, this is
a marked departure from the situation classically, since purification means that in the quantum case
the description of the system itself contains the description of the environment.

Using the Stinespring dilation and Kraus representation we can return to the issue of using the
Choi state to determine if a superoperator is completely positive, raised in §4.3.3. We have the fol-
lowing

Proposition 4.3.2: Condition for complete positivity

A map EA→B is completely positive if and only if C(EA→B )≥ 0.

Proof. The necessity of the condition follows immediately from the definition of C, as already dis-
cussed. To establish sufficiency, suppose the Choi state is positive. Then E has a Kraus representation
and hence a Stinespring dilation UA→BR. Therefore, for anyHR′ we have

EA→B ⊗IR′(ρAR′) =TrR[(UA→BR⊗1R′)ρAR′(UA→BR⊗1R′)
∗], (4.70)

which is completely positive since both unitary action are the partial trace are.

With the Kraus representation theorem in hand, we can also refine the Choi isomorphism a lit-
tle bit, to an isomorphism between completely positive superoperators and states of a certain form.

Proposition 4.3.3: Choi isomorphism of CPMs and certain bipartite states

The Choi mapping C is an isomorphism between completely positive superoperators EA→B ∈
Hom(End(HA),End(HB )) and positive operators ρAB ∈ End(HA ⊗HB ) with the additional
property TrB[ρAB] =

1
d 1A.

Proof. The Choi mapping always outputs a state of the given form. Conversely, given a state of that
form, the Kraus representation theorem ensures that the corresponding map C−1(ρAB ) is completely
positive.
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4.4 Everything is a quantum operation

Although we have focussed separately on states, measurements, and channels in this chapter, there
is really no mathematical distinction between them. For measurements, we have already met the
channel description, namely the formulation of quantum instruments. States, on the other hand,
can be regarded as channels from C toH . Specifically, consider the density operator ρ, with eigen-
decomposition ρ =

∑d
k=1λk |λk〉〈λk |. Absorbing the eigenvalue into the eigenvector by defining

|λ′k〉=
p

λk |λk〉, the channel associated with the density operatorρ has d Kraus operators: Mk = |λ′k〉.
As described in §A.2, |λ′k〉 can be regarded as a linear map from C toH . Table 4.4 lists the Kraus
operators for different channels.

Operation Formal equivalent Instance Kraus operators

Prepare A Density operator ρA=
∑d

k=1 |λ′k〉〈λ′k |A
�|λ′k〉A

	d
k=1

Ignore A Partial trace TrA {〈bk |A}dk=1
Measure A POVM {(Λx )A}nx=1

¦

|x〉X ⊗〈bx |A
p

Λx A

©n

x=1
Nonselective mmt Mmt operators {Mx}nx=1 {(Mx )A}nx=1
Postmmt Quantum instrument {Mx}nx=1 {|x〉X ⊗ (Mx )A}nx=1

Table 4.1: Kraus operators associated with different experimental operations.

Finally, it is worth mentioning a fifth representation of superoperators (and operators), the natural
representation in which superoperator composition is expressed as matrix multiplication. We start
by first describing an important property of the maximally entangled state. Consider an arbitrary
linear operator M :HA→HB . Denote by |ΦdA

〉AA′ the canonical maximally entangled state on two
state spacesHA 'HA′ of dimension dA. Then, by using components, it is straightforward to show
that

1A⊗OA′ |ΦdA
〉AA′ = (O

T )B ′ ⊗1B |ΦdB
〉B ′B , (4.71)

where, as usual, the transpose of O is relative to the bases used to define the maximally entangled
states of AA′ and BB ′. Now apply EA→B (ρA) =

∑

k MkρM ∗k to half of an entangled state:

1B ′ ⊗EA→B (ρA)|Φ〉B ′B = (1B ′ ⊗
∑

k

MkρM ∗k )|Φ〉B ′B =
∑

k

M k ⊗Mkρ|Φ〉A′A
=
∑

k

M k
p
ρ⊗Mk

p
ρ|Φ〉A′A=

∑

k

(M k ⊗Mk )(
p
ρ⊗pρ)|Φ〉A′A. (4.72)

Applying a subsequent channel with Kraus operators L j would result in an additional left multiplica-

tion by
∑

j L j ⊗L j . Thus we have the desired representation, formalized in the following definition.

62



4.5. Notes & Further Reading

Definition 4.4.1: Natural representation

For a superoperatorEA→B with Kraus operators Mk , the natural representationN(EA→B ) is defined
by

N(EA→B ) =
∑

k

M k ⊗Mk . (4.73)

It satisfies the relation

N(E2 ◦E1) =N(E2)N(E2). (4.74)

4.5 Notes & Further Reading

The phrase “church of the larger Hilbert space” was coined by John Smolin and is far from the only
pun in the terminology of quantum information theory. The mathematical structure relevant for
open quantum systems that we have traced here developed in the works of Naimark [39], Stine-
spring [40], Hellwig and Kraus [41, 42], Jamiołkowski [43] (building on work of de Pillis [44]) and
Choi [45]. For more detailed treatments, see the books of Davies [46] and especially Kraus [47].
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4.6 Exercises

Exercise 4.1. The Bloch ball → solution
In this exercise we will show that qubit density operators can always be expressed as

ρ= 1
2 (1+ ~r · ~σ), (4.75)

where ~σ = (σx ,σy ,σz ) and ~r = (rx , ry , rz ), |~r | ≤ 1 is the Bloch vector, specifying a point in the unit
ball. The surface of the ball is the Bloch sphere.

a) Find and diagonalize the states represented by Bloch vectors ~r1 = (
1
2 , 0, 0) and ~r2 = (

1p
2
, 0, 1p

2
).

b) Show that the operator ρ defined in (4.75) is a valid density operator for any vector ~r with
|~r | ≤ 1.

c) Now show the converse: Any two-level density operator may be written as (4.75).

d) Check that the surface of the ball is formed by all the pure states.

Exercise 4.2. Partial trace → solution
Let ρAB be a density matrix on the bipartite Hilbert spaceHA⊗HB and ρA=TrB[ρAB].

a) Show that ρA is a valid density operator.

b) SupposeρAB is a pure state, ρAB = |Ψ〉〈Ψ|AB for |Ψ〉AB =
∑dA,dB

j k
C j k |b j 〉A⊗|b ′k〉B , where

¦

|b j 〉
©

j

and
¦

|b ′j 〉
©

j
are orthonormal bases forHA andHB . Let C be the dA× dB matrix with entries

C j k . Show that ρA=C C † and ρB =C †C , where C † is the conjugate transpose of C .

c) Calculate the reduced density matrix of system A in any of the Bell states.

d) Consider a classical probability distribution PX Y . Calculate the marginal distribution PX for

PX Y (x, y) =











1
2 for (x, y) = (0,0),
1
2 for (x, y) = (1,1),
0 else,

with alphabets X ,Y = {0,1}. How can we represent PX Y in the form of a quantum state?
Calculate the partial trace of PX Y in its quantum representation.

Exercise 4.3. Canonical purifications → solution
Given a state ρ onHA, consider the state |ψ〉AB onHA⊗HB , defined as

|ψ〉AB =
�p
ρA⊗UB

� |Ω〉, |Ω〉AB =
∑

k

|k〉A⊗ |k〉B , (4.76)

where UB is any unitary onHB 'HA.

a) Show that |ψ〉AB is a purification of ρA.

b) Show that every purification of ρ can be written in this form.
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Exercise 4.4. Decompositions of density matrices → solution
Consider a mixed state ρ with two different pure state decompositions

ρ=
d
∑

k=1

λk |k〉〈k|=
n
∑

`=1

p`|φ`〉〈φ`|,

the former being the eigendecomposition so that {|k〉} is an orthonormal basis.

a) Show that the probability vector ~λ majorizes the probability vector ~p, which means that there
exists a doubly stochastic matrix T j k such that ~p = T ~λ. The defining property of doubly
stochastic, or bistochastic, matrices is that

∑

k T j k =
∑

j T j k = 1.
Hint: Observe that for a unitary matrix Uj k , T j k = |Uj k |2 is doubly stochastic.

b) The uniform probability vector ~u = ( 1
n , . . . , 1

n ) is invariant under the action of an n×n doubly
stochastic matrix. Is there an ensemble decomposition of ρ such that p` =

1
n for all `?

Hint: Try to show that ~u is majorized by any other probability distribution.

Exercise 4.5. Generalized measurement by direct (tensor) product → solution
Consider an apparatus whose purpose is to make an indirect measurement on a two-level system,

A, by first coupling it to a three-level system, B , and then making a projective measurement on the
latter. B is initially prepared in the state |0〉 and the two systems interact via the unitary UAB as follows:

|0〉A|0〉B → 1p
2
(|0〉A|1〉B + |0〉A|2〉B ) ,

|1〉A|0〉B → 1p
6
(2|1〉A|0〉B + |0〉A|1〉B − |0〉A|2〉B ) .

a) Calculate the measurement operators acting on A corresponding to a measurement on B in the
canonical basis |0〉, |1〉, |2〉.

b) Calculate the corresponding POVM elements. What is their rank? Onto which states do they
project?

c) Suppose A is in the state |ψ〉A= 1p
2
(|0〉+ |1〉)A. What is the state after a measurement, averaging

over the measurement result?

Exercise 4.6. Geometry of POVMs → solution
In this exercise we will show that the set of 2-outcome POVMs is a convex set with orthogonal

measurements as extremal points.
Let F = {F1, F2} and G = {G1,G2} be two two-outcome POVMs. We define an element-wise

convex combination of F and G as αF + (1 − α)G := {αF1 + (1 − α)G1,αF2 + (1 − α)G2}, with
0≤ α≤ 1.

a) Consider a POVM with two outcomes and respective measurement operators E and 1− E .
Suppose that E has an eigenvalue λ such that 0< λ < 1. Show that the POVM is not extremal
by expressing it as a nontrivial convex combination of two POVMs.
Hint: Consider the spectral decomposition of E and rewrite it as a convex combination of two
POVM elements.
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b) Suppose that E is an orthogonal projector. Show that the POVM cannot be expressed as a
nontrivial convex combination of POVMs.

c) What is the operational interpretation of an element-wise convex combination of POVMs?

Exercise 4.7. Some common quantum channels → solution
Find Kraus representations for the following qubit channels

• The dephasing channel: ρ→ ρ′ = E (ρ) = (1− p)ρ+ p diag(ρ00,ρ11) (the off-diagonal elements
are annihiliated with probability p).

• The depolarizing channel: ρ→ ρ′ = E (ρ) = (1− p)ρ+ p
21.

• The amplitude damping (damplitude) channel, defined by the action |00〉→ |00〉, |10〉→p

1− p|10〉+p
p|01〉.

What is the minimal number of Kraus operators in each case? What happens to the Bloch vector? In
each case, can the Kraus operators be chosen to be unitaries? Or projection operators?

Exercise 4.8. Classical channels as CPTP maps → solution
In this exercise we will see how to represent classsical channels as CPTP maps.

a) Consider the binary symmetric channel, defined by

W (y|x) =
�

1− p y = x
p y 6= x

,

for x, y ∈ {0,1}. Recall that we can represent the probability distributions on both ends of the
channel as quantum states in a given basis: for instance, if PX (0) = q , PX (1) = 1− q , we may
express this as the 1-qubit mixed state ρX = q |0〉〈0|+(1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the com-
putational basis?

b) Next we want to represent the channel as a map

EW :S (HX ) 7→ S (HY )
ρX → ρY .

Find a Kraus representation of EW .

Hint: think of each Kraus operator Mk = Mxy as the representation of the branch that maps
input x to output y.

c) Now we have a representation of the classical channel in terms of the evolution of a quantum
state. What happens if the initial state ρX is not diagonal in the standard basis?

d) Consider an arbitrary classical channel W (y|x) from an n-bit space X to an m-bit space Y ,
defined by the conditional probabilities

¦

PY |X=x (y)
©

xy
. Express W as a map EW :S (HX ) 7→

S (HY ) in the Kraus representation.
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Exercise 4.9. Unital channels → solution
A superoperator E is unital if E (1) = 1, or in terms of Kraus operators,

∑

k AkA∗k = 1. Show
that the eigenvalues of the output ρ′of a unital superoperator majorize the eigenvalues of the input ρ.
Hint: Express the input (output) as ρ=UΛU ∗ (ρ′ =VΛ′V ∗) for U , V unitary and Λ, Λ′ diagonal.

Exercise 4.10. The Choi isomorphism → solution
Consider the family of mappings between operators on two-dimensional Hilbert spaces

Eα : ρ 7→ 1
21+α(XρZ +ZρX ), 0≤ α≤ 1,

where X and Z are the Pauli operators.

a) Use the Bloch representation to determine for what range of α these mappings are positive.
What happens to the Bloch sphere?

b) Calculate the Choi state of Eα. For what range of α is the mapping a CPTP map?

c) Find a Kraus representation of Eα for α= 1/4.

Exercise 4.11. The Stinespring isometry
Show the existence of the Stinespring isometry directly from the Choi state.

Hint: purify the Choi state and use Proposition 4.3.3 and (4.71).

Exercise 4.12. The natural representation
What is the complete positivity condition in the natural representation? What is the condition

on trace preservation? Having a unital channel?
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5Quantum Detection Theory
In this chapter we study various distinguishability measures of quantum states and channels. These
are interesting in their own right and will later be used for to give a quantitative means of saying
that one protocol approximates another, as well as in constructing various information processing
protocols.

5.1 Distinguishing states & channels

5.1.1 State preparation

Imagine someone builds a device which either produces the state ρ or the state σ , but does not tell
us which. Nor can we look inside the device to figure out which state is produced. How easily can
we tell the difference between the two devices? How should we measure the distinguishability of the
two states?

A direct approach is to ask how well we could determine which device we have by performing
an actual experiment on it. The probability of correctly guessing can be regarded as a measure of the
distinguishability of the two states or devices. Our prior probability of which device we have is given
by some distribution PX , where X = 0 is associated with ρ and X = 1 with σ . Then, given the results
of an experiment we perform, we would like the probability of correctly guessing X to be as large as
possible.

Since we cannot look inside the state preparation device, our only option is to measure the output
state in some way. We can describe any measurement with a POVM, and in this case the POVM need
only have two outcomes, one associated with ρ and the other with σ . A seemingly more general
setup would be to perform a measurement with many outcomes and then base our decision on these
outputs, possibly in a probabilistic way. For instance, given the outcome of the measurement we may
we might flip a biased coin to generate our guess as to the true state. But this entire procedure can be
described with an initial POVM, say with elements Γy , followed by a channel W :Y →X ′ = {0,1}.
The total probability that the test indicates ρ for an arbitrary input state ξ is simply

P (X ′ = 0|ξ ) =∑
y

W (0|y)Tr[ξ Γy] (5.1)

=Tr[ξ
∑

y
W (0|y)Γy]. (5.2)

Thus we may define the POVM elements Λx =
∑

y W (x|y)Γy and simply use these directly. These
operators form a valid POVM since W (x|y) is a conditional probability distribution for each y.

Let us label the output state space of the device by B . For a given probability PX (x) that the
actual device produces ξ0 = ρ or ξ1 = σ , the average probability of correctly guessing when using the
POVM with elements Λx is simply

pguess(X |B) =
∑

x
PX (x)Tr[Λxξx]. (5.3)

When PX is uniform, so that we believe the actual device is equally-likely to either of the two possi-
bilities, the average guessing probability is simply

pguess(X |B) = 1
2

∑

x
Tr[Λxξx] =

1
2 (Tr[Λ0ρ]+Tr[Λ1σ]) (5.4)

= 1
2 (Tr[Λ0ρ]+Tr[(1−Λ0)σ]) =

1
2 (1+Tr[Λ0(ρ−σ)]) . (5.5)
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We can regard the second term as a measure of distinguishability. If the two states are disjoint (have
disjoint support), then we can guess perfectly, which is reflected in the fact that the second term is
unity. On the other hand, if the states are identical, we may as well guess, and the second term is
zero. By optimizing over all POVM elements we can increase the guessing probability, and thus the
distinguishability. This leads to the following definition.

Definition 5.1.1: State Distinguishability

The distinguishability of any two quantum states ρ and σ is defined as

δ(ρ,σ) :=max Tr[Λ(ρ−σ)] (5.6)
s.t. 0≤Λ≤ 1.

Clearly the state distinguishability is symmetric in its arguments and δ(ρ,σ) ≥ 0, since Λ = 0 is a
possible POVM element.

The difference ρ− σ is a Hermitian operator, and therefore has real eigenvalues; the projector
onto the positive part of ρ−σ is clearly the optimal POVM element. Denote the projection onto the
positive part by {ρ−σ ≥ 0}, observe that

0=Tr[ρ−σ] =Tr[{ρ−σ ≥ 0}(ρ−σ)]+Tr[{ρ−σ < 0}(ρ−σ)], (5.7)

while, if λ j are the eigenvalues of ρ−σ ,

∑

j

|λ j |=Tr[{ρ−σ ≥ 0}(ρ−σ)]−Tr[{ρ−σ < 0}(ρ−σ)]. (5.8)

From (A.48), the sum of the absolute values of eigenvalues of a Hermitian operator is just the trace
norm, so we have found that

δ(ρ,σ) = 1
2‖ρ−σ‖1. (5.9)

This form immediately implies that δ(ρ,σ) = 0 iff ρ= σ .
For commuting states, i.e. classical probability distributions, we can write ρ =

∑

x P (x)|x〉〈x|
and σ =

∑

x Q(x)|x〉〈x|. The optimal measurement is to observe the value of x and then report ρ if
it is such that P (x) ≥ Q(x) and report σ otherwise. In the general case of noncommuting ρ and σ ,
we saw above that all that really matters in the problem is the operator ρ− σ . Thus, to optimally
distinguish the states we can simply measure in the eigenbasis of ρ−σ and report ρ for all outcomes
j associated with λ j ≥ 0 and report σ otherwise. This is just the measurement found in Exercise 5.1.

Often (5.9) is taken as the definition of the distinguishability and the operational meaning is in-
vestigated subsequently. But it is important to observe that the following three useful properties of
the distinguishability follow directly from the operational (variational) definition.

The first is the triangle inequality:

Proposition 5.1.1: Triangle inequality for state distinguishability

For any quantum states ρ, σ , and τ,

δ(ρ,σ)≤ δ(ρ,τ)+δ(τ,σ). (5.10)
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Proof.

max
Λ

Tr[Λ(ρ−σ)] =max
Λ

Tr[Λ(ρ−τ+τ−σ)] (5.11)

=max
Λ
(Tr[Λ(ρ−τ)]+Tr[Λ(τ−σ)]) (5.12)

≤max
Λ

Tr[Λ(ρ−τ)]+max
Λ

Tr[Λ(τ−σ)]. (5.13)

The distinguishability forms a metric or distance measure on the space of density operators since it
is symmetric, positive semidefinite, nondegenerate (zero iff the arguments are equal), and obeys the
triangle inequality.

The second important property is monotonicity under all CPTP maps: The distinguishability
can only decrease after applying a physical map to the states.

Proposition 5.1.2: Monotonicity of the state distinguishability

For any CPTP map E and states ρ and σ ,

δ(E (ρ),E (σ))≤ δ(ρ,σ). (5.14)

Proof. The proof rests on the fact that applying E and then performing a distinguishing experiment
is a particular kind of experiment, and is therefore generally suboptimal. To state this formally it is
easiest to use the adjoint map E ∗, defined via the inner product as usual:

Tr[E ∗(Λ)ρ] =Tr[ΛE (ρ)]. (5.15)

Observe that if E has a Kraus representation with operators Mk , then E ∗ has a Kraus representation
with operators M ∗k . Therefore, E ∗ is therefore completely positive. Furthermore, the trace preserving
condition of E implies that E ∗ is unital, meaning E ∗(1) = 1. This implies that E ∗(Λ) is a valid POVM
element if Λ is, since 1−Λ≥ 0 gives E ∗(Λ)≤ 1. Thus, we have

δ(E (ρ),E (σ)) = max
Λ′:0≤Λ′≤1

Tr[E ∗(Λ′)(ρ−σ)] (5.16)

= max
Λ:Λ=E ∗(Λ′),0≤Λ′≤1

Tr[Λ(ρ−σ)] (5.17)

≤ max
Λ:0≤Λ≤1Tr[Λ(ρ−σ)] (5.18)

= δ(ρ,σ). (5.19)

Note that by discussion after (5.9), there exists a channel such that the distinguishability does not
decrease: the measurement in the eigenbasis of ρ−σ .

The third property is convexity of the distinguishability measure:
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Proposition 5.1.3: Joint convexity of the state distinguishability

For 0≤ λ≤ 1, states ρ1, ρ2, σ1, and σ2 with ρ= λρ1+(1−λ)ρ2 and similarly for σ ,

δ(ρ,σ)≤ λδ(ρ1,σ1)+ (1−λ)δ(ρ2,σ2). (5.20)

Proof. The claim follows from monotonicity under partial trace for suitably-chosen states. Letρ′X A=
λ|1〉〈1|X ⊗ρ1+(1−λ)|2〉〈2|X ⊗ρ2 and similarly for σ ′X A. Then choosing E to be the partial trace over
X , we have ρ = E (ρ′) and σ = E (σ ′). To distinguish between ρ′ and σ ′, we may simply look at the
X system and then perform the corresponding ρ j versus σ j experiment. This leads to the quantity
on the righthand side of the bound (and is in fact the optimal test).

It is interesting to observe that we could restrict the set of POVM elements and still obtain a
distinguishability measure that obeys the triangle inequality. For instance, in the setting of bipar-
tite systems, we may only be able to perform measurements on one system at a time. The proof of
Proposition 5.1.1 evidently does not change if we restrict the set of POVM elements Λ over which
the maximization is performed. Moreover, such distinguishability measures also inherit monotonic-
ity from the proof of Proposition 5.1.2, at least for those channels E which preserve the restricted
set of POVM elements. In the bipartite example this would include operations on the two systems
individually.

5.1.2 General quantum channels

To distinguish two quantum channels we can adopt the same approach: ask for the best possible
probability in correctly guessing the actual channel using the results of an experiment on the device.
The only difference with the previous scenario is that in an experiment on a channel we are free to
choose the input state as well as the measurement on the output. This fits neatly with the view that
a state is actually a channel from a one-dimensional system, i.e. a channel with a fixed input.

Since we are free to choose the input, we can also contemplate entangled inputs. That is, we may
test a channel EA′→B by allowing it to act on one part of a bipartite input state ρAA′ and then perform
a joint measurement on the output systems A and B . This leads to the following definition.

Definition 5.1.2: Channel distinguishability

The distinguishability of two CPTP channels EA′→B andFA′→B is defined as

δ(E ,F ) :=max Tr[ΛAB (IA⊗EA′→B (ρAA′)−IA⊗FA′→B (ρAA′))]. (5.21)
s.t. 0≤Λ≤ 1

ρAA′ ≥ 0,Tr[ρAA′] = 1

We have seen that it is generally important to consider the possibility of entangled inputs to channels,
and not allowing such inputs could limit the power of the experimental tests. Indeed, we will see an
example of a channels for which this is precisely the case in Exercise 5.4.

Since the channel distinguishability is just the distinguishability of the states that the two channels
can produce from the optimal, fixed input, we can also write (omitting IA)

δ(E ,F ) =max
ρAA′

δ(EA′→B (ρAA′),FA′→B (ρAA′)). (5.22)
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In much the same way as in the previous section, we can easily show the following properties of
the channel distinguishability.

Proposition 5.1.4: Properties of the channel distinguishability

The following properties hold for arbitrary CPTP maps EA→B , E ′A→B , E ′′A→B ,FA′→A, andGB→B ′ :

1) Positivity: δ(E ,E ′)≥ 0,

2) Triangle inequality: δ(E ,E ′′)≤ δ(E ,E ′)+δ(E ′,E ′′),
3) Monotonicity: δ(E ◦F ,E ′ ◦F )≤ δ(E ,E ′) and δ(G ◦E ,G ◦E ′)≤ δ(E ,E ′).

Proof. The first claim follows by choosing Λ= 0 and any input ρ in the optimization. The second is
essentially the same as the proof of triangle inequality for state distinguishability, Proposition 5.1.1.
The third follows for reasons similar to the proof of Proposition 5.1.2. Namely, in the first rela-
tion the channel F maps the set of possible input states onto a possibly smaller set, restricting the
optimization. In the second relation G ∗ restricts the set of POVM elements.

5.2 Fidelity

In §5.1.1 we motivated the notion of distinguishability of state prepraration by asking how well we
could distinguish two different state preparations in any possible experiment. What if we had access
to the purification while doing so? Investigating this question leads to the notion of fidelity.

5.2.1 Fidelity of quantum states

First, recall from Exercise 3.2 that for already-pure states we have the relation

δ(φ,ψ) =
Æ

1− |〈φ|ψ〉|2. (5.23)

This motivates the following definition of fidelity of pure states:

F (φ,ψ) := |〈φ|ψ〉|. (5.24)

A word of warning: many authors define fidelity as the squared overlap. This has an appealing inter-
pretation as a probability for stateψ to pass a test (POVM element) of the form |φ〉〈φ| (or vice versa).
However, the fidelity as we have defined it here also shows up in classical information theory and we
will follow this convention.

If mixed states can be compared by also examining their purifications, then (5.23) also provides a
link between the overlap of the purifications and the distinguishability. Since a mixed state has many
purifications, we consider the worst case distinguishability and define the fidelity as follows.
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Definition 5.2.1: Fidelity

Given two quantum states ρ and σ onHA, the fidelity F (ρ,σ) is defined as

F (ρ,σ) := max
ψAB ,φAB

|〈ψ|φ〉AB |, (5.25)

where the maximization is taken over all purifications of ρ and σ .

From the definition it is immediately clear that 0 ≤ F (ρ,σ) ≤ 1 and that it is invariant under
unitaries or partial isometries. Monotonicity of fidelity under arbitrary quantum operations is also
straightforward.

Proposition 5.2.1: Montonicity of fidelity

For a CPTP map EA→B and two quantum states ρ and σ ,

F (E (ρ),E (σ))≥ F (ρ,σ). (5.26)

Proof. Let VA→AB be a Stinespring isometry for EA→B , and define ρ̂AB = VA→ABρAV ∗A→AB and sim-
ilarly for σ̂AB . Then EA→B (ρA) = TrA[ρ̂AB] = ρ̂B . By the invariance under partial isometries we
have F (ρA,σA) = F (ρ̂AB , σ̂AB ). Thus, it remains to establish that the fidelity can only increase under
partial trace. Suppose that ρ̂ABC and σ̂ABC are the optimal purifications such that

F (ρ̂AB , σ̂AB ) = F (ρ̂ABC , σ̂ABC ). (5.27)

Trivially, ρ̂ABC and σ̂ABC are also purifications of ρ̂B and σ̂B , respectively. Hence they are feasible for
the optimization in F (ρ̂B , σ̂B ) and thus F (ρ̂B , σ̂B )≥ F (ρ̂AB , σ̂AB ).

Our definition is in the spirit of the original by Bures and Uhlmann1, who used the overlap
squared, but these days fidelity is more commonly defined as the quantity in the following propo-
sition, known as Uhlmann’s theorem.

Theorem 5.2.1: Uhlmann’s theorem

For any two quantum states ρ and σ ,

F (ρ,σ) = ‖pρpσ‖1. (5.28)

Proof. Let |φ〉AB be a purification of ρA and |ψ〉AB a purification of σA. (If they do not have identical
purification spaces, embed the smaller in the larger so that they do.) Defining the unnormalized
state |Ω〉AA′ =

∑

x |bx〉A⊗ |bx〉A′ , we can write the purifications as |φ〉AB =
p
ρA⊗UA′→B |Ω〉AA′ and

similarly |ψ〉AB =
p
σA⊗VA′→B |Ω〉AA′ for some isometries U and V .

By Proposition 4.1.1, for some choice of unitaries U and V we can write

F (φAB ,ψAB ) = |〈φ|ψ〉AB | (5.29)
= |〈Ω|pρA

p
σA⊗V ∗A′→B UA′→B |Ω〉AA′ | (5.30)

= |Tr[pρpσU T (V ∗)T ]|. (5.31)

1Armin Gotthard Uhlmann, born 1930, German theoretical physicist.
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Since U and V are isometries, the product V ∗U is unitary and therefore maxφAB ,ψAB
F (φAB ,ψAB )

amounts to maxU |Tr[pρpσU ]|. By Lemma A.7.2 we then have

max
φAB ,ψAB

F (φAB ,ψAB ) =max
U
|Tr[UpρA

p
σA]| (5.32)

= ‖pρA
p
σA‖1, (5.33)

completing the proof.

Using this expression for the fidelity, we can infer that there exists a measurement which does not
decrease the fidelity. This was also the case for the distinguishability, though for fidelity the situation
is more involved.

Proposition 5.2.2: Measurement achieving the fidelity

For any two states ρ and σ , there exists a POVM {Λx} with outcome distributions P (x) =
Tr[Λxρ] and Q(x) =Tr[Λxσ], respectively, such that

F (P,Q) = F (ρ,σ). (5.34)

Proof. The proof is a careful application of the Cauchy-Schwartz inequality. Let U be the optimal
unitary in (5.32). Then the fidelity is just

F (ρ,σ) =Tr[Upρpσ] (5.35)

=
∑

x
Tr[UpρpΛx

p

Λx
p
σ], (5.36)

where we have used the condition
∑

x Λx = 1 in the second equation. We can regard each term in this
expression as the inner product 〈ux , vx〉 = Tr[u∗x vx] for u∗x = UpρpΛx and vx =

p

Λx
p
σ . Then,

by the Cauchy-Schwartz inequality,

F (ρ,σ) =
∑

x
〈ux , vx〉 ≤

∑

x

Æ

〈ux , ux〉〈vx , vx〉=
∑

x

p

P (x)Q(x). (5.37)

For equality we need to satisfy ux ∝ vx for all x, i.e.
p

Λx
p
ρU ∗∝p

Λx
p
σ . (5.38)

Recalling Lemma A.7.2, the optimal U satisfiespρpσ =U ∗|pρpσ | and thereforepρ=U ∗|pρpσ |σ−1/2

for invertible σ , or equivalentlypρU ∗ = σ−1/2|pρpσ |. This gives the condition
p

Λxσ
−1/2|pρpσ |σ−1/2∝p

Λx . (5.39)

Choosing Λx to be projectors onto the eigenbasis of σ−1/2|pρpσ |σ−1/2 satisfies this condition and
completes the proof.

Importantly, the fidelity and state distinguishability are related to each other, as given in the following
bounds. Note that since the dimension of the state space does not appear, the two quantities can be
thought of as essentially the same (as are two norms on a space which are related by dimension-
independent bounds).
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Proposition 5.2.3: Bounds relating fidelity and distinguishability

For any two quantum states ρ and σ ,

δ(ρ,σ)+ F (ρ,σ)≥ 1, and (5.40)

δ(ρ,σ)2+ F (ρ,σ)2 ≤ 1. (5.41)

Proof. For the former, let P and Q be the distributions arises from the measurement achieving the
fidelity. By monotonicity of the distinguishability we have

δ(ρ,σ)≥ δ(P,Q) = 1
2

∑

x
|P (x)−Q(x)| (5.42)

= 1
2

∑

x

�

�

p

P (x)−pQ(x)
�

�(
p

P (x)+
p

Q(x)) (5.43)

≥ 1
2

∑

x
(
p

P (x)−pQ(x))2 = 1− F (P,Q) = 1− F (ρ,σ). (5.44)

For the latter, note that (5.23) shows that the relation holds with equality for pure states. For
φ and ψ the optimal pure states in the fidelity F (ρ,σ) we therefore have δ(φ,ψ)2 + F (ρ,σ)2 = 1.
Monotonicity of the distinguishability establishes the result.

Using (5.41) we can define a distance measure between density operators which implicitly includes
their purifications as follows.

Definition 5.2.2: Purification distance

The purification distance P (ρ,σ) between two states ρ and σ is defined as

P (ρ,σ) :=
Æ

1− F (ρ,σ)2. (5.45)

This will prove useful in defining entropy quantities with nice properties.

5.3 Distinguishing between many states

In §5.1.1 we motivated the definition of distinguishability of two states via the probabilty of correctly
guessing the state (preparation procedure). The case of multiple states is also of interest. Now suppose
the states are chosen according with probability distribution PX . How well can we determine X by
looking at the quantum state?

More concretely, we need to measure the quantum state with a POVM, the outcome of which cor-
responds to our guess. Suppose the ensemble of states is described by the CQ stateψX B =

∑

x PX (x)|x〉〈x|X⊗
(ϕx )B for some states ϕx . Given a POVM {Λx} on system B , the average guessing probability is
pguess =

∑

x PX (x)Tr[Λxϕx]. We can write this more compactly using the CQ operator ΛX B =
∑

x |x〉〈x|X ⊗ (Λx )B as pguess = Tr[ΛX BψX B]. The conditions that the Λx form a POVM are now
encoded by ΛX B ≥ 0 and ΛB = 1. The optimal guessing probability is just
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Definition 5.3.1: Optimal guessing probability

For an ensemble of quantum states described by the CQ stateψX B =
∑

x PX (x)|x〉〈x|X ⊗ϕx , the
guessing probability is defined as

popt
guess(X |B)ψ :=max Tr[ΛX BψX B] (5.46)

s.t. ΛX B ≥ 0,ΛB = 1.

Often it is not possible to analyze the behavior of the optimal guessing probability in a particular
protocol. An excellent alternative is provided by the “pretty-good measurement”:

Definition 5.3.2: Pretty good measurement

For an ensemble of quantum states {PX (x),ϕx} with the average state ϕ =
∑

x PX (x)ϕx , the
prettty good measurement is the POVM with elements

Λx = PX (x)ϕ
−1/2ϕxϕ

−1/2. (5.47)

The pretty good measurement has an appealing interpretation in the classical setting, i.e. when
all states ϕx commute. In this case we may write ϕx =

∑

y PY |X=x (y)|y〉〈y|, where the |y〉 are the
common eigenstates of the ϕx and PY |X=x (y) are the associated eigenvalues. Since these are positive
and sum to unity, we may regard the eigenvalues as forming a conditional distribution. The average
state is simply ϕ =

∑

y PY (y)|y〉〈y|, and therefore we find that the POVM elements of the pretty good
measurement are given by

Λx =
∑

y
PX |Y=y (x)|y〉〈y|. (5.48)

Recalling the discussion at the beginning of §5.1.1, we may regard the entire POVM as consisting of
two parts. The first part is a measurement in the common eigenbasis, and the second is the generation
of a guess from the measurement result. The latter step is simply to generate a guess by picking an x
according to the conditional distribution PX |Y=y for the observed value of y, i.e. to sample from the
distribution PX |Y=y . The optimal strategy, of course, is to pick the x which maximizes PX |Y=y .

Importantly, the pretty good measurement is indeed pretty good, as seen in the following.

Proposition 5.3.1: Quality of the pretty good measurement

For any CQ state ρX B =
∑

x PX (x)|x〉〈x|X ⊗ (ϕx )B ,

pPGM
guess (X |B)ρ ≥ (popt

guess(X |B)ρ)2. (5.49)

Proof. The proof is an application of the Cauchy-Schwartz inequality. Suppose {Λx} is the optimal
guessing POVM. Defining Bx = ϕ

1/4Λxϕ
1/4 we have

pguess(X |B)ρ =
∑

x
Tr[Bxϕ

−1/4PX (x)ϕxϕ
−1/4]. (5.50)
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We may regard this as the inner product between the sequences u = (Bx )x and v = (ϕ−1/4PX (x)ϕxϕ
−1/4)x ,

where the inner product is 〈u, v〉=∑x Tr[u∗x vx]. Applying the Cauchy-Schwartz inequality we have

(pguess(X |B)ρ)2 ≤
∑

x
Tr[B2

x]
∑

x
Tr[(ϕ−1/4PX (x)ϕxϕ

−1/4)2] (5.51)

=
∑

x
Tr[B2

x]p
PGM
guess (X |B)ρ. (5.52)

For the quantity Tr[B2
x] we have

Tr[B2
x] =Tr[ϕ1/2Λxϕ

1/2Λx] (5.53)

≤ ‖ϕ1/2Λxϕ
1/2‖∞Tr[Λx] (5.54)

≤ ‖ϕ1/2‖2∞‖Λx‖∞Tr[Λx] (5.55)
≤Tr[Λx], (5.56)

where the first inequality follows from ϕ1/2Λxϕ
1/2 ≤ ‖ϕ1/2Λxϕ

1/2‖∞1, the second from the submul-
tiplicativity of the infinity norm, and the last from the fact that ϕ ≤ 1 and Λx ≤ 1. Thus, the first
factor in the bound is itself upper bounded by unity, completing the proof.

5.4 Binary hypothesis testing

In the previous sections we considered the average guessing probability when distinguishing states
and channels. It is also interesting and useful to consider the various errors separately. For two states,
this is the setup of binary hypothesis testing.

Here we regard the two possibilities, that the device produces ρ or that it produces σ as different
hypotheses. In the statistical setting one is called the null hypothesis, say in this case that the device
produces ρ, and the other is called the alternate hypothesis. We would like to perform an experiment
to confirm one of these two hypotheses (or perhaps more properly, reject one of them). The hypothe-
ses can be anything that we would like to test; a common example is that the null hypothesis is that
the defendant in a criminal trial is innocent, and the alternate hypothesis is that she is guilty.

Any such experiment can make two kinds of errors. The first, called the error of type-I, oc-
curs when the test rejects the null hypothesis, even though it is true. That is, an innocent person is
convicted. The other error, called the error of type-II, occurs when the test incorrectly rejects the
alternate hypothesis. This time, a guilty person is set free.

Naturally, we are interested in tests whose errors are as small as possible. For instance, we may ask
for the test with the minimal type-II error, given that its type-I error is no larger than some fixed value
1− ε. In the case of interest, testing quantum states, the test is given by a POVM. Call the POVM
elements Λ and 1−Λ, where Λ indicates the null hypothesis that the device produces ρ. Then the
type-I error probability is Tr[ρ(1−Λ)] = 1−Tr[Λρ]. The minimal type-II error for type-I error no
larger than 1− ε is given by the following optimization problem.
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Definition 5.4.1: Minimal type-II error

For any quantum state ρ, an operator σ ≥ 0, and ε ∈ [0,1],

βε (ρ,σ) :=min Tr[Λσ] (5.57)
s.t. Tr[Λρ]≥ ε

0≤Λ≤ 1

Strictly speaking, βε only has the type-II error probability interpretation when σ is a normalized
state, whereas the definition accepts any positive σ . This will be convenient later. Clearlyβε (ρ,σ)≥
0 and βε (E (ρ),E (σ))≥βε (ρ,σ) for the same reasons as in Proposition 5.1.2.

5.5 Convex optimization

5.5.1 Definition

All the definitions involving optimization that we have seen so far, Equations (5.6), (5.21), (5.46),
and (5.57), are examples of convex optimization. In convex optimization the goal is to minimize a
convex function over a convex set (or equivalently, maximize a concave function). Indeed, in all
these examples the function to be optimized, the objective function, is linear. Hence, these are called
linear programs (in the mathematics literature) or semidefinite programs (in more applied settings). The
latter name arises from the fact that the convex set over which we are to optimize, called the feasible
set, are defined by positive semidefinite constraints.2 For the state distinguishability, optimal guessing
probability, and minimal type-II error it is easy to see that the optimization is to be carried out over a
convex set. Later we will see that the channel distinguishability can be formulated as a linear program
as well.

Formulating these quantities as semidefinite programs is useful for two reasons. First, the optimal
solutions to semidefinite programs can be efficiently computed. Specifically, the solution can be found
in a time that scales polynomially with the size of the variables and the logarithm of the desired ac-
curacy. But more importantly for us is the well-developed theory of duality of semidefinite programs
(and linear programs more generally). Often, duality allows us to infer important properties of the
quantities in question, and we will see examples of this later.

Let us now define semidefinite programming more formally in our setting.

Definition 5.5.1: Semidefinite Program

A semidefinite program overH1 andH2 is specified by two Hermitian operators A∈ End(H1)
and B ∈ End(H2) and a Hermiticity-preserving map E1→2. The optimization task is to

find α= sup Tr[AX ] (5.58)
subject to E (X )≤ B ,

X ≥ 0,
X ∈ End(H1).

2In more applied settings, linear programming refers to the optimization of linear functions over convex sets defined
by linear constraints. The same task is sometimes called polyhedral linear programming by mathematicians, since convex
sets defined by linear constraints are polyhedra.
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If the feasible set is empty, we take the value of the program to be −∞.

5.5.2 Duality

Every feasible X yields a lower bound on the value of the semidefinite program as we have defined it.
To find upper bounds, we may appeal to the dual form of the program. Consider a positive operator
Y ∈H2. Taking the inner product with the first constraint, we have

Tr[YE (X )]≤Tr[Y B]. (5.59)

Now suppose we find a Y such that E ∗(Y )≥A. Taking the inner product with any feasible X we find

Tr[AX ]≤Tr[E ∗(Y )X ]≤Tr[YE (X )]≤Tr[Y B]. (5.60)

Thus, every such Y provides an upper bound to the optimal value of the program. The best bound
is given by the dual program:

Definition 5.5.2: Semidefinite Program (Dual Formulation)

The dual formulation of the semidefinite program of (5.58) is to

find γ = inf Tr[Y B] (5.61)
subject to E ∗(Y )≥A,

Y ≥ 0,
Y ∈ End(H2).

In this case, should the feasible set be empty, we take the value of the program to be∞.
We have obtained the dual formulation by considering upper bounds to the original formulation

(usually called the primal form); the fact that the optimal value of the dual is never less than the
optimal value of the primal is called weak duality. This statement is clear when the supremum and
infimum are attained. In the general case when the feasible sets are nonempty, it holds by definition of
supremum and infimum that for all ε1 and ε2 there exist feasible X and Y such that Tr[AX ]≥ α−ε1
and Tr[Y B] ≤ γ + ε2. Combining these with (5.60) and taking the limit ε1,ε2→ 0 gives the formal
statement of weak duality.

In cases of interest strong duality often holds, and the optimal values of primal and dual are equal.
We state this as part of the following general proposition.

Proposition 5.5.1: Duality of semidefinite programs

The following hold in the semidefinite program specified by (E ,A,B) in (5.58):

1) Weak duality: α≤ γ .

2) Slater’s conditions for strong duality: If the primal feasible set is nonempty and there exists
a strictly feasible dual variable Y , meaning E ∗(Y ) > A, then there exists a feasible X such
that Tr[X A] = α and α= γ . The same holds when swapping primal and dual.

3) Complementary slackness: If there exist feasible X and Y such that Tr[AX ] =Tr[Y B], then
α= γ and E (X )Y = BY and E ∗(Y )X =AX .
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5.5.3 Examples

Let us see that the optimization-based quantities really are semidefinite programs. Along the way,
we will see that complementary slackness often allows us to infer several interesting properties of the
various quantities.

Distinguishability We start with the simplest case, the distinguishability δ(ρ,σ). We can bring
the definition in (5.6) into the standard primal form by choosingH2 'H1 with A= ρ− σ , B = 1,
and E =I . The dual program is

find inf Tr[Y ] (5.62)
subject to Y ≥ ρ−σ , Y ≥ 0.

If we did not already know the form of the optimal measurement, we could infer from complementary
slackness that it must act as a projection on the optimal dual variable, for we have ΛY = Y . From the
dual it is clear that a feasible Y is just {ρ−σ}+, the positive part ofρ−σ . This leads to an upper bound
on the distinguishability which is attained by Λ= {ρ−σ ≥ 0}, the projection onto this subspace.

Minimal type-II error Under our conventions, it is more natural to express the minimal type-II
error as a dual program. ChoosingH2 =H ,H1 =H ⊕C, the spaceH plus one extra dimension,
B = σ , A=−1⊕ε, and E ∗(Λ) =−Λ⊕Tr[Λρ] brings it into standard form. This example shows the
importance of considering more generalH1 andH2 than just whatever state spaces are involved in
the problem.

Let the primal variable be of the form X = τ⊕µ for positive semidefinite τ and positive real µ.
Note that Tr[E ∗(Λ)X ] =Tr[Λ(µρ−τ)] and thus E (X ) =µρ−τ. The primal formulation is then

find sup µε−Tr[τ] (5.63)
subject to µρ−τ ≤ σ

µ,τ ≥ 0.

Slackness yields the conditions Λτ = τ, µTr[Λρ] =µε, and (µρ−σ)Λ= τΛ, where the latter comes
from E (X )Λ= BΛ and the former two from E ∗(Λ)X =AX .

Clearly the optimal τ in this program is τ = {µρ − σ}+, and therefore by the first slackness
condition Λ is a projector onto this subspace, plus an unspecified action on its complement. The
complement consists of the “null” subspace in which µρ = σ and the subspace in which µρ < σ .
By the last slackness condition, the optimal Λmust annihilate the latter, but the condition places no
constraints on the action of Λ on the former. However, the second slackness condition shows that Λ
has precisely the required action on the null subspace so that Tr[Λρ] = ε is achieved.

Using complementary slackness we have in fact inferred the Neyman3-Pearson4 lemma of classical
statistics. This result states that when distinguishing between probability distributions, the optimal
test is always based on the likelihood ratio. That is, given a value x which is a sample from either P or
Q, the optimal test decides for P or Q based on the ratio P (x)/Q(x). If the ratio is above a threshold
1/µ, the test decides for P , and below this threshold for Q. Put differently, the test decides for P
for all x such that µP (x)−Q(x) > 0. In the language of density operators, the test is based on the
positivity of µρ−σ , just as we have found.

3Jerzy Neyman, 1894 – 1981, Polish mathematician and statistician.
4Egon Sharpe Pearson, 1895 – 1980, British statistician.
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Optimal guessing probability The optimal guessing probability is more complicated, but nearly
in the desired form. ChooseH1 =HX ⊗HB ,H2 =HB , A= ρX B , B = 1 and E1→2 =TrX . Then we
have

maximize Tr[ρX BΛX B] (5.64)
subject to TrX [ΛX B]≤ 1,

ΛX B ≥ 0.

We do not need to explicitly enforce the constraint that ΛX B be a CQ operator, i.e. of the form
ΛX B =

∑

x |x〉〈x|X ⊗Λx . Instead, since ρX B is a CQ state, the objective function automatically takes
the form

∑

x PX (x)TrB[Λxϕx], where Λx = TrX [|x〉〈x|XΛX B]. The first constraint is nothing other
than

∑

x Λx ≤ 1. We also need not enforce equality in this constraint, since the optimal value of the
objective function will be attained on the boundary of the feasible set, i.e. when ΛX B is such that
∑

x Λx = 1. Finally, positivity ofΛX B implies positivity of all theΛx , since 〈x|⊗〈φ|ΛX B |x〉⊗|φ〉 ≥ 0
for all |φ〉.

Let Y be the dual variable, an operator on H2. We can also express this as Y = λσ for some
positive λ and normalized state σ . In these terms the dual program is given by

find inf λ (5.65)
subject to λ1X ⊗σB ≥ ρX B ,

λ,σ ≥ 0.

The slackness conditions yield λ(
∑

x Λx )σ = λσ and λ(1X ⊗ σB )
∑

x |x〉〈x|X ⊗Λx = ρX BΛX B .
The first one is uninteresting, but the second implies that

λσΛx = PX (x)ϕxΛx ∀x. (5.66)

Summing over x gives Y =
∑

x PX (x)ϕxΛx . This must be feasible in the dual program, and therefore
the optimal measurement has the property that Y ≥ PX (x)ϕx for all x. This may not look like a great
help in finding the optimal measurement, but it turns out to be useful.

Channel distinguishability

Fidelity

5.6 Notes & Further reading

The distinguishability of quantum states was first studied by Helstrom [48, 49]. The fidelity as defined
here was first defined by Bures [50] and studied in more detail by Uhlmann [51]. A good overview
of distinguishability measures of quantum states can be found in the PhD thesis of Fuchs [52]. The
distinguishability of quantum channels was studied by Kitaev [53] and is often known as the diamond
norm. It is well-known in operator theory, where it is called the completely bounded norm. Paulsen
gives a nice overview of operator theory which, despite the more advanced mathematical setting, will
be recognizable to readers of these notes [54].

The pretty good measurement was named by Hausladen and Wootters [55], though it was first
considered by Belavkin [56]. In the field of frame theory the pretty good measurement is known as
the canonical tight frame (though this only applies to the pure state case). Frame theory and the study
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of wavelets are useful in quantum information theory, particularly for observables on an infinite-
dimensional space, such as position and momentum of a free particle. The interested reader is invited
to consult the books by Christensen [57, 58] for more on this topic.

In this chapter we only scratch the surface of the very important topic of convex optimization.
For more, see Boyd and Vanderberghe [59] for an applied approach, as well as more mathematical
treatments (in rough order of increasing sophistication) by Tiel [62], Rockafellar [60], and Barvi-
nok [61].
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5.7 Exercises

Exercise 5.1. Minimum-error state discrimination → solution
Suppose that Alice sends Bob a signal which is eitherρ1 with probability p1 orρ2 with probability

p2. Bob would like to know which one was sent, with the smallest possible error. His measurement
consists of operators E1 and E2 such that E1+E2 = 1. If outcome E1 occurs he guesses that Alice sent
ρ1; if E2, ρ2.

a) Shouldn’t we consider the possibility that Bob’s measurement has more than two outcomes?

b) Show that the probability of error is given by

perror = p1+
∑

i

λi 〈ei |E1|ei 〉,

where {|ei 〉} is the orthonormal basis of eigenstates of the operator p2ρ2− p1ρ1, while λi are
the corresponding eigenvalues.

c) Find the nonnegative operator E1 that minimizes perror.

d) Show that the corresponding error probability is

p∗error = p1+
∑

i :λi<0

λi =
1
2 (1− ||p2ρ2− p1ρ1||1).

Exercise 5.2. Unambiguous state discrimination → solution
Now Bob would like to decide between ρ1 and ρ2 as in the previous exercise, but wants to avoid

the possibility of deciding incorrectly.

a) Bob’s measurement surely has outcomes E1 and E2 corresponding to ρ1 and ρ2, respectively.
Assuming the two states ρ j are pure, ρ j = |φ j 〉〈φ j | for some |φ j 〉, what is the general form of
E j such that Pr(E j |ρk ) = 0 for j 6= k?

b) Can these two elements alone make up a POVM? Is there generally an inconclusive result E??

c) Assuming ρ1 and ρ2 are sent with equal probability, what is the optimal unambiguous mea-
surement, i.e. the unambigous measurement with the smallest probability of an inconclusive
result?

Exercise 5.3. Decoupling → solution

a) Show that any purification of the state ρAB =
1A
dA
⊗ρB has the form

|ψ〉AA′BB ′ = |Φ〉AA′ ⊗ |ψ〉BB ′ ,

for |Φ〉AA′ =
1p
dA

∑

k |k〉A|k〉A′ a maximally entangled state and |ψ〉BB ′ a purification of ρB .

b) Consider a state that is ε-close to ρAB according to the trace distance:

δ

�

σAB ,
1A

dA
⊗ρB

�

≤ ε.
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Show that there exists a purification |φ〉ABA′B ′ of σAB with purifying systemHA′ ⊗HB ′ such
that

δ (|φ〉ABA′B ′ , |Ψ〉AA′ ⊗ |ψ〉BB ′)≤
p

2ε.

Exercise 5.4. Entanglement and channel distinguishability → solution
Let δ1−1(E ,F ) be the distinguishability of two channels EA′→B , FA′→B when considering only

input states on the input system A′.

a) Show that in general δ(E ,F )≥ δ1−1(E ,F ).
b) Consider the depolarizing channel on one qubit, Ep (ρ) = p 1

2 +(1− p)ρ. Compute (or at least
bound) and compare δ(Ep ,I ) and δ1−1(Ep ,I ).
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6Divergence Measures and Entropies
Similar to the previous chapter, here we consider divergence quantities which attempt to measure
the difference between quantum states. Now the focus is on quantities which are useful in proving
converse results, statements that a given set of resources cannot be used to construct some desired
protocol.

The main important property of a distinguishability measure is monotonicity, the intuitive prop-
erty that applying a channel to two states can only make them less distinguishable.

6.1 f -Divergence

In the classical setting, a general class of measures with this property are the f -divergences.

Definition 6.1.1: f -Divergence

For any convex function f on R+ with f (1) = 0, we define the associated f -divergence

D f (P,Q) =
∑

x
Q(x) f

�

P (x)
Q(x)

�

. (6.1)

Examples include

• the relative entropy D(P,Q) with f : t 7→ t log t

D(P,Q) =
∑

x
P (x) (log P (x)− logQ(x)) , (6.2)

• the relative entropy D(Q, P ) with f : t 7→ − log t ,

• the chi-squared divergence χ 2(P,Q) with f : t 7→ (t − 1)2

χ 2(P,Q) =
∑

x

(P (x)−Q(x))2

Q(x)
, (6.3)

• the variational distance (distinguishability) δ(P,Q) with f : t 7→ |t − 1|, and

• the Hellinger divergences Hα(P,Q) with fα : t 7→ (tα− 1)/(α− 1) for α > 0,α 6= 1

Hα(P,Q) =
1

α− 1

�

∑

x
P (x)αQ(x)1−α− 1

�

. (6.4)

The Hellinger divergences are essentially the same as the Renyi divergences

Dα(P,Q) :=
1

α− 1
log

∑

x
P (x)αQ(x)1−α α≥ 0,α 6= 1. (6.5)

Taking the limitα→ 1 recovers the relative entropy. Of the Renyi divergences, the casesα= 0, 1
2 , 2,∞

are are especially useful. When α= 0 we have

D0(P,Q) =− log
∑

x:P (x)>0

Q(x), (6.6)
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i.e. minus the logarithm of the probability Q assigns to the support of P . When α= 1/2 we essentially
have the fidelity of the two distributions

D1/2(P,Q) =−2 log
∑

x

p

P (x)Q(x) =− log F (P,Q)2. (6.7)

The case α= 2 yields the logarithm of the average value, under P , of the ratio P/Q:

D2(P,Q) = log
∑

x
P (x)

P (x)
Q(x)

= log
�

1+χ 2(P,Q)
�

. (6.8)

where the second equality follows by comparing with the quantity χ 2(P,Q). Finally, in the limit
α→∞ only the x for which P (x)/Q(x) is largest contributes, and we have

D∞(P,Q) = logmax
x

P (x)
Q(x)

. (6.9)

It can be shown that the Renyi divergences are monotonically increasing in α, but we will not use
this fact here. We can easily prove the monotonicity for all f -divergences at once.

Proposition 6.1.1: Monotonicity of f -divergence

For any stochastic map (channel) W :X →Y and two distributions P and Q overX ,

D f (W P,W Q)≤D f (P,Q). (6.10)

Proof. The proof is an application of Jensen’s inequality, Equation (2.11), and the dilation property
of stochastic maps, Proposition 2.5.2.

First, we consider monotonicity under deterministic transformations. If W implements the func-
tion g , every output y is associated with the set g−1(y) = {x : g (x) = y} of preimages. We can then
write

D f (P,Q) =
∑

y

∑

x∈g−1(y)

Q(x) f
�

P (x)
Q(x)

�

. (6.11)

Now consider the inner summation and let P ′ =W P and Q ′ =W Q, i.e. P ′(y) =
∑

x∈g−1(y) P (x) and
similarly for Q ′. For each of the inner summations we have

∑

x∈g−1(y)

Q(x) f
�

P (x)
Q(x)

�

=Q ′(y)
∑

x∈g−1(y)

Q(x)
Q ′(y)

f
�

P (x)
Q(x)

�

(6.12)

≥Q ′(y) f

 

∑

x∈g−1(y)

Q(x)
Q ′(y)

P (x)
Q(x)

!

(6.13)

≥Q ′(y) f
�

P ′(y)
Q ′(y)

�

. (6.14)

The inequality is Jensen’s, since f is convex and the quantities Q(x)/Q ′(y) form a probability dis-
tribution. When f is strictly convex, equality can only hold when P (x) = Q(x) for all x ∈ g−1(y).
Using this bound in the outer summation over y gives D f (P,Q) ≥ D f (W P,W Q) for deterministic
W .
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For an arbitrary channel we appeal to Proposition 2.5.2. First, observe that

D f (P,Q) =D f (P ×R,Q ×R) (6.15)

for any distribution R. Then, using the dilation W ′ of W , where the auxiliary random variable Z
has distribution R, we find

D f (P,Q) =D f (P ×R,Q ×R) (6.16)

≥D f (W
′(P ×R),W ′(Q ×R)) (6.17)

≥D f (TrZ[W
′(P ×R)],TrZ[W

′(Q ×R)]) (6.18)

=D f (W P,W Q). (6.19)

In the penultimate step, the channel TrZ denotes marginalizing the distribution over the Z random
variable. This is a deterministic map, since we can think of the marginalization as sending every
z ∈ Z to 1. The two inequalities follow from the established monotonicity under deterministic
channels.

Corollary 6.1.1: Nonnegativity and joint convexity of f -divergence

Every f -divergence satsifies the following properties:

• Nonnegativity: D f (P,Q)≥ 0 with equality iff P =Q for strictly convex f , and

• Joint convexity: For 0≤ λ≤ 1, distributions P1, P2, Q1 and Q2 with P = λP1+ (1−λ)P2
and similarly for Q,

D f (P,Q)≤ λD f (P1,Q1)+ (1−λ)D f (P2,Q2). (6.20)

Proof. For the former, applying the marginalization map Tr gives D f (P,Q) ≥ D f (TrP,TrQ) =
f (1) = 0. The equality condition follows from the comments following (6.14).

For the latter, let Y be an auxiliary random variable and define

P ′X ,Y (x, y) =
�

λP1(x) y = 0
(1−λ)P2(x) y = 1

, (6.21)

and similarly for Q ′X ,Y . Then joint convexity follows from monotonicity, since simple calculation
reveals that

D f (P
′,Q ′) = λD f (P1,Q1)+ (1−λ)D f (P2,Q2). (6.22)

Interestingly, although the minimal type-II error is not an f -divergence, it can generate any of
them according to the following formula. Letting β′ε(P,Q) = dβε(P,Q)

dε ,

D f (P,Q) =
∫ 1

0
dεβ′ε(P,Q) f

�

1
β′ε(P,Q)

�

. (6.23)
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We will not make any use of this formula here, other than to highlight the importance of the function
ε 7→βε(P,Q).

Quantum f -divergences exist and one can prove monotonicity for them, but to do so would take
us too far into matrix analysis. Instead, we will examine a few cases that have found application in
quantum information processing.

6.2 Quantum divergences

Several useful quantum divergence measures can be constructed by adapting the Renyi divergences.
A common and very useful choice is α = 1, which leads to the quantum relative entropy. First we
mention a few other options, to get a feel for the set of different possibilities:

D0(ρ,σ) :=− logTr[Πρσ], (6.24)

D1/2(ρ,σ) :=− log F (ρ,σ)2, (6.25)

D2(ρ,σ) := logTr[(σ−1/4ρσ−1/4)2], (6.26)
D∞(ρ,σ) := log{minλ : ρ≤ λσ}. (6.27)

Here Πρ is the projector onto the support of ρ, which we could also express as ρ0. Note that D2
makes a specific choice in the order of operators, which is necessary since ρ and σ do not commute.
However, the particular choice here is by no means the only possibility.

Now we discuss the relative entropy in more detail, beginning with the formal definition.

Definition 6.2.1: Relative entropy

The relative entropy D(ρ,σ) of two states ρ and σ is defined as

D(ρ,σ) :=Tr[ρ(logρ− logσ)]. (6.28)

In the event that the support of σ is strictly contained in the support of ρ, we set D(ρ,σ) =∞.
Additionally, the definition also applies when σ is not a normalized state.

As with the distinguishability and fidelity, the relative entropy of two noncommuting states ρ
and σ is equal to the relative entropy of two particular classical distributions P and Q. However, in
contrast to those cases, there is no quantum operation mapping ρ to P and σ to Q. Expressing ρ
and σ in their respective eigenbases as ρ =

∑

k rk |u〉〈u|k and σ =
∑

j s j |v〉〈v | j , the distributions in
question are

PX Y (x, y) = rx |〈ux |vy〉|2 (6.29)

QX Y (x, y) = sy |〈ux |vy〉|2. (6.30)

Since D(ρ,σ) = D(P,Q), it immediately follows that D(ρ,σ) ≥ 0. In fact, equality holds only if
ρ= σ .

The key property of the relative entropy is monotonicity under quantum operations. In this
course we shall not attempt a proof; again, it would take us too far into matrix analysis.
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Proposition 6.2.1: Monotonicity of relative entropy

For any states ρ and σ and quantum operation E ,

D(E (ρ),E (σ))≤D(ρ,σ). (6.31)

The relative entropy is actually closely related to the hypothesis testing scenario. The following
proposition states the fact that the relative entropy governs the exponential decay rate of the type-
II error, when the type-I error is held fixed. We shall also take the statement in the quantum case
without proof. The classical case is Exercise...

Proposition 6.2.2: “Quantum Stein’s Lemma”

For any quantum states ρ and σ and ε ∈ (0,1),

lim
n→∞

1
n logβε (ρ

⊗n ,σ⊗n) =−D(ρ,σ). (6.32)

It is also possible to find a relation between βε (ρ,σ) and any monotonic divergence, by taking
the quantum operation to be the optimal test. That is, suppose that Q is the optimal test in βε (ρ,σ)
and define the quantum operation E (τ) = Tr[Qτ]|0〉〈0|+ (1− Tr[Qτ])|1〉〈1|. This gives E (ρ) =
ε|0〉〈0|+ (1− ε)|1〉〈1| and E (σ) =βε (ρ,σ)|0〉〈0|+ (1−βε (ρ,σ))|1〉〈1|. The relative entropy of two
binary distributions such as E (ρ) and E (σ) is easy to compute. Supposing the two distributions are
(p, 1− p) and (q , 1− q), then

d (p, q) :=D((p, 1− p), (q , 1− q)) = p log
p
q
+(1− p) log

1− p
1− q

. (6.33)

Therefore, monotonicity implies that d (ε,βε (ρ,σ)) ≤ D(ρ,σ). It can be shown that d (p, q) ≥
−h(p) + a log 1

b for h(p) = −p log p − (1− p) log(1− p) (often called the binary entropy; see the
following section), and so we have the relation

ε log
1

βε (ρ,σ)
≤D(ρ,σ)+ h(ε). (6.34)

This will prove useful in bounding the performance of protocols for communication over noisy chan-
nels.

6.3 von Neumann & Shannon entropies

The most useful and well-studied entropy is the von Neumann entropy, or equivalently the Shannon
entropy in the classical setting.

Definition 6.3.1: von Neumann / Shannon entropies

The von Neumann entropies (Shannon entropies in the classical case) are defined as follows.

• The entropy H (A)ρ of a single system A of dimension d in state ρ:

H (A)ρ :=−D(ρ,1), (6.35)
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6. DIVERGENCE MEASURES AND ENTROPIES

• the conditional entropy H (A|B)ρ of system A conditioned on system B :

H (A|B)ρ :=−D(ρAB ,1A⊗ρB ), and (6.36)

• the mutual information I (A : B)ρ of A and B :

I (A : B)ρ :=D(ρAB ,ρA⊗ρB ). (6.37)

Note that we can write H (A)ρ = log d −D(ρ, 1
d 1) and H (A|B)ρ = log d −D(ρAB , 1

d 1A⊗ρB ).

Proposition 6.3.1: Properties of the entropy of a single system

1) Positivity: H (A)ρ ≥ 0 for all ρ, with equality iff ρ is a pure state,

2) Unitary invariance: H (A)UρU ∗ =H (A)ρ for unitary U ,

3) Upper bound: H (A)ρ ≤ log |suppρ|,
4) Concavity: H (A)ρ ≥

∑

k pk H (A)ρk
for ρ=

∑

k pkρk , and

5) Increase under projective measurement: H (A)ρ′ ≥ H (A)ρ where ρ′ =
∑

k ΠkρΠk for any
complete set of projectors Πk .

Proof. These are proven in Exercise 6.1.

Proposition 6.3.2: Properties of the entropy of several systems

1) Duality: H (A)ρ =H (B)ρ for ρAB pure,

2) Subadditivity: H (AB)ρ ≤H (A)ρ+H (B)ρ with equality if ρAB = ρA⊗ρB ,

3) Triangle inequality: H (AB)ρ ≥ |H (A)ρ−H (B)ρ |.

Proof. Since the entropy is a function only of the eigenvalues of the reduced state, duality follows
from the form of the purification, Proposition 3.4.1, and the comments following (4.11).

For subadditivity, a simple computation shows that D(ρAB ,ρA⊗ρB ) =H (A)ρ+H (B)ρ−H (AB)ρ,
where as usual ρA = TrB[ρAB] and similarly for ρB . Thus, positivity of the relative entropy implies
subadditivity of the entropy.

The triangle equality follows from subadditivity by making use of duality. Let R be a third puri-
fying reference system, so that |ψ〉RAB is a purification of ρAB . Then

H (B)ψ =H (RA)ψ ≤H (A)ψ+H (R)ψ =H (A)ψ+H (AB)ψ , (6.38)

which implies that H (AB)ρ ≥ H (B)ρ −H (A)ρ. Swapping A and B in the proof gives the absolute
value. It is also easy to see that H (AB)ρ =H (A)ρ+H (B)ρ for states of the form ρAB = ρA⊗ρB .
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6.3. von Neumann & Shannon entropies

Proposition 6.3.3: Chain rules of von Neumann entropy

We have the following chain rules relating the mutual information and conditional entropy to
unconditional entropies:

I (A : B)ρ =H (A)ρ+H (B)ρ−H (AB)ρ, and (6.39)

H (A|B)ρ =H (AB)ρ−H (B)ρ. (6.40)

Proof. Straightforward calculation.

Proposition 6.3.4: Properties of the conditional entropy

1) Duality: H (A|B)ρ =−H (A|C )ρ for ρABC pure,

2) Bounds: − log d ≤H (A|B)ρ ≤ log d for d = dim(A),

3) Conditioning on a classical system: H (B |X )ρ =
∑

x PX (x)H (B)ϕx
for

ρX B =
∑

x PX (x)|x〉〈x|X ⊗ (ϕx )B , and

4) Conditional entropy of a classical system: H (X |B)ρ ≥ 0 for ρX B a CQ state.

Proof. By the chain rule, the first statement is equivalent to H (AB)ρ−H (B)ρ =−H (AC )ρ+H (C )ρ,
whence we can see that the previously established duality is equivalent to the conditional version.

The upper bound on the conditional entropy follows from positivity of the relative entropy and
the expression H (A|B)ρ = log d −D(ρAB , 1

d 1A⊗ ρB ). The lower bound follows by using the chain
rule.

The third property follows by straightforward calculation.
To establish the positivity of the conditional entropy for CQ states, consider the purification of

a generic CQ state ρX B =
∑

x PX (x)|x〉〈x|X ⊗ (ϕx )B :

|ψ〉X ABR =
∑

x

Æ

PX (x)|x〉X |x〉A|ϕx〉BR. (6.41)

Here A is an additional system which purifies X , while R purifies B . We can regard this state as
the result of measuring A in the standard basis, i.e. applying the Stinespring isometry VA→X A|x〉A =
|x〉X |x〉A to

|ψ′〉ABR =
∑

x

Æ

PX (x)|x〉A|ϕx〉BR. (6.42)

Since projective measurement increases entropy, it follows that H (AR)ψ ≥ H (AR)ψ′ . Moreover,
since entropy is invariant under unitaries and, by the same reasoning, isometries, it follows that
H (X AR)ψ =H (AR)ψ′ . Then we have

H (X |B)ρ =H (X |B)ψ (6.43)

=H (X B)ψ−H (B)ψ (6.44)

=H (AR)ψ−H (X AR)ψ (6.45)

≥H (AR)ψ′ −H (AR)ψ′ = 0. (6.46)
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Proposition 6.3.5: Monotonicity of mutual information and conditional entropy

For two quantum operations EA→A′ and FB→B ′ and a quantum state ρAB , let ρ′A′B ′ = EA→A′ ⊗
FB→B ′(ρAB ). Then

I (A′ : B ′)ρ′ ≤ I (A : B)ρ. (6.47)

Furthermore, if EA→A′ is unital,

H (A′|B ′)ρ′ ≥H (A|B)ρ. (6.48)

These inequalities are often called data processing inequalities, since processing data (random vari-
ables or quantum states) only increases entropy or decreases mutual information. They also equiva-
lent to the strong subadditivity of the entropy, subadditivity for conditional entropy:

H (AB |C )ρ ≤H (A|C )ρ+H (B |C )ρ. (6.49)

When ρABC is a CQ state with C classical, strong subadditivity follows from usual subadditivity
using Property 3 of Proposition 6.3.4. In the general case, it is easy to work out the statement of
strong subadditivity is equivalent to H (B |AC )ρ ≤ H (B |C )ρ (or H (A|BC )ρ ≤ H (A|C )ρ), which is
just monotonicity under the partial trace map.We can express this even more compactly by defining
the conditional mutual information

I (A : C |B)ρ :=H (A|B)ρ−H (A|BC )ρ (6.50)

=H (B |A)ρ−H (B |AC )ρ. (6.51)

Strong subadditivity is then just the statement I (A : B |C )ρ ≥ 0.

6.4 Entropic uncertainty relations

From the duality of the conditional von Neumann entropy we can derive two entropic uncertainty
relations. The first deals with three parties, and to a certain extent captures the notion that non-
commuting observables cannot be simultaneously measured. The second deals with two parties and
relates the ability of one system to predict the value of two observables (not simultaneously!) of the
other to their shared entanglement.

Proposition 6.4.1: Entropic Uncertainty

Given two observables X and Z on a quantum system A, let |ϕx〉 and |ϑz〉 be the eigenstates
of X and Z , respectively and define c(X ,Z) = maxx z |〈ϕx |ϑz〉|2. Then, for any state ρABC and
H (X |B)ρ the entropy of the result of measuring X on A conditional on system B , and similarly
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for H (Z |C ), we have

H (X |B)ρ+H (Z |C )ρ ≥ log
1

c(X ,Z)
, and (6.52)

H (X |B)ρ+H (Z |B)ρ ≥ log
1

c(X ,Z)
+H (A|B)ρ. (6.53)

For the proof we shall need the following lemma.

Lemma 6.4.1. For a quantum state ρ and positive operators σ , σ ′ such that σ ′ ≥ σ ,

D(ρ,σ ′)≤D(ρ,σ). (6.54)

Proof. LetH be the state space on which ρ, σ , σ ′ are defined and suppose thatH ′ ' H . We can
then extend the spaceH by embedding it intoH ⊕H ′. For states on the bigger space, the relative
entropy obeys

D(ρ,σ) =D(ρ⊕ 0,σ ⊕τ) (6.55)

for any τ ≥ 0, since only that part of the second state in the support of the first is relevant to the
relative entropy. Now let {|bk〉} and {|b ′k〉} be bases ofH andH ′, respectively, so that their union is
a basis ofH ⊕H ′. Defining Π=

∑

k |bk〉〈bk | and V =
∑

k |bk〉〈b ′k |, the map E (η) =ΠηΠ+V ηV ∗
is a quantum operation since it is defined by a Kraus representation with Π∗Π+V ∗V = 1H⊕H ′ .
Finally, letting τ = σ ′−σ , the desired result follows by monotonicity and E (σ ⊕τ) = σ ′.

Proof of Proposition 6.4.1. The proof proceeds by showing the first statement and then deriving the
second as a simple consequence. To prove the first, observe that by data processing it is sufficient to
establish the statement for pure ρABC . Then consider the states

|ψ〉X X ′BC :=VA→X X ′ |ρ〉ABC =
∑

x
|x〉X |x〉X ′ A〈ϕx |ρ〉ABC (6.56)

|ξ 〉ZZ ′BC :=UA→ZZ ′ |ρ〉ABC =
∑

z
|z〉Z |z〉Z ′ A〈ϑz |ρ〉ABC , (6.57)

where VA→X X ′ (UA→ZZ ′ ) is a Stinespring dilation of the X (Z) measurement process. By definition,
H (X |B)ρ =H (X |B)ψ and H (Z |C )ρ =H (Z |C )ξ .

Entropy duality implies H (X |B)ψ+H (X |X ′C )ψ = 0, and thus

H (X |B)ρ =−H (X |X ′C )ψ (6.58)

=D(ψX X ′C ,1X ⊗ψX ′C ) (6.59)
=D(ρAC ,V ∗(1X ⊗ψX ′C )V ) (6.60)
=D(ξZZ ′C , UV ∗(1X ⊗ψX ′C )V U ∗) (6.61)
≥D(ξZC ,TrZ ′[UV ∗(1X ⊗ψX ′C )V U ∗]). (6.62)
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Here we have used monotonicity in the last step and invariance of the relative entropy under isome-
tries in the previous steps. The second argument in the final expression is just

TrZ ′[UV ∗(1X ⊗ψX ′C )V U ∗] =
∑

z
|z〉〈z |Z ⊗〈ϑz |V ∗(1X ⊗ψX ′C )V |ϑz〉A (6.63)

=
∑

z
|z〉〈z |Z ⊗〈ϑz |

�

∑

x
|ϕx〉〈ϕx |Z ⊗〈x|ψX ′C |x〉X ′

�

|ϑz〉A (6.64)

=
∑

x z
|〈ϕx |ϑz〉|2 |z〉〈z |Z ⊗〈x|ψX ′C |x〉X ′ (6.65)

≤ c(X ,Z)
∑

x z
|z〉〈z |Z ⊗〈x|ψX ′C |x〉X ′ (6.66)

= c(X ,Z)1Z ⊗ψC (6.67)
= c(X ,Z)1Z ⊗ ξC (6.68)

By Lemma 6.4.1, we therefore have

H (X |B)ρ ≥D(ξZC , c(X ,Z)1Z ⊗ ξC ) (6.69)

=D(ξZC ,1Z ⊗ ξC )− log c(X ,Z) (6.70)

=−H (Z |C )ξ + log
1

c(X ,Z)
, (6.71)

completing the proof of the first statement.
For the second statement, it is a simple calculation to verify that H (ZAB)ρ =H (ZAC )ρ when C

is the purification of AB so that ρABC is pure. This leads immediately to H (ZA|C )ρ = H (ZA|B)ρ−
H (A|B)ρ. Using this expression to replace H (ZA|C )ρ in the first statement leads to the second.

6.5 Min and max entropies

Applying the definition of the conditional von Neumann entropy in (6.36) to the α=∞ and α= 1/2
quantum divergences leads to other useful entropic quantities, the min and max entropy, respectively.
Actually, it proves convenient to add an additional optimization, as follows.

Definition 6.5.1: Min and max entropies

For a bipartite quantum stateρAB the conditional min and max entropies Hmin(A|B)ρ and Hmax(A|B)ρ
are defined as follows.

Hmin(A|B)ρ :=max
σ
−D∞(ρAB ,1A⊗σB ) (6.72)

=max
σ

log{minλ : ρAB ≤ 1A⊗σB} (6.73)

Hmax(A|B)ρ :=max
σ
−D1/2(ρAB ,1A⊗σB ) (6.74)

=max
σ

log F (ρAB ,1A⊗σB )
2. (6.75)

Indeed, we could have included the optimization over σB in the defnition of the conditional von
Neumann entropy, as Exercise 6.2 shows that doing so makes no difference to the resulting quantity.
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To get a feeling for what these entropies quantify, consider the case that B is trivial. Looking back
at (6.9), we see that Hmin(A)ρ = 1/λmax for λmax the largest eigenvalue of ρ. This is a measure of how
deterministic the distribution corresponding to the eigenvalues of ρ is, how close it is to a determin-
istic distribution. Meanwhile, from (6.7) we see that Hmax(A)ρ = log F (ρ,1)2 = dA log F (ρ, 1

dA
1)2, a

measure of how close the distribution is to uniform.
In fact, we have met the conditional min entropy before, at least for classical-quantum states ρX B ,

in (5.65). Thus, the conditional min entropy is related to the optmial probability of guessing the
classical random variable X by measuring system B . Formally,

popt
guess(X |B)ρ = 2−Hmin(X |B)ρ . (6.76)

Later, it will be convenient to use smoothed versions of the min and max entropies. These are
defined as optimizations over nearby states ρ′, using the purification distance from (5.45) to quantify
“nearby”.

Definition 6.5.2: Smooth min and max entropies

For a bipartite quantum state ρAB the smooth conditional min and max entropies H ε
min(A|B)ρ

and H ε
max(A|B)ρ are defined as follows.

H ε
min(A|B)ρ := max

ρ′:P (ρ,ρ′)≤ε
Hmin(A|B)ρ′ (6.77)

H ε
max(A|B)ρ := min

ρ′:P (ρ,ρ′)≤ε
Hmax(A|B)ρ′ . (6.78)

6.6 Entropic measures of entanglement

6.6.1 Negative conditional entropy

A corollary of monotonicity is the concavity of the conditional entropy. Just as in Corollary 6.1.1,
monotonicity implies joint convexity, and thus H (A|B)ρ must be a concave function of ρ, since it is
the negative of a convex function.

Corollary 6.6.1: Concavity of conditional entropy

Suppose ρX B =
∑

x PX (x)(ρx )AB . Then

H (A|B)ρ ≥
∑

x
PX (x)H (A|B)ρx

(6.79)

This result is interesting because it tells us that negative H (A|B)ρ is a sign of entanglement of ρAB
(which we might well have suspected already). If ρAB is pure, then H (A|B)ρ ≤ 0 implies H (B)ρ > 0
(indeed −H (A|B)ρ = H (B)ρ) and therefore there is more than one Schmidt coefficient. For the case
of mixed states, consider H (A|B)ρ for a separable state ρAB =

∑

k λkσk ⊗ ξk :

H (A|B)ρ ≥
∑

k

λk H (A|B)σk⊗ξk
=
∑

k

λk H (A)σk
≥ 0. (6.80)

Therefore H (A|B)ρ < 0 implies ρAB is not separable, i.e. ρAB is entangled.
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However, the converse is false: There exist entangled states for which H (A|B)ρ ≥ 0. Thus, the
conditional entropy is not a faithful measure of entanglement. Nonetheless, the duality of conditional
entropy translates into the monogamy property of entanglement: A system A cannot be entangled
with both B and C at the same time.

6.6.2 Squashed entanglement

Separable states can be created by purely local operations on A and B and classical communication
between them. For instance, to create the state ρAB =

∑

k λkσk ⊗ ξk , one party can sample from the
distribution P (k) = λk to obtain a value of k, create the state σk and then communicate to the other
party that the state ξk is to be created.

Therefore, it is desirable to have a measure of entanglement which cannot increase under local op-
erations and classical communication (LOCC). One possibility is the squashed entanglement:

Definition 6.6.1: Squashed entanglement

The squashed entanglement of a state ρAB is defined by

Esq(A : B) := 1
2 inf

E
I (A : B |E), (6.81)

where the infimum extends over all extensions ρABE of ρAB .

Note that we do not impose a limit on the dimension of E , and hence write inf instead of min since it
is not apparent that the minimum can actually be achieved. (In fact, it is.) For a maximally entangled
state |Φ〉AB , all extensions are of the form ρABE = |Φ〉〈Φ|AB⊗σE for some state σE . Therefore, Esq(A :
B)Φ = log d . This is the maximal value of the conditional mutual information, so it is satisfying
that the maximally entangled state has the maximal value of the squashed entanglement. Conversely,
it is known that the squashed entanglement is zero if and only if the state is separable, i.e. it is a
faithful measure. Showing one direction of this statement is Exercise 6.6. We proceed to establish the
monotonicity under LOCC operations.

Proposition 6.6.1: Monotonicity of squashed entanglement under LOCC

For a bipartite quantum state ρAB and any LOCC operation EAB→A′B ′ ,

Esq(A
′ : B ′)ρ′ ≤ Esq(A : B)ρ. (6.82)

Proof. By the definition of the conditional mutual information in (6.50), monotonicity of the con-
ditional entropy implies the squashed entanglement cannot increase by purely local operations on
system B . This also holds for local operations on A by symmetry of the definition.

It remains to show that the squashed entanglement does not increase under classical communica-
tion. Suppose that Alice sends a classical system C (e.g. a bit string) to Bob. We can model this by
a tripartite system ρABC where Alice has possession of C prior to the communication, and Bob af-
terwards. Monotonicity under classical communication then becomes the statement Esq(AC : B)ρ ≥
Esq(A : BC )ρ.
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To show this, start with any extension E and apply monotonicity like so:

I (B : AC |E)ρ =H (B |E)ρ−H (B |AC E)ρ (6.83)

≥H (B |EC )ρ−H (B |AEC )ρ (6.84)

= I (B : A|EC )ρ. (6.85)

Since C is classical, the state has the form ρABC E =
∑

k pk (ρk )ABE ⊗ |k〉〈k|C , which we may extend
to ρ′ABC C ′E =

∑

k pk (ρk )ABE⊗|k〉〈k|C ⊗|k〉〈k|C ′ . Equivalently, we can generate C ′ from C in ρABC ,
which implies H (A|BC C ′E)ρ′ = H (A|BC E)ρ. It follows that I (BC ′ : A|EC )ρ′ = I (B : A|EC )ρ by
using the chain rule. Observe that in this step it is crucial that C be a classical system.

Defining E ′ = EC ′ to be a new extension and using the fact that we can interchange C and C ′,
we therefore have I (B : AC |E)ρ ≥ I (BC : A|E ′)ρ′ and consequently Esq(AC : B)≥ Esq(A : BC ), which
completes the proof.

6.7 Notes & Further reading

Divergences have a long history in information theory and statistics. The most widely-used, the rela-
tive entropy, was introduced by Kullback and Leibler in the context of statistics [63]. Its precise con-
nection to asymmetric hypothesis testing, known as Stein’s lemma after the statistician Charles Stein,
was shown by Chernoff [64]. General f -divergences were introduced independently by Csiszár [65],
Morimoto [66], and Ali and Silvey [67]. The fact that the type-II error as a function of the type-I
error is sufficient to reconstruct any f -divergence, Equation (6.22), is proven in [68, Theorem 11], a
detailed overview of the properties of f -divergence measures. Our treatment of monotonicity follows
the introductory text of Csiszár and Shields [69].

Divergences are widely used in the field of information geometry which applies the methods of
differential geometry to probability theory. See [70] for more, including a discussion of information
geometry for quantum systems. Petz extended the notion of f -divergence to the quantum setting and
showed that many of the important results, such as monotonicity, still hold [71, 72].

Entropy as we have defined it was first defined by Gibbs in the context of classical statistical
mechanics [73] and later extended to the quantum setting by von Neumann [29]. Shannon introduced
entropy as a quantification of uncertainty or information [74]. He used the name entropy on the
advice of von Neumann, who told him,

You should call it entropy, for two reasons. In the first place your uncertainty function
has been used in statistical mechanics under that name, so it already has a name. In the
second place, and more important, no one really knows what entropy really is, so in a
debate you will always have the advantage.[75]

In the next chapter we will take the position that any quantity which appears in a converse statement
for an information processing task is an “entropy”, particularly when the information processing task
is known to be achievable up to the bound given by the converse.

The triangle inequality for the von Neumann entropy was proven by Araki and Lieb [76], and
was one of the first uses of the purification of a quantum state (as in the present proof). Strong
subadditivity was first shown by Lieb and Ruskai [77].
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6.8 Exercises

Exercise 6.1. Properties of the von Neumann entropy → solution
Show that the properties of the von Neumann entropy listed in Proposition 6.3.1 indeed hold.

Moreover, show that equality holds in the concavity statement if the states ρk are all pairwise disjoint,
i.e. ρ jρk = 0 for j 6= k.

Hint: The latter three properties follow from positivity of the relative entropy. For the last prop-
erty, use the fact that ρ′ commutes with the projectors Πk .

Exercise 6.2. Optimization in the conditional von Neumann entropy → solution
Show that H (A|B)ρ =maxσ −D(ρAB ,1A⊗σB ) for any bipartite state ρAB .

Exercise 6.3. Quantum mutual information → solution

a) Prove that the mutual information of the Bell state |Φ〉= 1p
2
(|00〉+ |11〉) is maximal.

b) Show that I (A : B)ρ ≤ 1 for classically correlated states, ρAB = p|0〉〈0|A⊗σ0
B+(1− p)|1〉〈1|A⊗σ1

B
(where 0≤ p ≤ 1).

c) Consider the so-called cat state of four qubits, A⊗B ⊗C ⊗D , defined as

|cat〉= 1p
2
(|0000〉+ |1111〉) . (6.86)

Show that the mutual information between A and B changes with the knowledge of the remain-
ing qubits, in that I (A : B) = 1, I (A : B |C ) = 0, but I (A : B |C D) = 1. How should we interpret
these results?

Exercise 6.4. Data processing for classical mutual information → solution

a) First show the chain rule for mutual information: I (X : Y Z) = I (X : Z) + I (X : Y |Z), which
holds for arbitrary classical random variables X ,Y,Z .

b) By expanding the mutual information I (X : Y Z) in two different ways, prove the data process-
ing in equality.

Exercise 6.5. Fano’s inequality → solution
Given random variables X and Y , how well can we predict X given Y ? Fano’s inequality bounds

the probability of error in terms of the conditional entropy H (X |Y ). The goal of this exercise is to
prove the inequality

Perror ≥
H (X |Y )− 1

log |X | .

a) Representing the guess of X by the random variable ÒX , which is some function, possibly ran-
dom, of Y , show that H (X |ÒX )≥H (X |Y ).

b) Consider the indicator random variable E which is 1 if ÒX 6= X and zero otherwise. Using the
chain rule we can express the conditional entropy H (E ,X |ÒX ) in two ways:

H (E ,X |ÒX ) =H (E |X ,ÒX )+H (X |ÒX ) =H (X |E ,ÒX )+H (E |ÒX )
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Calculate each of these four expressions and complete the proof of the Fano inequality.
Hints: For H (E |ÒX ) use the fact that conditioning reduces entropy: H (E |ÒX ) ≤ H (E). For
H (X |E ,ÒX ) consider the cases E = 0,1 individually.

Exercise 6.6. Squashed entanglement of separable states → solution
Show that the squashed entanglement of any separable state is zero.

Exercise 6.7. A sufficient entanglement criterion → solution
In general it is very difficult to determine if a state is entangled or not. In this exercise we will

construct a simple entanglement criterion that correctly identifies all entangled states in low dimen-
sions.

a) LetFA : End(HA)→ End(HA) be a positive superoperator. Show thatFA⊗IB maps separable
states as defined in (4.9) to positive operators.

This means that if we applyFA⊗IB to a bipartite state ρAB and obtain a non-positive operator,
we know that ρAB is entangled. In other words, this is a sufficient criterion for entanglement.

b) Apply the partial transpose, TA⊗IB , to the ε-noisy Bell state

ρεAB = (1− ε)|Φ〉〈Φ|AB + ε
1
41AB .

For what values of ε can we be sure that ρε is entangled?

Remark: Indeed, it can be shown that the PPT criterion (positive partial transpose) is necessary
and sufficient for bipartite systems of dimension 2× 2 and 2× 3.
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7Information Processing Protocols
In this chapter we present a framework for understanding information processing protocols and dis-
cuss several particularly important cases.

7.1 Background: The problem of reliable communication & storage

The field of information theory was established by Shannon1 with his publication “A Mathematical
Theory of Communication”. It opens by stating

The fundamental problem of communication is that of reproducing at one point, either
exactly or approximately, a message selected at another point.[74]

Communication in this sense encompasses the usual meaning of sending a message from one party
to another, but also storing a message to be able to read it later. The trouble is, of course, that the
means of communication are not inherently reliable or noiseless. Compact discs can be scratched,
radio signals can be distorted by the atmosphere on the way from sender to receiver, and so on.

Prior to Shannon’s paper, the main approach to improving the quality of communication was to
improve the quality of the communication channel itself. In other words, to engineer channels that
more and more closely approximate an ideal noiseless channel. Information theory, however, takes a
“software” approach, focusing on changing the way messages are transmitted over noisy channels so
that they can nevertheless be faithfully understood by the receiver.

An important step in this direction was the realization that, for the purposes of reliable commu-
nication, the “information” being transmitted has nothing to do with the meaning of the message.
Instead, as Hartley2 wrote in 1928, setting up Shannon’s approach,

Hence in estimating the capacity of the physical system to transmit information we
should ignore the question of interpretation...and base our result on the possibility of
the receiver’s distinguishing the result of selecting any one symbol from that of selecting
any other.[78]

The task of communication thus divorced from somehow reproducing the meaning of the message,
one can then consider manipulating messages in different ways to ensure that the intended message
can be correctly inferred by the receiver.

7.2 The resource simulation approach

Once we have phrased the problem of communication in terms of reproducing message symbols, it is
clear that the ideal communication channel simply reproduces the input symbol at the output. This
is a particular physical operation when, following the theme of this course, the messages we intend
to send are instantiated in some physical degrees of freedom. The actual channel at our disposal will
invariably fall short of this ideal due to noise and imperfections. Nonetheless, it is still a physical
transformation, so we may model it by a quantum operation, or a stochastic map if the inputs and
outputs are classical.

1Claude Elwood Shannon, 1916 – 2001, American mathematician and electrical engineer.
2Ralph Vinton Lyon Hartley, 1888 – 1970, American electrical engineer.
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7. INFORMATION PROCESSING PROTOCOLS

The goal in building a communication system is to simulate the ideal channel by using the actual
noisy channel and whatever other resources the sender and receiver have at their disposal. In particular,
the sender is able to apply any physical operation mapping the message degrees of freedom to the
degrees of freedom input to the channel. And the receiver may apply any physical operation to the
degrees of freedom at the output of the channel to whatever message degrees of freedom he or she
desires. Call the input (output) message degrees of freedom M (M ′) and A (B) the channel input
(output). Thus, for a given noisy channelNA→B , the sender and receiver would like to find “encoding”
and “decoding” operations EM→A and DB→M ′ such that D ◦N ◦E is essentially IM→M ′ , as depicted
in Figure 7.1.

E N D ≈ id
M A B M ′ M M ′

Figure 7.1: Noisy channel coding

This example is the prototype of the “resource simulation” approach to information processing.
We begin by selecting an ideal resource that we would like to have (the ideal channel), and we then
attempt to construct a protocol (in this case the encoder and decoder) such that in the actual resource
(the noisy channel) can be made to simulate the ideal resource. The protocol consists of a set of
physical operations which connect the input (output) degrees of freedom of the ideal resource to
those of the actual resources. A generic ideal resource simulation is depicted in Figure 7.2.

E1 R1

≈
E2 R2

ideal
X

Y

A

B

X

Y

A

B

Figure 7.2: A generic simulation of an ideal resource by two given resourcesR1 andR2 with a pro-
tocol consisting of operations E1 and E2.

The important aspect of this approach is that the quality of a protocol is measured by its ability
to allow the real resources to simulate the ideal resource. Although this seems like the most naive ap-
proach, in fact it is common in the study of information theory and especially cryptography that ad
hoc measures of the quality of a protocol are introduced for each particular task. The great advan-
tage of focusing on simulation is that constructed resources can be composed to make new resources.
Given an ideal resource consisting of several parts, we can build a protocol to simulate the whole by
constructing protocols to simulate each part.

For instance, suppose we would like to transmit a given source of data (e.g. an audio file) from
a sender to a receiver who are connected by a noisy channel. The original is still retained by the
sender, so we are really interested in making a copy of the source available to the receiver. Let us call
the output of the source, a random variable, X , and the copy X ′. The ideal behavior is depicted on
the righthand side of Figure 7.3. We can simulate the ideal behavior with the noisy channel coding
protocol of Figure 7.1, choosing |M |= |X |. Since the identity channel faithfully transmits any input
message, not just those we expect from the source, X ′ =X .

However, we can reduce the necessary number of messages that that the noiseless channel is re-
quired to transmit by compressing the output of the source. Figure 7.3 depicts the goal of the data
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compression task. By finding appropriate compression and decompression operations C and D we
can potentially find a C with |C | ≤ |X |. The combined protocol is then formed by replacing the wire
transmitting C from C to D in Figure 7.3 with the noisy channel coding protocol of Figure 7.1.

source C source copy

≈
D

X
C

X

X ′

X

X ′

X

Figure 7.3: Data compression. The random variable C is the compressed version of X , since the
decompressor D can recreate the particular output of the source (stored in X ) from it.

For composability of resources to be defined formally, we must choose a suitable measure of
“simulatability”, the ability of one channel to simulate another. The distinguishability introduced
in Chapter 5 exactly satisfies this requirement, because it satisfies the triangle inequality and mono-
tonicity. We say a channel N ε-approximates another N ′ if δ(N ,N ′) ≤ ε. This notion of distin-
guishability has an explicitly operational interpretation since it governs the probability with which
any experiment can tell the difference betweenN andN ′. Loosely speaking, we can interpret ε as
the probability thatN fails to precisely simulateN ′. Then, if we combine two resources that each
simulate ideal versions with parameters ε1 and ε2, respectively, the overall approximation parameter
will be no worse than ε1+ ε2.

In analyzing any given information processing task in the resource framework, there are two main
questions.

• First, what resources are absolutely necessary for performing the task?
This is the question of establishing a converse, a statement that quantifies the properties needed
by any collection of actual resources that can simulate a chosen ideal resource.

• Second, can we actually construct protocols that meet the bounds of the converse statements?
This is the question of achievability.

The quantities involved in converses are typically entropies of some kind. In fact, we can regard
this as the definition and say that any quantity that appears in a converse is an “entropy”, particularly
when the achievability statement matches the converse bound. This is the situation in classical thermo-
dynamics, where the name “entropy” was coined by Clausius3 in 1850. There entropy arises from the
most famous converse statement, the second law of thermodynamics. In many textbooks the focus
is first on defining a quantitative measure of information and then analyzing information processing
protocols. However, this seems logically backwards, for a given quantity can only be regarded as a
useful measure of information if it arises in an operational context.

In the remainder of the chapter we examine these two questions for several important information
processing tasks in detail. Figure 7.4 depicts several information processing tasks in the resource
simulation approach.

3Rudolf Julius Emanuel Clausius, 1822 – 1888, German physicist and mathematician.
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7. INFORMATION PROCESSING PROTOCOLS

uniform E ≈ source
U X X

(a) Resolvability, or generating a random variable X from the uniform distribution. The map E must be deterministic
for the resource simulation task to be nontrivial, since otherwise it could just ignore U and prepare X itself.

source E ≈ uniform
UX U

(b) Randomness extraction. A uniformly-distributed random variable is constructed from the source output X . Again,
the map E must be deterministic for the simulation task to be nontrivial.

E N del simulator

≈
uniform

M A B
U

M 0 B

(c) “Deletion” coding. For all inputs, the output of the deletion channel is zero. The map E must be reversible (on its
image) for the resource simulation task to be nontrivial, since otherwise it could just map all m to a fixed input to A.
The uniform randomness is used to aid in masking the input from the output. The simulator operation prepares a state
close to the output ofN ◦E (m, U ) in system B .

source E uniform

≈
simulator

X U

Y Y

U

(d) Privacy amplification. Randomness uncorrelated with Y is extracted from X . As with randomness extraction, E
must be deterministic. The simulator prepares a state close to the Y output of the source.

source C source copy

≈
D trash

X

B C
X

X ′

X
B

X ′

X

(e) Information reconciliation, or data compression with side information. The decompressor now has access to system
B output by the source, and which is in general correlated with X .

Figure 7.4: More simple information processing tasks.

7.3 Optimality of superdense coding and teleportation

In this section we use properties of the von Neumann entropy to show that the superdense coding
and teleportation protocols of §3.6 are optimal. First, it is useful to express the resource statements
of the two protocols as inequalities. For instance, the protocol of superdense coding allows one to
simulate two ideal classical single-bit channels from Alice to Bob with one maximally-entangled state
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of two qubits and one ideal qubit channel. Thus, we may write

[qq]+ [q→ q] ≥ 2[c→ c], (7.1)

where [qq] denotes the entangled state, [q → q] the ideal quantum channel and [c → c] the ideal
classical channel. Similarly, the resource inequality for teleportation reads

2[c→ c]+ [qq] ≥ [q→ q]. (7.2)

The inequality expresses the fact that there exists a protocol which transforms the resources listed
on the lefthand side into the resource(s) on the righthand side. Superdense coding and teleportation
are exact protocols, meaning the ideal resources are simulated perfectly. We can indicate that only
simulation with distinguishability ε is achieved by writing

2[c→ c]+ [qq] ¦ε [q→ q]. (7.3)

7.3.1 Optimality of superdense coding

The resource inequality for any scheme for simulating 2[c → c] using resources [qq] and [q → q]
can be written

a[qq]+ b [q→ q]≥ 2[c→ c], (7.4)

for some a, b ≥ 0. Since a and b ought to be integers (half of an ideal quantum channel makes no
sense), this is not much of a generalization. However, we can interpret the case of rational a and b
by multiplying the resource inequality through with a large enough integer n such that the resulting
inequality has integer coefficients. In fact, we must have a+ b ≥ 2 and b ≥ 1, as we now show.

The first constraint, a+ b ≥ 2, follows from the Holevo4 bound, a corollary of monotonicity of
the relative entropy for CQ states (though first established independently of monotonicity). It reads

Corollary 7.3.1: Holevo bound

For any CQ state ρX B and POVM {Λy} on system B producing the random variable Y and joint
state ρ′X Y ,

I (X : B)ρ ≥ I (X : Y )ρ′ . (7.5)

Along with the bound I (X : B) ≤ H (X ), the Holevo bound shows that n qubits cannot be used
to carry more than n classical bits about a classical random variable. The precise argument is left
Exercise 7.1.

Now we show that b ≥ 1. If we concatenate our hypothetical superdense coding scheme (7.4)
with the standard teleportation protocol (7.2), i.e. by replacing the classical communication in tele-
portation by superdense coding, we arrive at the resource inequality

(1+ a)[qq]+ b [q→ q]≥ [q→ q]. (7.6)

Therefore, to infer that b ≥ 1, it suffices to show that shared entanglement does not help with quan-
tum communication.

4Alexander Semenovich Holevo, born 1943, Russian mathematician.
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An ideal quantum channel can transmit entanglement just as well as any particular pure state, so
let us consider the a scenario in which Alice shares n entangled qubits with a third party, Charlie, that
she would like to transfer to Bob. She already shares k entangled qubits with Bob and is willing to
send him m qubits more through a noiseless channel. Let A and C be the entangled systems shared by
Alice and Charlie, A′ and B ′ the entangled systems shared by Alice and Bob. To tranfer the Charlie
entanglement to Bob, Alice performs some quantum operation EAA′→Q which outputs an m-qubit
system Q that she transmits to Bob. He then performs some quantum operation FB ′Q→B which
should result a n qubit system B which is entangled with C .

Assuming the protocol does work as intended, the quantum mutual information between B and
C at the end of the protocol is 2n. Using the properties of mutual information we further have

2n = I (C : B) (7.7)

≤ I (C : B ′Q) (7.8)

= I (C : B ′)+ I (C : Q|B ′) (7.9)

=H (Q|B ′)−H (Q|C B ′) (7.10)
≤ log dQ − (− log dQ ) (7.11)

= 2m. (7.12)

The first inequality is monotonicity, while the second equality uses the chain rules and definition of
conditional mutual information. Since C is independent of B ′, I (C : B ′) = 0. The second inequality
comes from the upper and lower bounds on the conditional entropy in Proposition 6.3.4.

Thus, we have shown that the mutual information between Bob and Charlie cannot increase
by more than two times the number of qubits Bob receives, regardless of the amount of shared en-
tanglement. Returning to (7.6), this implies b ≥ 1. Quantities with the opposite behavior, that
can increase sharply when only a few qubits are communicated, are known as lockable, in the sense
that absent the extra few qubits the information (as measured by the quantity in question) is locked
in the system and cannot be extracted. An example is the accessible information of a CQ state,
Iacc(X : B) = maxΛ I (X : Y ), the classical mutual information of the optimal measurement. We
have just shown that the quantum mutual information is nonlockable.

7.3.2 Optimality of teleportation

As with superdense coding, we consider the resource inequality for any protocol which simulates an
ideal qubit channel using shared entanglement and classical communication,

c[qq]+ d [c→ c]≥ [q→ q]. (7.13)

In this case we can show that c ≥ 1 and d ≥ 2 must hold.
The latter is similar to the argument for b ≥ 1 in superdense coding. Consider concatenating

this hypothetical teleportation protocol with the standard superdense coding protocol, i.e. replacing
the quantum channel in superdense coding with the teleportation scheme. This leads to the resource
inequality

(1+ c)[qq]+ d [c→ c]≥ 2[c→ c]. (7.14)

Thus, to show that d ≥ 2, it suffices to show that entanglement does not help with transmitting clas-
sical information. The argument is similar to that for quantum communication used in the analysis
of superdense coding and is included in Exercise 7.2.
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To show that c ≥ 1, consider using the ideal quantum channel simulated by the hypothetical
teleportation protocol (7.13) to transmit halves of entangled states. Doing so yields the resource
inequality

c[qq]+ d [c→ c]≥ [qq]. (7.15)

Therefore, to show c ≥ 1 it suffices to show that the use of classical communication cannot by itself
lead to an increase in the number of maximally entangled qubit pairs. This certainly sounds plausible,
but we are interested in a rigorous statement. We can make such a statement by appealing to the
properties of the squashed entanglement, defined in (6.81).

Indeed, the desired result is immediate. Since the squashed entanglement is monotonic under local
operations and classical communication, as shown in Proposition 6.6.1, the squashed entanglement of
the lefthand side of (7.15) must be larger than the righthand side. But the squashed entanglement of a
maximally entangled qubit pair is unity, and therefore c ≥ 1 is necessary for the resource inequality to
hold. In fact, the statement also holds if one requires the transformation to only work approximately.
The proof is more technical and requires the continuity of squashed entanglement.

7.4 Compression of classical data

Compression of classical data, possibly with side information, is depicted in Figure 7.4(e). This task
is also known as information reconciliation, because in the case of classical B we can view the task as
reconciling the classical value B with that of X (i.e. making the former equal to the latter). The idea
is for Alice, who has X , to send Bob, who has B , enough “information” C about X to enable him to
reconstruct X from B and C . Clearly, Alice could just send X , but the goal is complete the task with
as small a C as possible.

The source produces a CQ state

ψX B =
∑

x∈X
PX (x)|x〉〈x|X ⊗ϕB

x , (7.16)

for some fixed distribution PX and set of states ϕx . The protocol consists of a compression operation
C which generates the classical random variable C from X , and a decompression operationD which
acts on C and B to produce X ′. The input and output of the former are classical, so we can model it
as a classical channel with conditional probability distribution PC |X . As the output X ′ is classical, we
can model the decompressor as a measurement of BC . However, as C is also classical, without loss of
generality the measurement has elements Γ BC

x,c =Λ
B
x;c⊗|c〉〈c |C . That is, we can view the measurement

of BC as consisting of two steps: The value of C is first determined, and conditioned on this value the
POVM with elements Λx;c is performed on B . The outcomes of the latter POVM must be labelled
with elements ofX .

It is perhaps surprising that the such a scheme is possible at all, since Alice does not know exactly
what it is that Bob needs to know. For example, suppose that the source produces two classical bit
strings of length n; Alice’s string is random and Bob’s differs in at most t positions. If Alice knew
in which t positions Bob’s string differed from hers, then the protocol would be simple. However,
even by sending a sufficient amount of essentially random information about her string (in the form
of the output of a randomly-chosen function), Bob can combine this information with his string to
determine Alice’s string.

We can gain a better understanding by considering the protocol from Bob’s point of view. His
system is in one of the states ϕx , but he is unsure which. Furthermore, the states are generally not
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distinguishable, so he cannot just measure the system to determine x with high reliability. The in-
formation he receives from Alice narrows the set of possible states, making the distinguishing task
simpler. Since both parties know which state is produced by the source, for each x Alice also knows
how likely Bob is to correctly determine that x. She just needs to sufficiently narrow the set possible
states at his end to make the guessing probability close to unity.

The distinguishability of the actual resource from the ideal is easily computed to indeed be the
probability that X ′ 6=X . The ideal resource is described by the distribution PX X ′(x, x ′) = PX (x)δx,x ′ .
Let us denote by QX X ′ the distribution produced by the actual resource. Using the state and the
description of the compressor and decompressor maps, we have

QX X ′(x, x ′) =
∑

x,c ,x ′
PX (x)PC |X=x (c)Tr[Λx ′;cϕx] (7.17)

=
∑

x,x ′
PX (x)Tr[Λ̂x ′ϕx]. (7.18)

Here, the conditional distribution PC |X describes the compressor, and we have implicitly defined the

POVM with elements Λ̂x ′ =
∑

c PC |X=x (c)Λx ′;c . The distinguishability between PX X ′ and QX X ′ is
then

δ(PX X ′ ,QX X ′) =
1
2

∑

x,x ′
|PX X ′(x, x ′)−QX X ′(x, x ′)| (7.19)

= 1
2

∑

x
PX (x)

∑

x ′
|δx,x ′ −Tr[Λ̂x ′ϕx]| (7.20)

= 1
2

∑

x
PX (x)

�

(1−Tr[Λ̂xϕx])+
∑

x ′ 6=x

Tr[Λ̂x ′ϕx]
�

(7.21)

=
∑

x,x ′ 6=x

PX (x)Tr[Λ̂x ′ϕx], (7.22)

which is the probability that X ′ 6=X under QX X ′ .

7.4.1 Converse to compression of classical data

For a given CQ source ψX B we are interested in the smallest |C | such that it is possible to construct
a compression map C : X → C and decompression map D : BC → X ′ such that the probability of
X ′ 6= X is less than ε. What tradeoffs of |C | in terms of ε do we face for a given source ψX B ? Put
differently, given ε and ψX B is a desired value of |C | even possible?

We can find a constraint based on using any possible compression scheme to construct a hypoth-
esis testing measurement for two particular states associated with the source.

Proposition 7.4.1: Converse to compression of classical data

Any compression scheme for X in the CQ state ψX B with average error ε obeys

|C | ≥max
σ
β1−ε(ψ

X B ,1X ⊗σB ). (7.23)

Note that none of the quantities involve the compression and decompression operations, i.e. the pro-
tocol. They are purely properties of the real resource ψX B as well as the error probability ε.
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Proof. Consider the task of distinguishing betweenψX B and any operator of the form 1
X⊗σB . From

monotonicity, it follows that

β1−ε(ψ
X B ,1X ⊗σB )≤β1−ε(ψ

XC B ,C (1X )⊗σB ), (7.24)

where the state ψXC B is the state produced by the compressorCX→XC applied to ψX B . In particular,

ψXC B =
∑

x,c
PX (x)PC |X=x (c)|x〉〈x|X ⊗ |c〉〈c |C ⊗ϕB

x . (7.25)

Now define the following test for the setup involving XC B :

QXC B =
∑

x,c
|x〉〈x|X ⊗ |c〉〈c |C ⊗ΛB

x;c . (7.26)

It is straightforward to see that Tr[QXC BψXC B] =
∑

x QX X ′(x, x), which is just 1−ε by assumption.
Therefore, QXC B is feasible for finding the minimum type-II error in β1−ε(ψXC B ,C (1X )⊗σB ). To
bound this quantity, first observe that

C (1X ) =
∑

xc
PC |X=x (c)|x〉〈x|X ⊗ |c〉〈c |C ≤ 1XC . (7.27)

Then we have

β1−ε(ψ
XC B ,C (1X )⊗σB )≤Tr[QXC BC (1X )⊗σB] (7.28)

≤Tr[QXC B
1

XC ⊗σB] (7.29)

=
∑

x,c
Tr[Λx;cσ] (7.30)

=
∑

c
Tr[σ] (7.31)

= |C |. (7.32)

Since this holds for arbitrary σ , the desired statement holds.

7.4.2 Achievability of compressing classical data

To show that protocols exist which essentially meet the converse bound in Proposition 7.4.1, we
follow the method of random coding originally used by Shannon. The basic idea is to show that if
the compression function is chosen at random, a suitable decompression scheme leads to low error
probability on average, and therefore there must exist at least one compressor whose error probability
is no larger than the average value. This is a commonly-used trick in analyzing algorithms in computer
science, where it is called the probabilistic method.

Observe that the compressor can be chosen to be a deterministic function without loss of general-
ity. This follows from the representation of classical channels as convex combinations of deterministic
channels, Proposition 2.5.2. Consider the dilation ofC with auxiliary random variable Z . The over-
all distinguishability of the scheme will just be an average, over PZ , of the error probability for the
operation of the compression scheme given the value of Z = z. But at least one value z must have
an error probability less than the average value, and so the encoder might as well fix Z to this opti-
mal value. The result is a deterministic encoder. In the random coding argument, we may therefore
choose deterministic compression functions according to whatever distribution we like.

For the decompressor we will use a variant of the pretty good measurement of Definition 5.3.2
based on the optimal test in a certain hypothesis testing scenario.
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Proposition 7.4.2: Achievability of compressing classical data

For any CQ state ψX B , desired error probability ε, and any η ≤ ε, there exists a deterministic
compressor CX→C and decompressor DC B→X ′ with

|C |=
l4ε
η2
β1−ε+η(ψ

X B ,1X ⊗ψB )
m

. (7.33)

Comparing with the converse from Proposition 7.4.1, the expression contains nearly the same hy-
pothesis testing type-II error, but with the additional contribution η. One can show that the function
ε 7→βε increases monotonically, meaning that absent the prefactor, the expression is larger than that
in the converse for η > 0. But the dependence of the prefactor on η prohibits us from taking η→ 0
without increasing the size of the compressor output.

Proof. The proof proceeds in three steps. First, we analyze the error probability using a fixed deter-
ministic compressor and decompressor constructed from the pretty good measurement for an arbi-
trary set of operators. Next, we simplify the expression by averaging over the compression functions.
Finally, we make a specific choice of the operators forming the decompressor to make the connection
to the type-II error.

Consider an arbitrary positive CQ operator QX B =
∑

x |x〉〈x|X ⊗QB
x . Given a compression

function f : X →C , we define the decompressor to be the POVM with elements

Γ BC
x =

∑

c
δ f (x),c (Q̂

−1/2
c QxQ̂−1/2

c )B ⊗ |c〉〈c |C , (7.34)

where Q̂c =
∑

x: f (x)=c Qx . The error probability using this compressor and decompressor is given by

perror =
∑

x
PX (x)Tr[(1− Γx )BC (ϕB

x ⊗ | f (x)〉〈 f (x)|C )]. (7.35)

Now apply Lemma A.10.1 to 1− Γx in each term of the sum. Setting S =Qx and T = Q̂c −Qx gives

1− Γx ≤
∑

c
δ f (x),c

�

(1+ a)QB
x +(2+ a+ a−1)

∑

x ′ 6=x: f (x ′)=c

QB
x ′

�

⊗ |c〉〈c |C , (7.36)

and leads to an upper bound on the error probability

perror ≤
∑

x
PX (x)

�

(1+ a)Tr[Qxϕx]+ (2+ a+ a−1)
∑

x ′ 6=x: f (x)= f (x ′)
Tr[Qx ′ϕx]

�

(7.37)

= (1+ a)Tr[QX BψX B]+ (2+ a+ a−1)
∑

x
PX (x)

∑

x ′ 6=x

δ f (x)= f (x ′)Tr[Qx ′ϕx]. (7.38)

Next, we average over a uniformly random choice of f , denoting the averaged error probability
by angle brackets. Only the quantity δ f (x)= f (x ′) for any distinct x and x ′ is affected. It is unity if f
takes them to the same value and zero otherwise; averaged uniformly over all functions its expected
value is just 1/|C |. To see this, observe that fixing the output value of all inputs (including x) not
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equal to x ′ specifies |C | possible functions, one for each value that x ′ can take. The chance x ′ takes
the same value as x is thus 1/|C |. Therefore we have

〈perror〉 ≤ (1+ a)Tr[QX BψX B]+ (2+ a+ a−1) 1
|C |

∑

x,x ′ 6=x

PX (x)Tr[Qx ′ϕx] (7.39)

≤ (1+ a)Tr[QX BψX B]+ (2+ a+ a−1) 1
|C |
∑

x,x ′
PX (x)Tr[Qx ′ϕx] (7.40)

= (1+ a)Tr[QX BψX B]+ (2+ a+ a−1) 1
|C |Tr[QX B (1X ⊗ψB )]. (7.41)

Finally, we make a specific choice for QX B : the optimal test in β1−ξ (ψX B ,1X ⊗ψB ). In the first
term we can substitute Tr[QX BψX B] = 1−ξ and in the second Tr[QX B (1X⊗ψB )] =β1−ξ (ψX B ,1X⊗
ψB ). Altogether, we can infer the existence of at least one encoding function f such that

perror ≤ (1+ a)ξ +(2+ a+ a−1)
1
|C |β1−ξ (ψ

X B ,1X ⊗ψB ). (7.42)

Now we choose a, ξ and |C | such that the righthand side equals ε. A nice choice is ξ = ε − η,
a = η/(2ε−η) and |C | as in (7.33).

A few comments on the decompression operation are in order. First, when system B is trivial
(i.e. all ϕx are identical to ψB ), the minimal type-II error reduces to β1−ξ (ψX ,1X ). Using the form
of the optimal test derived in §5.5.3, we find that the optimal Qx which generate the pretty good
measurement all have the form QB

x = qx1
B for qx = 1 when PX (x)> 1/µ for the optimal cutoff value

µ. For PX (x)< 1/µ, qx = 0, and otherwise qx takes a value necessary to attain Tr[QX BψX B] = 1−ξ .
Only those Qx with f (x) = c go into the pretty good measurement for fixed value of c . Thus, apart
from x values that are considered too unlikely (PX (x)≤ 1/µ), the decompression map simply guesses
randomly between all possible x which are consistent with the given value of c .

For nontrivial B , we can get an intuition for why the optimal Qx in the hypothesis test generate
a useful measurement by considering an example involving classical states, depicted in Figure 7.5.
Suppose that there are three equally-likely states ϕx , each a normalized Gaussian of width σ separated
from its neighbor by a distance 4σ . (Continuous distributions are outside the scope of this course,
but in this example no difficulties arise.) The optimal test QX B for a given µ will have Qx which
project onto the region {y :µϕx (y)−3ϕ ≥ 0}; that is, Qx (y) is an indicator function onto this region.
Informally, the region consists of those y for which ϕx takes on a value that substantially exceeds the
value taken by the average of the states. These regions can overlap, as indicated in the figure, and for
small ξ will include most of the support of each state ϕx . The resulting pretty good measurement
simply guesses between the two states in the overlapping regions, so a balance has to be found between
ξ and the resulting error probability of the measurement. In the example shown in the figure, µ= 3
which leads to ξ ≈ 0.008, β1−ξ (ψX B ,1⊗ψB )≈ 3, and a guessing probability of approximately 95%
under the pretty good measurement formed from the Qx .

7.4.3 Compression of i.i.d. sources

For a source which is N independent and identical instances of a fixed source ψX B , i.e. (ψX B )⊗N , we
can show that the converse and achievability bounds meet in the limit N →∞. Let `(ψX B ,ε,N ) be
the smallest |C | such that there exists an ε-good compression scheme for ψ⊗N

X B . It is more convenient
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ϕ1 ϕ2 ϕ3

ϕ

−4σ −σ σ 4σ

1

Figure 7.5: Hypothesis testing scenario for ψX B = 1
3
∑

x |x〉〈x|X ⊗ ϕB
x versus 1X ⊗ψB with the ϕx

Gaussian functions of width σ separated by 4σ . The average state (function) ψB is also denoted ϕ.
For a fixed value of µ, a feasible test of the form QX B =

∑

x |x〉〈x|X ⊗QB
x can be defined by setting

Qx to be the projector onto the region {y :µϕx (y)− 3ϕ(y)≥ 0}. The resulting regions for µ= 3 are
shaded blue, red, and orange, respectively. Note that Q2 overlaps with Q1 and Q3.

to work with the rate of the compressor, log |C |. The optimal rate is given by

R(ψX B ,ε,N ) :=
log`(ψX B ,ε,N )

N
. (7.43)

In the limit N →∞, the optimal rate tends to the ε-compressibility C (ψX B ,ε). Using Stein’s lemma,
Proposition 6.2.2, we can show the following.

Proposition 7.4.3: Compressibility of classical information

For any CQ state ψX B and ε ∈ (0,1),

C (ψX B ,ε) =H (X |B)ψ. (7.44)

Whereas we might have expected that by allowing larger error we could achieve higher rates, this
result states that there is no tradeoff between ε and the optimal rate. Any compression protocol
operating at a rate below the conditional entropy will have essentially unit error. And for rates above
the conditional entropy, we can always achieve a vanishing error rate. So H (X |B)ψ represents a sharp
transition from essentially ideal to completely incorrect in the achievability of the protocol.

Proof. Start with the converse, (7.23). Choosing σ =ψ⊗N
B gives, for any ε ∈ (0,1),

lim
N→∞

log |C |
N

≥ lim
N→∞

1
N

logβ1−ε(ψ
⊗N
X B , (1X ⊗ψB )

⊗N ) (7.45)

=−D(ψX B ,1X ⊗ψB ) =H (X |B)ψ. (7.46)
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The achievability, (7.33), directly gives

lim
N→∞

log |C |
N

≤ lim
N→∞

1
N

�

log
η2

4ε
+ logβ1−ε+η(ψ

⊗N
X B , (1X ⊗ψB )

⊗N )
�

(7.47)

=−D(ψX B ,1X ⊗ψB ) =H (X |B)ψ. (7.48)

7.5 Classical communication over noisy channels

The resource simulation task of noisy channel coding is depicted in Figure 7.1. Here we are interested
in transmitting classical information, the messages m ∈M , not quantum information. The encod-
ing operation E then translates any message m into a quantum state ρA

m which can be input to the
quantum channel N . The decoding operation D outputs a classical value m′ from system B , so it
can be modeled as a general measurement.

Often, the reason reliable communication over noisy channels is possible is attributed to the fact
that the information to be transmitted is somehow redundantly encoded. This is an appropriate
description when considering a message alphabet of fixed-size. For instance, a simple code for a noisy
channel with binary inputs and outputs (i.e. taking bits to bits) is to just send the information three
times and take the majority vote of the outcomes. However, from the channel point of view, since we
are using the channel three times there were eight possible inputs, six of which are not used. Thus,
from a different viewpoint the reason noisy channel coding works is by only using a subset of channel
inputs which are reliably distinguishable at the output.

Ultimately, the compound channel D ◦N ◦ E takes classical inputs to classical outputs. In this
case the distinguishability can be shown to be just the worst-case error probability:

δ(I ,D ◦N ◦E ) = max
m∈M

�

1−Tr[ΛB
mN ◦E (|m〉〈m|)]

�

. (7.49)

Here we have represented the messages m as basis states |m〉, which we can regard as part of the
definition of E .

However, a better approach is to split E into two parts, a quantizerQ which maps classical letters
x ∈ X to A, and a classical encoding map E from M to X . The name quantizer comes from the
classical setting, where symbols from a discrete alphabet are mapped to a continuous alphabet, as
for instance in an electromagnetic channel which takes real-valued inputs. The quantizer makes the
continuous channel into a discrete one, so perhaps “discretizer” would be a better name. But the name
also works in our setting, since we can think of it as translating classical symbols into quantum states,
“quantizing” them.

We can now simplify the problem by fixing the quantizer and combining it with the channel to
create a CQ channel W =N ◦Q. This channel maps any input letter x to a quantum state of B , call
it ϕB

x . Then, at the encoder end, we only need to look for classical maps E from M to X to build a
reliable communication channel. The distinguishability now takes the form

δ(I ,D ◦W ◦E ) = max
m∈M

�

1−∑
x∈X

PX |M=m(x)Tr[ΛB
mϕ

B
x ]
�

, (7.50)

where PX |M is the conditional distribution associated with the encoding map E .
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7.5.1 Converse to channel coding

As with data compression, we can find a constraint based on using any possible coding scheme to con-
struct a hypothesis testing measurement for two particular states associated with the coding scheme.
For any given distribution PX of X , define ψX B =

∑

x∈X PX (x)|x〉〈x|X ⊗ ϕB
x . Then we have the

following converse bound for coding schemes with fixed error probability averaged over a uniformly
random choice of the message. Since any encoder and decoder with worst-case error probability ε also
have an average error no greater than ε, the converse applies to worst-case schemes as well.

Proposition 7.5.1: Converse for classical communication over noisy channels

Any coding scheme for the CQ channel W with average error probability ε obeys

|M | ≤max
PX

min
σ

1
β1−ε(ψX B ,ψX ⊗σB )

, (7.51)

where σ is any normalized state.

Note that none of the quantities involve the encoding and decoding operations, i.e. the protocol.
They are purely properties of the real resource W used to simulate the ideal noiseless channel, as well
as the approximation parameter ε.

Proof. The idea is to construct a hypothesis test between ψX B and ψX ⊗σB , for a certain PX and any
σB , using the encoder and decoder of the coding scheme.

Suppose that the messages are chosen at random. We can describe the state of the message M , the
input to the channel X , and the output B by the following tripartite state

ψM X B = 1
|M |

∑

m∈M

∑

x∈X
PX |M=m(x)|m〉〈m|M ⊗ xX ⊗ϕB

x , (7.52)

where the conditional distribution PX |M describes the action of the encoding map E . Tracing out M
gives the state

ψX B =
∑

x∈X
PX (x)|x〉〈x|X ⊗ϕB

x , (7.53)

where PX is the marginal of the joint distribution PM X (m, x) = 1
|M |PX |M=m(x).

Now consider task of distinguishing betweenψX B (the null hypothesis) andψX⊗σB (the alternate
hypothesis) for any state σB . We can use the encoder and decoder to design a test QX B with type-I
error less than ε. In particular, define

QX B =
∑

m∈M

∑

x∈X
PM |X=x (m)|x〉〈x|X ⊗ΛB

m , (7.54)

where the conditional distribution PM |X is formed from the conditional probability describing the
encoder and the uniform input distribution PM via the usual rules of conditional probability. Note
that QX B ≥ 0, since both PM |X=x (m) and Λm are. Moreover, QX B ≤ 1

X B since Λm ≤ 1 and
PM |X=x (m) ≤ 1. Therefore, QX B is a valid POVM element. It detects ψX B with type-I error less
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than ε, for

Tr[QX BψX B] =
∑

m∈M

∑

x∈X
PM |X=x (m)PX (x)Tr[Λmϕx] (7.55)

=
∑

m∈M

∑

x∈X
PM X (m, x)Tr[Λmϕx] (7.56)

= 1
|M |

∑

m∈M

∑

x∈X
PX |M=m(x)Tr[Λmϕx] (7.57)

≥ 1− ε. (7.58)

In the last step we have used the assumption that the coding scheme has an average error probability
less than ε. The minimal type-II error must therefore satisfy, for any σ ,

β1−ε(ψ
X B ,ψX ⊗σB )≤Tr[QX BψX ⊗σB] (7.59)

=
∑

m∈M

∑

x∈X
PM X (m, x)Tr[Λmσ] (7.60)

=
1
|M |

∑

m∈M
Tr[Λmσ] (7.61)

=
1
|M | . (7.62)

Taking the σ which maximizes the lefthand side gives

|M | ≤min
σ

1
β1−ε(ψX B ,ψX ⊗σB )

. (7.63)

Finally, weakening the bound by taking the maximum over PX gives the desired statement.

7.5.2 Achievability of channel coding

The achievability argument for channel coding is very similar to that of data compression. Again we
can choose the encoding map to be deterministic without loss of generality and we use the random
coding argument. And again we construct the decoder map from the pretty good measurement based
on the optimal test in a certain hypothesis testing scenario.

Although we are interested in the worst-case error performance of a coding scheme, achievability
is simpler to show when considering the error probability averaged over a uniformly random choice of
the message (this is distinct from the average over encoding functions). For the simulation argument
to carry through, we need to design an encoding and decoding scheme with low worst-case error, so
by itself the average-case analysis is insufficient. However, a slight change to the encoder is sufficient
to transform a scheme with low average error to one with low worst-case error. Let us first see how
this is done.

Suppose that E andD are an encoder and decoder pair which achieve an average error probability
of ε. That is, for each message, the error is given by

perror(m) =Tr[(1−Λm)ϕ f (m)], (7.64)

where f : M →X is the encoding function. Averaging over m gives, by assumption,

perror := 1
|M |
∑

m
perror(m)≤ ε (7.65)
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Now throw away the worst half of the messages; the result will be a code with worst-case error less
than 2ε. More specifically, split the message set into two equally-sized subsets, where the elements
of the first set have lower error probability than those of the second (i.e. we divide the set ordered
by error probability at its median). Suppose the average error for the first (second) set is ε1 (ε2), and
observe that ε1+ε2 = 2ε. But the largest error from the first set must be less than the average error of
the second set, ε2, which in turn is less than twice the original average error ε. Modifying the encoder
to only accept input from the low-error set leads to a coding scheme with worst-case error at most 2ε.

Proposition 7.5.2: Achievability for classical communication over noisy channels

For a given CQ channel WX→B , any desired average error ε, and any η ≤ ε, there exists a deter-
ministic encoder EM→X and decoder DB→M with

|M |=
j

max
PX

η2

4ε
1

β1−ε+η(ψX B ,ψX ⊗ψB )

k

. (7.66)

Proof. The proof proceeds in three steps. First, we analyze the error probability when using a fixed
deterministic encoder and a decoder constructed from the pretty good measurement for an arbitrary
set of operators. Next, we simplify the expression by averaging over the choice of encoding function.
Finally, we make a specific choice of the operators forming the decoder to make the connection to
the hypothesis testing type-II error.

For a given distribution PX , define the state ψX B =
∑

x PX (x)|x〉〈x|X ⊗ ϕB
x . Then consider an

arbitrary positive CQ operator QX B =
∑

x |x〉〈x|X ⊗QB
x . Given an encoding function f : M → X ,

we define the decoder to be the POVM with elements

Λm; f = Q̂−1/2
f

Q f (m)Q̂
−1/2
f

, (7.67)

where Q̂ f =
∑

m Q f (m). The average error probability using this encoder and decoder is then

perror =
1
|M |
∑

m
Tr[(1−Λm; f )ϕ f (m)]. (7.68)

For each term in the sum we can apply Lemma A.10.1 with S = Q f (m) and T = Q̂ f −Q f (m) =
∑

m′ 6=m Q f (m′) to bound the error probability from above. For any a > 0 we have

perror ≤ 1
|M |
∑

m
(1+ a)Tr[(1−Q f (m))ϕ f (m)]− 1

|M |
∑

m
(2+ a+ a−1)

∑

m′ 6=m

Tr[Q f (m′)ϕ f (m)]. (7.69)

Next we average over the choice of f . Consider the stochastic map which maps each m to an
x ∈X with probability PX . This induces a distribution on deterministic functions, again by Propo-
sition 2.5.2. Averaging over the choice of deterministic function is the same as using the stochastic
map in the expression for the error probability. Denoting this average by angle brackets, we have

〈perror〉 ≤ 1
|M |
∑

m,x
PX (x)

 

(1+ a)Tr[(1−Qx )ϕx]+ (2+ a+ a−1)
∑

m′ 6=m,x ′
PX (x

′)Tr[Qx ′ϕx]

!

(7.70)

= 1
|M |
∑

m

 

(1+ a)(1−Tr[QX BψX B])+ (2+ a+ a−1)
∑

m′ 6=m

Tr[QX B (ψX ⊗ψB )]

!

(7.71)

≤ (1+ a)(1−Tr[QX BψX B])+ (2+ a+ a−1)|M |Tr[QX B (ψX ⊗ψB )]. (7.72)
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Here ψX and ψB are the marginal states of ψX B .
Finally, we make a specific choice for QX B : the optimal test in β1−ξ (ψX B ,ψX ⊗ ψB ). Then

in the first term we can substitute Tr[QX BψX B] = 1− ξ and in the second Tr[QX B (ψX ⊗ψB )] =
β1−ξ (ψX B ,ψX ⊗ψB ). Altogether, we can infer the existence of at least one encoding function f such
that

perror ≤ (1+ a)ξ +(2+ a+ a−1)|M |β1−ξ (ψ
X B ,ψX ⊗ψB ). (7.73)

We can now choose a, ξ , and |M | in such a way that the righthand side equals ε. A nice choice is
ξ = ε−η, a = η/(2ε−η) and

|M |= η
2

4ε
1

β1−ε+η(ψX B ,ψX ⊗ψB )
. (7.74)

Maximizing over the distribution PX gives the desired statement.

7.5.3 Coding for i.i.d. channels

When the channel in question is actually N independent instances of a fixed channel W , i.e. the
channel W ⊗N , then we can show that the converse and achievability bounds meet in the limit N →
∞. In this setting it is more convenient to work with the logarithm of the number of messages and
even more the rate of the coding scheme. Let m(W ,ε,N ) be the largest |M | such that there exists an
ε-good coding scheme for W ⊗N . Then the optimal rate R(W ,ε,N ) is defined as

R(W ,ε,N ) :=
log m(W ,ε,N )

N
. (7.75)

In the limit of N →∞, the optimal rate tends to the ε-capacity C (W ,ε). Often we are interested in
the limit ε→ 0 of the ε-capacity, which is just called the capacity C (W ).

Using Stein’s lemma in the achievability and converse, we can show the following.

Proposition 7.5.3: Capacity of CQ channels

For any CQ channel W and corresponding state ψX B =
∑

x PX (x)|x〉〈x|X ⊗ϕB
x ,

C (W ) =max
PX

I (X : B)ψX B . (7.76)

Proof. In the achievability statement choose PX N = P×N
X to get

log |M | ≥ log
η2

4ε
− logβ1−ε+η(ψ

⊗N
X B , (ψX ⊗ψB )

⊗N ), (7.77)

where we have moved system labels from superscript to subscript to simplify the notation. Dividing
by N and taking the limit using Stein’s lemma, Proposition 6.2.2, gives

lim
N→∞R(W ,ε,N )≥ lim

N→∞
1
N

log
η2

4ε
+max

PX

�

− 1
N

logβ1−ε+η(ψ
⊗N
X B , (ψX ⊗ψB )

⊗N )
�

(7.78)

=max
PX

I (X : B)ψX B (7.79)
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for all η < ε. Thus, the capacity or indeed ε-capacity for any ε ∈ (0,1) is at least maxPX
I (X : B)ψX B .

To show that the capacity cannot be larger is more difficult, because we must show that input
distributions of the form PX N = P×N

X are optimal. Properties of the mutual information make this
possible. First, we may use Equation 6.34 in the converse (7.51) to obtain

log |M | ≤max
PX N

min
σ

1
1− εD(ψX N BN

,ψX N ⊗σBN
)+ h(ε) (7.80)

=max
PX N

I (X N : BN )ψX N BN + h(ε)

1− ε . (7.81)

In the second step we have loosened the bound by setting σBN
=ψBN

, though in fact this choice is the
minimum. Dividing by N and taking the limit N →∞ removes the second term, so we need only
focus on the first. By the chain rule we have

I (X N : BN )ψ =H (BN )ψ−H (BN |X N )ψ =H (BN )ψ−
N
∑

j=1

H (B j |B1, . . . ,B j−1X N )ψ. (7.82)

Since each channel use in independent of all others, the state output by the j th channel in system
B j depends only on the input X j to the j th channel. Therefore, H (B j |B1, . . . ,B j−1X N ) = H (B j |X j ).
Using subadditivity for the first term, we then obtain

I (X N : BN )ψ =H (BN )ψ−
N
∑

j=1

H (B j |X j )ψ (7.83)

≤
N
∑

j=1

H (B j )ψ−H (B j |X j )ψ =
N
∑

j=1

I (X j : B j )ψ. (7.84)

Using this in the expression for the ε capacity gives

C (W ,ε) = lim
N→∞

log |M |
N

(7.85)

≤ 1
1− ε lim

N→∞
1
N

max
PX N

N
∑

j=1

I (X j : B j )ψ (7.86)

=
1

1− ε lim
N→∞

1
N

N
∑

j=1

max
PX

I (X j : B j )ψ (7.87)

=
1

1− εmax
PX

I (X : B)ψX B . (7.88)

The bound blows up for ε→ 1, but for ε→ 0 we recover the desired result.

Here we have established the weak converse, which governs the behavior of coding schemes with
ε→ 0 as N grows. However, the maximum achievable rate is in fact independent of ε, a statement
known as the strong converse:

C (W ,ε) =max
PX

I (X : B)ψX B ∀ε ∈ (0,1). (7.89)

The strong converse can in fact be obtained from the converse bound in (7.51), but the derviation is
much lengthier than that of the weak converse.
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7.6 Compression of quantum data

Quantum data compression is the quantum version of classical data compression. In the eigenbasis
of the source output, its eigenvalues form a classical probability distribution, to which we can apply
the classical data compression scheme of §7.4. Returning to Figure 7.3, this means that we set de-
fine the copy operation to be the quantum operation which copies the eigenbasis of the output of
the source. An ε-good classical data compression scheme will therefore become an ε-good quantum
data compression scheme, where the approximation parameter again refers to the distinguishability
metric.

Recycling the classical protocol more or less ignores all the quantum aspects to the problem. In
particular, we might also want the compression scheme to preserve the entanglement that the source
output has with its purification, as depicted in Figure 7.6. However, a good approximation including

source C D source

≈
Q

R

C Q Q

R

Figure 7.6: Compression of quantum data. In contrast to the classical case, here we also want to retain
correlations or entanglement of the system Q with its purification R.

the purification can only be guaranteed when the source outputs an essentially pure state, as the
following argument shows.

When including the purification into the distinguishability, it is equivalent to work with the fi-
delity, defined in (5.25). Suppose that the source outputs the state ρQ =

∑

x PX (x)|bx〉〈bx |Q , with
purification |ψ〉QR =

∑

x

p

PX (x)|bx〉Q |ξx〉R for some orthonormal states |ξx〉. Applying a perfect
classical compression scheme in the basis |bx〉 would lead to the state

|ψ′〉QQ ′R =
∑

x

Æ

PX (x)|bx〉Q |bx〉Q
′ |ξx〉R, (7.90)

where Q and Q ′ are the X and X ′ of Figure 7.3. But the QR subsystem (which is now a CQ state)
does not have high fidelity with |ψ〉QR:

〈ψ|ψ′QR|ψ〉QR =
∑

x
PX (x)

2. (7.91)

This is only close to unity if the distribution PX has essentially all weight on one particular value of
x, i.e. if the original state ρQ is nearly a pure state.

The difficulty is the “copy” Q ′ of Q that is created, which we may think of as leftover at the
compressor. To have a good approximation in the sense of Figure 7.6, we must remove all traces of
the input state at the compressor. Let us be a little more clever about implementing the compressor.
By a slight change to the classical compression protocol of §7.4, we can show
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Proposition 7.6.1: Achievability of quantum data compression

For any source emitting a state ρQ and parameters ε≥ 0 and 0< η≤ ε, there exists compression
and decompression maps CQ→C and DC→Q such that

F (D ◦C (ρQ ),ρQ )≥ 1− ε, and (7.92)

|C |=
l4ε
η2
β1−ε+η(ρ

Q ,1Q )
m

. (7.93)

Proof. First consider the problem of classical data compression absent any side information B . For
a given deterministic compression map f the optimal decoder is also deterministic and simply picks
the most likely x which is compatible with the compressor output c , namely argmaxx PX |C=c (x).
Moreover, Proposition 7.4.2, shows that a suboptimal decoder can achieve error probability ε with
a compressor output of size given by (7.93). Therefore, the optimal decoder will only have a lower
probability of error.

The function f is deterministic, but not necessarily invertible (on its image). But we can extend
it to an invertible function in the following way. First, define Xy = {x : f (x) = y}. Then sort

Xy according to PX |Y=y . Call the result X ↓y . Next define g (x) to be the index or position of x in

X ↓
f (x), counting from 0. The map x→ ( f (x), g (x)) is reversible, and g (x) (or something like it) is the

smallest additional output that makes this possible. For future use call the inverse map h:

x
h← ( f (x), g (x)). (7.94)

As a quantum operation we can define the compressor to perform the unitary

UQ→C T =
∑

x
| f (x)〉C |g (x)〉T 〈x|Q , (7.95)

followed by tracing out system T . The decompressor implements the isometry

VC→Q =
∑

y
|h(y, 0)〉Q〈y|C , (7.96)

which maps y to the most likely choice of X among those with f (x) = y, since it assumes g (x) = 0.
Now let |ψ′〉QT R =VC→Q UQ→C T |ψ〉QR, the output of the actual protocol. More explicitly, the

state has the form

|ψ′〉QT R =
∑

x

Æ

PX (x)|h( f (x), 0)〉Q |g (x)〉T |ξx〉R. (7.97)

The (squared) fidelity F (D ◦C (ρQ ),ρQ )2 with the ideal output is

F (D ◦C (ρQ ),ρQ )2 = 〈ψ|ψ′QR|ψ〉QR (7.98)

=TrT [〈ψ|ψ′QT R|ψ〉QR], (7.99)

122



7.7. Entanglement purification

where the second equation holds because the partial trace over T commutes with the expectation in
QR. To evaluate this expression we need only compute the vector QR〈ψ|ψ′〉QT R. We have

QR〈ψ|ψ′〉QT R =
∑

x
PX (x)〈x|h( f (x), 0)〉|g (x)〉T (7.100)

=
∑

x
PX (x)δg (x),0|g (x)〉T (7.101)

=
∑

x:g (x)=0

PX (x)|0〉T (7.102)

= (1− ε)|0〉T . (7.103)

In the last line we have used the fact that the x with g (x) = 0 are correctly reconstructed at the output
by the decompressor, and hence

∑

x:g (x)=0 PX (x) = 1− ε. The trace over T is now immediate, and
leads to F (D ◦C (ρQ ),ρQ ) = 1− ε.

Since the fidelity of the output with the ideal state is nearly one, the actual state produced by the
protocol is essentially |ψ〉QRWT |0〉T for some isometry W on T . Because the compression map is an
isometry from Q to C T , and T ends up in a pure state, we can regard the compressor as storing the
important information about Q in C (since the decompressor reconstructs the state) and erasing the
rest of Q, creating pure states in T . As we saw above, it must erase the unneeded part of Q in some
manner. Put differently, we can regard quantum data compression not as the task of putting all the
important “information” about Q into the smallest system C possible, but rather as erasing as much
of Q as possible. When the erasure transformation is a reversible operation, as here, whatever part
cannot be erased must contain all the useful information about the input.

Note that the two compression maps are different; trT [U (·)U ∗] is not the same quantum channel
as C used above. Their action is identical on inputs of the form |x〉〈x|, but we must also consider
“off-diagonal” inputs like |x〉〈x ′|. For the former we have

trT [U |x〉〈x ′|U ∗] = | f (x)〉〈 f (x ′)|δ(g (x), g (x ′)), (7.104)

while the latter gives

C (|x〉〈x ′|) = | f (x)〉〈 f (x ′)|δ(x, x ′). (7.105)

Finally, observe that since a protocol for quantum compression as in Figure 7.6 can also be used to
compress classical data (by copying C and running the decompressor on both copies), the quantum
task inherits the converse from the classical task. As this is essentially tight, there is no (substantially)
stronger converse for the quantum case.

7.7 Entanglement purification

Now let us examine a problem sort of “dual” to quantum data compression, namely entanglement
purification. The goal here is to transform a given bipartite pure state

|Ψ〉AB =
∑

x

Æ

PX (x)|ϕx〉A⊗ |ξx〉B (7.106)

(expressed here in the Schmidt basis) into an approximate version of |ΦM 〉A′B ′ = 1p
M

∑M−1
y=0 |y〉A′⊗|y〉B ′ ,

for the largest M possible, using only local operations and classical communication.
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source E ΦM -source

≈
F

A

B B ′

C
A′ A′

B ′

Figure 7.7: Entanglement purification. System C is classical.

As we saw in §7.6, data compression can be seen as a means of producing pure states from a given
source, that is, an output (T ) which has entropy zero. In entanglement purification, on the other
hand, the goal is to make the marginal states as mixed as possible, while still keeping the overall state
pure. And, like quantum data compression, it turns out that there is an associated classical task that
we can apply more or less directly to achieve the aims of entanglement purification. That task is
randomness extraction, depicted in Figure 7.4(b).

Suppose that f is a map fulfilling the requirements for randomness extraction from the distribu-
tion PX (the eigenvalues of ΨAB ). Furthermore, let VA→AA′ be the isometry which implements f in
the basis |ϕx〉, that is

VA→AA′ |ϕx〉A= |ϕx〉A| f (x)〉A′ . (7.107)

Applied to |Ψ〉AB gives

|Ψ ′〉AA′B =VA→AA′ |Ψ〉AB (7.108)

=
∑

x

Æ

PX (x)|ϕx〉A| f (x)〉A′ |ξx〉B . (7.109)

The marginal state Ψ ′A′ is essentially the mixed state, since f extracts randomness from X . In particu-
lar, Ψ ′A′ =

∑

x PX (x)| f (x)〉〈 f (x)|A′ , so the probability of any particular |y〉A′ is just
∑

x: f (x)=y PX (x).
This is precisely the probability of the yth output of f applied to X , and therefore,

δ(Ψ ′A′ ,
1
M 1A′)≤ ε. (7.110)

By (5.40) this implies F (Ψ ′A′ ,
1
M 1A′) ≥ 1− ε. The fidelity is an optimization over purifications, and

one possible purification of Ψ ′A′ is simply |Ψ ′〉A′AB itself. A possible purification of 1
M 1A′ is |ΦM 〉A′B ′ .

Then, by the definition of fidelity, there must exist an isometry WAB→B ′ such that

A′B ′〈ΦM |WAB→B ′ |Ψ ′〉A′AB ≥ 1− ε. (7.111)

Thus, knowing that the A′ system is maximally mixed allows us to infer the existence of an operation
which creates the desired state |ΦM 〉A′B ′ . This trick of inferring that entangled states can be created by
showing that the marginal is completely mixed is quite widespread in quantum information theory.

However, this does not yet yield an LOCC protocol, because W might require joint operations on
A and B . To show that there is an LOCC version of W , we simply erase system A with the quantum
eraser discussed after (3.34). To “erase” A, first define a conjugate basis to |ϕx〉 by

|ϑz〉= 1p
d

d−1
∑

x=0
ωx z |ϕx〉, (7.112)
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whereω = e2πi/d and d is the dimension of the system A. Measuring A in this basis gives the state

A〈ϑz |Ψ ′〉A′AB =
1p
d

∑

x

Æ

PX (x)ω
−x z | f (x)〉A′ |ξx〉B , (7.113)

which is unnormalized. The normalization is the probability of the outcome z; note that these prob-
abilities are all equal. Now, if Alice sends the outcome z to Bob, he can simply apply the operation

Rz =
∑

x
ωx z |ξx〉〈ξx | (7.114)

and this will produce the state (now normalized)

|Ψ ′′〉A′B =
∑

x

Æ

PX (x)| f (x)〉A′ |ξx〉B . (7.115)

With A now out of the picture, applying the above decoupling argument to this state gives an LOCC
entanglement purification protocol. In particular, E consists of the map VA→AA′ followed by mea-
surement of A in the basis |ϑz〉. The resulting outcome z is transmitted in the classical system C .
Finally, D is just the operation WB→B ′ . The number of ebits produced is just the number of random
bits that can be extracted from X distributed according to the Schmidt coefficients of the state.
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7.8 Exercises

Exercise 7.1. Optimality of superdense coding → solution
Show that a+ b ≥ 2 in order for (7.4) to hold.

Exercise 7.2. Classical resource inequalities → solution
Consider a communication system of two partners Alice A and Bob B and an eavesdropper Eve

E . The classical analog of an entangled bit is a secret bit shared between A and B , modeled by a
probability distrubution PABE , such that

PABE = PAB · PE , PAB[A= i ,B= j ] = (Q)i j , Q =
� 1

2 0
0 1

2

�

.

Furthermore, suppose that the classical communication between A and B is insecure in that every-
thing broadcasted over the channel will be heard by E . Prove the following lemma:

Lemma 7.8.1. Given A and B share l secure bits and unlimited classical communication, they cannot
create more than l secure bits.

a) Calculate the mutual information I (A : B |E) = H (A|E)− H (A|B , E) when A and B share l
secure bits.

b) Explain why the lemma follows after we show that the mutual information I (A : B |E) is non-
increasing under local operations and classical communication (LOCC).

c) Show that creating local randomness cannot increase mutual information:

I (A,X : B |E)≤ I (A : B |E).
d) Show that deterministic local operations A 7→ f (A) cannot increase mutual information:

I ( f (A) : B |E)≤ I (A : B |E).
e) Show that classical communication cannot increase conditional mutual information:

I (A,A′ : B ,A′|E ,A′)≤ I (AA′ : B |E).
Exercise 7.3. Classical channel capacities → solution

Compute the classical capacity of the binary symmetric channel (BSC) and the binary erasure
channel (BEC). These channels are defined by

WBSC(y|x) =
�

1− p y = x
p y 6= x

and WBEC(y|x) =






1− p y = x
p y =?
0 y 6= x

for x ∈ {0,1} and y ∈ {0,1} or y ∈ {0, ?, 1}, respectively.

Exercise 7.4. Classical capacity of the depolarizing channel → solution
Recall that the qubit depolarizing channel is defined by the action E (ρ) = (1− p)ρ+ p 1

21. Now
we will see what happens when we use this quantum channel to send classical information. Starting
from an arbitrary input probability distribution PX (0) = q , PX (1) = 1− q , encode X in the state
ρ = |0〉〈0|+ (1− q)|1〉〈1|. Suppose ρ is transmitted over the quantum channel and measured in the
|0〉, |1〉 basis at the output, yielding the random variable Y .
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a) Compute the conditional probability distributions PY |X=x (y).

b) Maximize the mutual information over q to find the classical channel capacity of the depolar-
izing channel with this particular encoding and decoding.

c) What happens to the channel capacity if we measure the final state in a different basis?
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8Quantum Key Distribution
8.1 Introduction

In this chapter, we introduce the concept of quantum key distribution. Traditionally, cryptography
is concerned with the problem of securely sending a secret message from A to B . Note however that
secure message transmission is only one branch of cryptography. Another example for a problem
studied in cryptography is coin tossing. There the problem is that two parties, Alice and Bob, which
are physically separated and do not trust each other want to toss a coin over the telephone. Blum
showed that this problem cannot be solved as long as one does not introduce additional asssumptions
[79]. Note that coin tossing is possible using quantum communication.

A central element in modeling security is that of resources – resources used in protocols and re-
sources constructed by protocols. For example, a quantum key distribution (QKD) protocol con-
structs a functionalityKn , which shares a secret key k of length n between two players:

Alice Bob

Eve

key
k k

This functionality is a resource, which can be used by other protocols, e.g., to encrypt a message.
To construct this secret key resource, a QKD protocol typically uses two other resources, a multiple
use authentic classical channelA∞ – which guarantees that the message x received comes from the
legitimate sender, but allows the adversary to get a copy:

Alice Bob

Eve

x x

x

and a multiple use insecure quantum channelQ∞, completely under the control of the adversary:

Alice Bob

Eve

ρ

ρ ρ′

ρ′

We write this transformation of resources as

{A∞,Q∞}
QKD−−→Kn . (8.1)

More generally, if a protocol π constructs S fromR ,

R π−→S ,

then for any resourceR ′,
{R ,R ′} π−→ {S ,R ′}.
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8. QUANTUM KEY DISTRIBUTION

And if additionally π′ constructs T from S ,

S π′−→T ,

then the composition of the two protocols π′ ◦π constructs T fromR ,

R π′◦π−−→T .

In the following section we will introduce a classical encryption protocol, the one-time pad (OTP),
which uses an n-bit secret key resourceKn and an authentic channelAn to construct a secure channel
resource for an n-bit messageSn , i.e., a channel which does not allow an adversary to read the contents
of the message x:

Alice Bob

Eve

x x

We thus have
{An ,Kn} OTP−−→Sn . (8.2)

Composing these two protocols we can construct a secure channel from an insecure quantum
channel and classical authentic channel. The corresponding resource transformation is obtained by
combining (8.1) and (8.2):

{A∞,Q∞}
OTP◦QKD−−−−−→Sn .

In classical cryptography there exists a protocol [80], called authentication protocol, that con-
structs an authentic channel for an m-bit message,Am , from a secret keyKk for m� k:

{Kk ,C∞} AUTH−−−→Am , (8.3)

whereC∞ is a classical insecure channel. Since the number of bits that need to be authenticated in a
QKD protocol is typically of the order of the length of the key produced, combining authentication
and QKD results in a key expansion protocol:

{Kk ,Q∞}
QKD◦AUTH−−−−−−→Kn ,

for n� k.

8.2 Classical message encryption

The one-time pad protocol works as follows. Let m be an n-bit message and k an n-bit secret key. The
operation⊕ denotes the bitwise addition modulo 2. Alice first computes c = m⊕ k and sends c over
a classical authentic channel to Bob. Bob then computes m′ = c ⊕ k. This is illustrated in Figure 8.1.

The protocol is correct as

m′ = c ⊕ k = (m⊕ k)⊕ k = m⊕ (k ⊕ k) = m.
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y =
x ⊕ k

πOTP
A

Alice
x =

y ⊕ k

πOTP
B

Bob

key

Secret keyKn

Authentic channelAn

Eve

k k

m m

c c

c

Figure 8.1: The real one-time pad system – Alice has access to the left interface, Bob to the right
interface and Eve to the lower interface – consists of the one-time pad protocol (πOTP

A ,πOTP
B ), and

the secret key and authentic channel resources. The combination of these resources and protocol
constructs a new resource that takes a message m at Alice’s interface, outputs a ciphertext c at Eve’s
interface and the original message m at Bob’s interface.

To prove that the protocol does indeed construct a secure channel Sn . We will argue that one
cannot distinguisher between a system running the real one-time pad and a system using an ideal
secure channel resource Sn .

Let Kn‖An denote the parallel compositions of the two resources used by the OTP, which is
depicted in Figure 8.1 — this is a new resource providing each player with an interface that is the
composition of both interfaces of the individual resources, and let πOTP

A πOTP
B (Kn‖An) denote the

resource constructed after running the OTP — the indexes A and B denote the interfaces ofKn‖An
on which the systems πOTP

A and πOTP
B are plugged.

The argument involves as a thought experiment a simulator system σOTP
E which transforms the

ideal adversarial interface of the resourceSn into the real interface provided by the systemπOTP
A πOTP

B (Kn‖An):
anything that can be done by a dishonest player Eve accessing the E interface of the real system may
also be achieved in the ideal world by first running the simulator σOTP

E . In the case of the OTP, this
simulator simply outputs a random string of length n, which, by construction, is independent from
the message m. This is illustrated in Figure 8.2.

Secure channel Sn

Alice Bob

σOTP
E Random string

m m

Eve
c

Figure 8.2: The ideal one-time pad system – Alice has access to the left interface, Bob to the right
interface and Eve to the lower interface – consists of the ideal secure channel and a simulator σOTP

E
that generates a random string c of length n.
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One can easily verify that the two systems depicted in Figures 8.1 and 8.2 are identical, i.e.,

πOTP
A πOTP

B (Kn‖An) = σ
OTP
E Sn ,

and one says that the OTP has perfect secrecy.
As the name one-time pad suggests, a secret bit can only be used once. For example consider the

scenario where someone uses a single secret bit to encrypt 7 message bits such that we have, e.g.,
c = 0010011. Eve then knows that m = 0010011 or m = 1101100.

Shannon proved in 1949 that in a classical scenario, to have a secure protocol the key must be as
long as the message [81], i.e.

Proposition 8.2.1: Key requirements for information-theoretic security

{A∞,K`} ENC−−→Sn =⇒ `≥ n. (8.4)

The proof is left to Exercise 8.1. Shannon’s result shows that information theoretic secrecy (i.e. I (M :
C )≈ 0) cannot be achieved unless one uses very long keys (as long as the message).

In computational cryptography, one relaxes the security criterion. More precisely, the mutual in-
formation I (M : C ) is no longer small, but it is still computationally hard (i.e. it takes a lot of time)
to compute M from C . In other words, we no longer have the requirement that H (M |C ) is large. In
fact, for public key cryptosystems (such as RSA and DH), we have H (M |C ) = 0. This implies that
there exists a function f such that M = f (C ), which means that it is in principle possible to compute
M from C. Security is obtained because f is believed1 to be hard to compute. Note, however, that for
the protocol to be practical, one requires that there exists an efficiently computable function g , such
that M = g (C , S).

8.3 Quantum cryptography

In this section, we will see that Proposition 8.2.1 does not hold in the quantum setup. Having a
quantum channel we can achieve

{A∞,Q∞} π−→Sn , (8.5)

i.e., no key — other than what could be used to generate the authentic channels A , but this can
be made arbitrarily small in n — is used to construct the secure channel Sn . (8.5) is obtained by
composing a QKD protocol that satisfies (8.1) and the OTP satisfying (8.2). Note that this does not
contradict Shannon’s proof of Proposition 8.2.1, since in the quantum regime the no-cloning theorem
(cf. Proposition 3.5.1) forbids that Bob and Eve receive the same state, i.e. the ciphertext C is not
generally available to both of them. Therefore, Shannon’s proof is not valid in the quantum setup,
which allows quantum cryptography to go beyond classical cryptography.

Ideally, we would like a QKD protocol to construct a secret key resource such as that used by
the OTP in Figure 8.1. This is however not possible, since an eavesdropper introducing noise on the
quantum channel can always prevent the players from generating a key. Instead, a QKD protocol
constructs a weaker resource, which gives the adversary a switch (symbolised by a 1 bit input) that
she can activate to prevent a key from being generated, in which case the resource Kn outputs an
error ⊥ instead of a key k:

1In classical cryptography one usually makes statements of the following form. If f was easy to compute then some
other function F is also easy to compute. For example F could be the decomposition of a number into its prime factors.
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key

Secret keyKn
k ,⊥ k ,⊥

0,1

A QKD protocol generally has two parts. In the first, the two players, Alice and Bob, exchange
and measure quantum states on an insecure quantum channel. In the second part, the post-processing,
they use a two-way authenticated classical channel to discuss the results of their measurements and
distill a secure key. This is illustrated in Figure 8.3.

πQKD
A πQKD

BAuthentic channelA∞

Insecure channelQ∞

t t

t

kA,⊥ kB ,⊥

ρ ρ′

Figure 8.3: The real QKD system — Alice has access to the left interface, Bob to the right interface and
Eve to the lower interface — consists of the protocol (πQKD

A ,πQKD
B ), the insecure quantum channel

Q∞ and two-way authentic classical channel A∞. Alice and Bob abort if the insecure channel is
too noisy, i.e., if ρ′ is not similar enough to ρ to obtain a secret key of the desired length. They run
the classical post-processing over the authentic channel, obtaining keys kA and kB . The message t
depicted on the two-way authentic channel represents the entire classical transcript of the classical
post-processing.

To prove that a QKD protocol constructs the resource Kn depicted above, we need to find a
simulator σQKD

E such that the real and ideal systems are indistinguishable (up to some ε), i.e.,

πQKD
A πQKD

B (A∞‖Q∞)≈ε σQKD
E Kn .

In the real setting (Figure 8.3), Eve has full control over the quantum channel and obtains the
entire classical transcript of the protocol. So for the real and ideal settings to be indistinguishable, a
simulator σQKD

E must generate the same communication as in the real setting. This can be done by
internally running Alice’s and Bob’s protocol (πQKD

A ,πQKD
B ), producing the same messages at Eve’s

interface as the real system. However, instead of letting this (simulated) protocol decide the value
of the key as in the real setting, the simulator only checks whether they actually produce a key or
an error message, and presses the switch on the secret key resource accordingly. We illustrate this in
Figure 8.4.

Let ρABE denote the quantum state gathered by a distinguisher interacting with the real system of
Figure 8.3 and ρ̃ABE the stated obtained when interacting with the ideal system from Figure 8.4. We
use the subscripts A, B and E to denote the information gathered at Alice’s, Bob’s and Eve’s interface
of the systems, i.e., E contains all the information that an eavesdropper may obtain, whereas the A
and B registers only hold the final (classical) output of the system. The real and ideal systems are
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key

Secret keyKn
k ,⊥ k ,⊥

σQKD
E

πQKD
A πQKD

B

0,1

tρ ρ′

Figure 8.4: The ideal QKD system — Alice has access to the left interface, Bob to the right interface
and Eve to the lower interface — consists of the ideal secret key resourceKn and a simulator σQKD

E .

indistinguishable (except with probability ε), if (for all possible distinguisher behaviours) the states
ρABE and ρ̃ABE are ε-close with respect to the trace distance, i.e.,

δ(ρABE , ρ̃ABE )≤ ε. (8.6)

Note that the validity of quantum theory is essential for this reasoning to hold. Assuming that
quantum theory is correct, anything that a distinguisher could possibly do is described within our
framework.

(8.6) can be simplified by noting that with the simulator from Figure 8.4, the states of the ideal
and real systems are identical when no key is produced. The outputs at Alice’s and Bob’s interfaces
are classical, elements of the set {⊥}∪K , where ⊥ symbolizes an error andK is the set of possible
keys. The states of the real and ideal systems can be written as

ρABE = p⊥|⊥A,⊥B〉〈⊥A,⊥B | ⊗ρ⊥E +
∑

kA,kB∈K
pkA,kB

|kA, kB〉〈kA, kB | ⊗ρkA,kB
E ,

ρ̃ABE = p⊥|⊥A,⊥B〉〈⊥A,⊥B | ⊗ρ⊥E +
1
|K |

∑

k∈K
|k , k〉〈k , k| ⊗ ∑

kA,kB∈K
pkA,kB

ρkA,kB
E .

Plugging these in (8.6) we get

δ (ρABE , ρ̃ABE ) = (1− p⊥)δ
�

ρ>ABE ,τAB ⊗ρ>E
�

≤ ε, (8.7)

where

ρ>ABE :=
1

1− p⊥
∑

kA,kB∈K
pkA,kB

|kA, kB〉〈kA, kB | ⊗ρkA,kB
E (8.8)

is the renormalized state of the system conditioned on not aborting and

τAB :=
1
|K |

∑

k∈K
|k , k〉〈k , k|

is a perfectly uniform shared key.
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We now break (8.7) down into two components, often referred to as correctness and secrecy. The
correctness of a QKD protocol refers to the probability that Alice and Bob end up holding different
keys. We say that a protocol is εcor-correct if for all adversarial strategies,

Pr [KA 6=KB]≤ εcor, (8.9)

where KA and KB are random variables over the alphabetK ∪{⊥} describing Alice’s and Bob’s out-
puts. The secrecy of a QKD protocol measures how close the final key is to a distribution that is
uniform and independent of the adversary’s system. Let p⊥ be the probability that the protocol
aborts, and ρ>AE be the resulting state of the AE subsystems conditioned on not aborting. A protocol
is εsec-secret if for all adversarial strategies,

(1− p⊥)δ
�

ρ>AE ,τA⊗ρ>E
�

≤ εsec, (8.10)

where the distance δ(·, ·) is the trace distance and τA is the fully mixed state.

Proposition 8.3.1: Secrecy and correctness of QKD

If a QKD protocol is εcor-correct and εsec-secret, then (8.6) is satisfied for ε= εcor+ εsec.

Proof. Let us define γABE to be a state obtained from ρ>ABE (see (8.8)) by throwing away the B system
and replacing it with a copy of A, i.e.,

γABE =
1

1− p⊥
∑

kA,kB∈K
pkA,kB

|kA, kA〉〈kA, kA| ⊗ρkA,kB
E .

From the triangle inequality we get

δ(ρ>ABE ,τAB ⊗ρ>E )≤ δ(ρ>ABE ,γABE )+δ(γABE ,τAB ⊗ρ>E ).
Since in the states γABE and τAB ⊗ρ>E the B system is a copy of the A system, it does not modify

the distance. Furthermore, TrB (γABE ) =TrB (ρ
>
ABE ). Hence

δ(γABE ,τAB ⊗ρ>E ) = δ(γAE ,τA⊗ρ>E ) = δ(ρ>AE ,τA⊗ρ>E ).
For the other term note that

δ(ρ>ABE ,γABE )

≤∑

kA,kB

pkA,kB

1− p⊥
δ
�

|kA, kB〉〈kA, kB | ⊗ρkA,kB
E , |kA, kA〉〈kA, kA| ⊗ρkA,kB

E

�

=
∑

kA 6=kB

pkA,kB

1− p⊥
=

1
1− p⊥

Pr [KA 6=KB] .

Putting the above together with (8.7), we get

δ(ρABE , ρ̃ABE ) = (1− p⊥)δ(ρ>ABE ,τAB ⊗ρ⊥E )
≤ Pr [KA 6=KB]+ (1− p⊥)δ(ρ>AE ,τA⊗ρ>E ),

which concludes the proof.

Secrecy and correctness as defined above guarantee that if Alice and Bob obtain keys, then they
are identical and unknown to any adversary. But for a QKD protocol to be useful, it must satisfy one
more requirement: if no eavesdropper is present, then with high probability the players get a key, i.e.,
Pr[KA=⊥]≤ ε. This is called robustness.
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8.4 QKD protocol

In the seventies, Wiesner had the idea to construct unforgeable money based on the fact that quantum
states cannot be cloned [82]. However, the technology at that time was not ready to start up on his
idea. In 1984, Bennett and Brassard presented the BB84 protocol for QKD [83] which is based on
Wiesner’s ideas and will be explained next.

The main idea of the BB84 protocol is for Alice to send (random) quantum states to Bob, who
measures them upon reception. They then publicly compare results to estimate the noise on the
channel. Since an eavesdropper necessarily introduces noise, this measure upper bounds how much
information an eavesdropper could have about their measurement results. If this is too high, they
abort the protocol. If it is low, they then proceed to the classical post-processing: they extract a secret
key from their noisy insecure measurement results.

In the following we consider an asymmetric version of BB84, in which Alice generates states in the
computational or diagonal basis with different probabilities. Let the computational basis be denoted
by {|0〉, |1〉} and the diagonal basis by{|0̄〉, |1̄〉}, where |0̄〉 := 1p

2
(|0〉+ |1〉) and |1̄〉 := 1p

2
(|0〉− |1〉).

Distribution step Alice and Bob perform the following task N times and let i = 1, . . . ,N . Alice first
chooses a basis Bi ∈ {0,1} with probability p and 1− p, and a bit Xi ∈ {0,1} with uniform
probability. She then prepares a state of a qubit Qi (with basis {|0〉, |1〉}) according to

B X Q
0 0 |0〉
0 1 |1〉
1 0 |0̄〉
1 1 |1̄〉.

Alice sends Qi to Bob.

Bob next chooses B ′i ∈ {0,1} also with probability p and 1− p, and measures Qi either in basis
{|0〉, |1〉} (if B ′i = 0) or in basis {|0̄〉, |1̄〉} (if B ′i = 1) and stores the result in X ′i . Recall that all the
steps so far are repeated N -times.

Sifting step Alice sends B1, . . . ,Bn to Bob and vice versa, using the classical authentic channel. Bob
discards all outcomes for which Bi 6= B ′i and Alice does so as well. For better understanding we
consider the following example situation.

Q |1〉 |1〉 |1〉 |0̄〉 |0〉 |1̄〉 |0〉 |1〉 |1̄〉
B 0 0 0 1 0 1 0 0 1
X 1 1 1 0 0 1 0 1 1
B’ 0 0 0 1 1 1 0 1 0
X’ 1 1 0 0 1 0 0 0 1
no. 1 2 3 4 5 6 7 8 9

Hence, Alice and Bob discard columns 5 , 8 and 9 .

Let z and x denote the substrings of X1, . . . ,XN that Alice prepared in the computational and
diagonal bases, respectively, and kept after the sifting step. And let z ′ and x ′ denote the substrings of
X ′1, . . . ,X ′N that Bob measured in the computational and diagonal bases, respectively, and kept after

136



8.5. Security proof of BB84

the sifting step. In the example given in the table above, z and z ′ consist of the bits in positions 1 ,
2 , 3 and 7 , and x and x ′ consist of the bits in positions 4 and 6 .

Alice and Bob use the strings x and x ′ (obtained from the diagonal basis) to estimate the noise
on the channel, and they use the strings z and z ′ to obtain a secret key. Note that it is sufficient to
measure the noise in the diagonal basis to estimate the adversary’s information about the string z,
since a measurement in the computational basis which must be done by Eve to get a bit of z generates
noise on qubits that are one of the diagonal basis states.

Checking step Alice sends Bob the string x over the classical authentic channel. If the average num-
ber of bit flips between x and x ′ is larger than a predefined tolerance, 1

|x|w(x⊕x ′)>Qtol, where
w(·) is the Hamming weight and |x| the length of x, Bob notifies Alice of this and they abort.
Otherwise they continue the protocol.

Alice and Bob now hold two strings z and z ′ and have an estimate of Eve’s information about
z (this is computed from Qtol, see Section 8.5.3). In order to extract a secret key from z, they first
run an information reconciliation procedure, in which Bob corrects z ′ to obtain z. Then they run a
privacy amplification procedure, which extracts a secret key from z.

Information reconciliation Let g : Z → S and g ′ : Z ×S → Z be some predefined functions
(where g could be a randomized function). Alice computes a string s = g (z), which she sends
to Bob. Bob computes z̃ = g ′(z ′, s), which should be equal to z, if there are not too many bit
flips between z and z ′. The details for possible choices for the functions g and g ′ are given in
Section 8.5.2.

Error verification The information reconciliation procedure outlined above (only) works if the num-
ber of bit flips is not too high. But since Alice and Bob do not know the number of bit flips in
the computational basis, they need to check if indeed z = z̃. LetH = {h : {0,1}n → {0,1}m}
be a universal family of hash functions, i.e., for any z1 6= z2, Prh[h(z1) = h(z2)] ≤ 1

2m . Alice
picks h ∈H at random, and sends both h and h(z) to Bob. If h(z) 6= h(z̃), they abort.

Privacy amplifiation At this point of the protocol, Alice and Bob hold two strings z and z̃, which
are equal with high probability and partially known to Eve. They now need to extract a secret
key from these strings. This is done by (randomly) hashing the strings to a shorter string. With
high probability, the result is unknown to the adversary. Let F = { f : {0,1}n → {0,1}`} be
a family of functions known as an extractor (see Section 8.5.5 for an exact defintion). Alice
chooses f ∈F uniformly at random, and sends f to Bob. They set kA := f (z) and kB := f (z̃),
which they use as secret keys.

8.5 Security proof of BB84

8.5.1 Overview

It took almost 20 years until the security of BB84 could be proven [84–87]. Here we follow the finite-
key proof of [88], i.e., the proof does not only hold asymptotically — when the number of signals
exchanged between the parties goes to infinity — but also for finite values.

To prove the security of the BB84 protocol, i.e., to prove that the real system constructed is indis-
tinguishable from an ideal key and simulator (except with probability ε), one has to show that with
high probability Bob holds the same key as Alice at the end of the protocol (correctness), and that Eve
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has approximately no information about the key (secrecy). The correctness of the protocol depends
only on the information reconciliation step, and is shown in Section 8.5.2.

The main idea of the proof of secrecy is to use an uncertainty relation to bound the information
that an eavesdropper has about Alice’s string z. This is done in Section 8.5.3. For measurements
performed in complementary bases on n qubits, we have

H ε
min(Z |E)+H ε

max(X |B)≥ n.

The secret key is obtained from the string measured in the computational basis, Z , and we need to
lower bound Eve’s information about Z , namely H ε

min(Z |E). From the uncertainty relation, this
reduces to upper bounding H ε

max(X |B), information that Bob has about the string Alice would have
obtained had she created her qubits in the diagonal basis.

Note that H ε
max(X |B) does not depend on Eve’s system, but only on Alice and Bob. This can be

bounded by the number of bit flips that Alice and Bob count in the diagonal basis in the checking step
of the protocol. The accuracy of this bound depends on the length of the strings z and x (varying the
probability of choosing the computational or diagonal basis in the first step of the protocol changes
the expected lengths of these strings). The exact bound is derived in Section 8.5.4.

Now that Alice and Bob have a bound on H ε
min(Z |E), they can extract a key from Z , which

is (approximately) unknown to Eve, using a procedure known as privacy amplification. Roughly
speaking, they hash the string Z to a new string that is shorter than Eve’s entropy. This is done in
Section 8.5.5.

8.5.2 Information reconciliation

The information reconciliation step is a purely classical step, which does not involve Eve and her
quantum side information. Alice and Bob each hold a string, z and z ′ respectively, and Bob wishes
to correct z ′ to obtain z. Alice could simply send him z, but in this case Eve would get this string as
well, and they could not obtain any secret key. Instead, Alice sends bob a string s = g (z) which is
shorter than z, and allows him to correctly recover z = g ′(z ′, s) if there are not too many differences
between z and z ′.

Here we will show how to do this using error correcting codes (ECC). ECC are well understood
procedures, that are widespread in all the communication means we use on a daily basis, e.g., informa-
tion on CDs is encoded in an ECC so that the data can be correctly read if the CD has minor scratches.
The basic principle of an ECC is to encode a string in a higher dimension by adding redundancy, e.g.,
a 3 bit string x1, x2, x3 can be encoded into 7 bits as x1, x2, x3, x1⊕x2, x1⊕x3, x2⊕x3, x1⊕x2⊕x3. Upon
receiving a 7 bit string y1, . . . , y7, the decoding procedure searches for the valid code word that is the
closest (measured in the number of bit flips) to the received string, and decodes to the corresponding
message x1, x2, x3. One can easily verify that with the code given in this paragraph, any two valid
code words have distance at least 3 from each other. Thus, if only 1 bit flip occurred, the decoding
procedure always works. In practical ECC the same is done for strings of thousands or millions of
bits and a constant rate of errors can be corrected.

The same principle can be used in the information reconciliation step of QKD. Alice and Bob
have an idea of how much noise they will find on the quantum channel under normal conditions,
and choose an ECC that can correct the corresponding number of bit flips. But instead of just one
ECC, they choose a family of codes that cover the entire code word space, and which is chosen before
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running the protocol. For example, consider the following 24 = 32 ECC:

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3

· · ·
x1, x2, x3, x1⊕ x2, x1⊕ x3, x2⊕ x3, x1⊕ x2⊕ x3,

where x̄ is the negation of the bit x. Each line corresponds to one ECC which encodes 23 messages
into a space of dimension 27. The 24 codes in this table cover the entire code space with their 2423 = 27

code words.
The string z that Alice holds corresponds to a code word. The function g (z) assigns to every

code word the corresponding code from the predefined list, i.e., s = g (z) is an ECC (e.g., the line
number of the corresponding ECC in the list) in which z is a valid word. Once Bob has received
this information s , he runs the corresponding decoding procedure which searches for the nearest
neighbour to z ′ in the code described by s . Let this nearest neighbour be z̃. If the number of bit flips
between z and z ′ is less than the number of errors that the code can correct, then we have z = z̃.

Of course, Alice and Bob do not know how many bit flips really occurred. In particular if an
eavesdropper was active, this might be very different from what they expect under normal conditions.
So to check if the information reconciliation procedure worked, they run the error verification step.
Alice picks a function from a universal hash family, i.e., H = {h : {0,1}n → {0,1}m} such that for
any z1 6= z2, Prh[h(z1) = h(z2)] ≤ 1

2m . And Alice and Bob publicly compare their value of the hash
of z and z̃. If z 6= z̃, then with probability p ≥ 1

2m the hashes will not match and the protocol aborts.
Hence, if the players want the protocol to have a correctness parameter εcor they need to choose a
family of hash functions with m ≥ log 1

εcor
.

This entire procedure provides Eve with some information about z, which she obtains from s
and h(z). But this information can be bounded by the number of bits of these two strings. This is
done in Section 8.5.5.

8.5.3 Uncertainty relation

The uncertainty relation makes a statement about the entropy of two different measurements per-
formed on the same system, one in the computational basis and the other in diagonal basis. However,
in the BB84 protocol, Alice prepares her qubits in two different bases, she does not measure. To get
around this, we consider an alternative entanglement-based protocol (called Ekert91 [89]), which only
differs from BB84 in the first step:

Distribution step of Ekert91 Alice prepares entangled qubit pairs and sends one half of each pair to
Bob (over the insecure quantum channel). Alice and Bob then measure their qubit in a random
basis Bi (for Alice)2 and B ′i (for Bob) chosen with probabilities p and 1− p, respectively. They
repeat this step N times.

2Recall that Bi = 0 means that we measure in the {|0〉, |1〉} basis and if Bi = 1 we measure in the {|0̄〉, |1̄〉} basis.

139



8. QUANTUM KEY DISTRIBUTION

We next show that Ekert91 is equivalent to BB84. On Bob’s side it is easy to verify that the two
protocols are equivalent since Bob has to perform exactly the same tasks for both. The following
schematic figure summarizes Alice’s task in the Ekert91 and the BB84 protocol.

randomgenerator meas.

entang.
source

Bi

Alice
Ekert91

Bi Xi

Qi

randomgenerator prep.

randomgenerator

Bi

Alice
BB84

Bi Xi

Qi

In the Ekert91 protocol Alice’s task is described by a state

ρEkert91
Bi Xi Qi

=
∑

b∈{0,1}
pb |b 〉〈b |Bi

⊗ 1
2

∑

x∈{0,1}
|x〉〈x|Xi

⊗ |ϕb ,x〉〈ϕb ,x |Qi
, (8.11)

where |ϕ0,0〉 = |0〉, |ϕ0,1〉 = |1〉, |ϕ1,0〉 = |0̄〉, and |ϕ1,1〉 = |1̄〉. The BB84 protocol leads to the same
state

ρBB84
Bi Xi Qi

=
∑

b∈{0,1}
pb |b 〉〈b |Bi

⊗ 1
2

∑

x∈{0,1}
|x〉〈x|Xi

⊗ |ϕb ,x〉〈ϕb ,x |Qi
. (8.12)

We thus conclude that viewed from outside the dashed box the two protocols are equivalent in terms
of security and hence to prove security for BB84 it is sufficient to prove security for Ekert91. Note
that both protocols have some advantages and drawbacks. While for Ekert91 it is easier to prove
securtiy, the BB84 protocol is technologically simpler to implement.

A B

X
meas. basis
{|0̄〉, |1̄〉}

Z
meas. basis{|0〉, |1〉}

X ′
meas. basis
{|0̄〉, |1̄〉}

Z ′
meas. basis{|0〉, |1〉}

ρABE

E

Now, neither player needs to perform the measurement in the computational basis until after the
checking step, since the resulting string is only needed for the classical post-processing (information
reconciliation, error verification, and privacy amplification). Let ρpass

ABE denote the state shared by
Alice, Bob and Eve after having measured the corresponding qubits in the diagonal basis, after having
shared the basis choices and having performed the sifting step, after having publicly shared x and
conditioned on passing the test 1

|x|w(x⊕ x ′)≤Qtol, but before measuring the qubits of A and B in the

computational basis. We apply the following uncertainty relation to this state ρpass
ABE ,

H ε
min(Z |E)ρ+H ε

max(X |B)ρ ≥ n,

where the right-hand side is n because the system A has n-qubits and the two possible measurements
are complimentary.
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In the privacy amplification step (Section 8.5.5) we need a bound on the adversary’s (smooth)
min-entropy of the raw key Z . This is directly obtained from the uncertainty relation, since

H ε
min(Z |E)ρ ≥ n−H ε

max(X |B)ρ.

So the problem reduces to upper bounding H ε
max(X |B)ρ. Note that Alice never actually measures

these n qubits in the diagonal basis. Bounding this is a gedankenexperiment: how much entropy
would Bob have about X were Alice to perform a measurement of the A system in the diagonal basis?

8.5.4 Finite key statistics

Even though Alice does not perform a measurement on these qubits in the diagonal basis to obtain
X , we can estimate Bob’s information about X from the number of bit flips on the other qubits that
they did measure in the diagonal basis. Think of a bucket filled with red and white balls (bits with
flips and without flips). If we pick k balls at random from the bucket, and a proportion of µ of these
balls are red, then we can be fairly certain that roughly the same proportion µ of the balls remaining
in the bucket must be red. A bound known as the Serfling bound makes this precise.

Let Λkey =
1
n w(X ⊕X ′) be the random variable denoting the proportion of bit flips that Alice

and Bob would find were they to perform measurements on these n qubits in the diagonal basis. Let
ΛPE =

1
k w(X̄ ⊕ X̄ ′) denote the proportion of bit flips that Alice and Bob find on the qubits that they

did measure in the diagonal basis (the Parameter Estimation qubits). Let Λtot =
n

n+kΛkey +
k

n+kΛPE
denote the total proportion of bit flips on all n+ k qubits. The Serfling bound tells us that

Pr
�

Λkey ≥ λtot+δ|Λtot = λtot

�

≤ e
−2n(n+k)δ2

k+1 .

We now use this to bound the probability that the proportion of bit flips in the n key qubits is
different from the proportion of bit flips in the Parameter Estimation qubits, conditioned on passing
the test 1

|x|w(x ⊕ x ′)≤Qtol.

Pr
�

Λkey ≥ΛPE+µ|“pass”
�

≤ 1
ppass

Pr
�

Λkey ≥ΛPE+µ
�

≤ 1
ppass

Pr
�

Λkey ≥Λtot+
k

n+ k
µ
�

=
1

ppass

∑

λ

Pr[Λtot = λ]Pr
�

Λkey ≥Λtot+
k

n+ k
µ
�

�

�

�

Λtot = λ
�

≤ 1
ppass

e
−2nk2µ2

(n+k)(k+1) .

For convenience we set εPE = e
−nk2µ2

(n+k)(k+1) from which we get

Pr
�

Λkey ≥ΛPE+µ|“pass”
�

≤ ε2
PE

ppass

for µ=
Ç

(n+k)(k+1)
nk2 ln 1

εPE
.
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We now have a bound on the bit flips on X and use it to bound the smooth max-entropy of X
given B . Let X ′ denote Bob’s random variable were he to measure his n qubits in the diagonal basis, let
PX X ′ be the corresponding joint probability distribution of X and X ′ and let QX X ′ be a distribution
very similar to PX X ′ , except that all values of X and X ′ for which Λkey ≥ Qtol+µ have probability
0. A quick calculation shows that the purified distance between these probability distributions is
bounded by

P (PX X ′ ,QX X ′)≤
εPE

p

ppass
.

For ε= εPEp
ppass

we thus have

H ε
max(X |B)ρ ≤H ε

max(X |X ′)P ≤Hmax(X |X ′)Q ≤ nh(Qtol+µ),

where h(·) is the binary entropy, h(p) =−p log p − (1− p) log(1− p).

8.5.5 Privacy amplification

In Section 8.5.4 we derived the bound

H ε
min(Z |E)≥ n(1− h(Qtol+µ))

for ε= εPEp
ppass

andµ=
Ç

(n+k)(k+1)
nk2 ln 1

εPE
. In this equation, the system E contains all the information

gathered by an eavesdropper by interacting with the quantum channel. The information reconcili-
ation step then leaks more information about the random variable Z . Let S = g (Z) be the random
variable sent to Bob for information reconciliation and V = h(Z) be the random variable sent for
error verification. The complete system E ′ = ESV which the adversary (or distinguisher) obtains
also contains S and V .

From an entropy chain rule, we have

H ε
min(Z |ESV )≥H ε

min(Z |E)− log |S |− log |V |.

Note that log |S | = leakECC and log |V | = log 1
εcor

are parameters of the protocol which are fixed in
advance. Hence,

H ε
min(Z |E ′)≥ n(1− h(Qtol+µ))− leakECC− log

1
εcor

.

Now that we have a bound on the smooth min-entropy, we can extract a secret key from Z . To
do this, we use an extractor.

Definition 8.5.1

A function F : {0,1}n ×{0,1}d → {0,1}` is a (strong, quantum-proof) (k ,ε)-extractor if for any
cq state ρZE =

∑

z pz |z〉〈z | ⊗ρz
E with Hmin(Z |E)ρ ≥ k and a uniform seed Y on {0,1}d ,

δ(ρF (Z ,Y )Y E ,τU ⊗ρY ⊗ρE )≤ ε,
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where τU is the fully mixed state in dimension 2` and

ρF (Z ,Y )Y E =
∑

z,y

pz

2d
|F (z, y)〉〈F (z, y)| ⊗ |y〉〈y| ⊗ρz

E .

Note that picking a seed y uniformly at random and applying F (·, y) to a string z is the same as
picking a function f ∈F uniformly at random and applying it to z forF = {F (·, y)}y .

Intuitively, the system E will contain information about some of the bits of Z . Some of the seeds
y might be “bad” in the sense that the output of the corresponding function F (·, y) might depend
strongly on the bits of Z known by E . However, the definition of an extractor guarantees that on
average over the choice of y, this is very unlikely.

Proving that a specific function F satisfies the definition of an extractor is beyond the scope of
this lecture. It is sufficient to know that there are many constructions. One particularly practical
construction is obtained by choosing at random a function from a family of universal hash functions.
This construction satisfies Definition 8.5.1 with ε = 1

2

p
2`−k for any input size n [87]. This means

that the error is exponentially small in the number of bits “sacrificed”, namely k − `, the difference
between the entropy of the input and the output length.

Our bound on the entropy of Z is given by the smooth min-entropy, not the min-entropy. In
Exercise 8.4 it is shown that if F satisfies Definition 8.5.1, then for any state ρZE with smooth min-
entropy H ε̄

min(Z |E)ρ ≥ k,
δ(ρF (Z ,Y )Y E ,τU ⊗ρY ⊗ρE )≤ ε+ 2ε̄.

The last step of the QKD protocol thus consists in applying an extractor to Z for an output chosen
small enough to get a satisfying error ε+2ε̄. The notion of secrecy introduced in Section 8.3 requires
that

ppassδ
�

ρ>AE ,τA⊗ρ>E
�

≤ εsec,

where the choice of function f used in privacy amplification (the seed y) is included in the E register.
Plugging in the error for an extractor from universal hash functions in this, we get

ppassδ
�

ρ>AE ,τA⊗ρ>E
�

≤ ppass

�

1
2

p

2`−k + 2
εPE

p

ppass

�

≤ 1
2

p

2`−k + 2εPE.
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8.6 Exercises

Exercise 8.1. One-time pad → solution
Consider three random variables: a message M , a secret key K and a ciphertext C . We want to

encode M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the
cipher: I (M : C ) = 0. After the transmission, we want to be able to decode the ciphertext: someone
that knows the key and the cipher should be able to obtain the message perfectly, i.e. H (M |C ,K) = 0.
Show that this is only possible if the key contains at least as much randomness as the message, namely
H (K)≥H (M ).

Exercise 8.2. Secrecy and correctness → solution
Let ρABE be the tripartite ccq-state held by Alice, Bob and Eve after a run of a QKD protocol.

We showed in the lecture that if the protocol is ε1-secret,

pkeyδ
�

ρkey
AE ,τA⊗ρkey

E

�

≤ ε1,

and ε2-correct,
Pr[A 6= B]≤ ε2,

then the real and ideal systems are ε= ε1+ ε2 indistinguishable, i.e.,

∃σE such that πAπB (A‖Q)≈ε σEK . (8.13)

Show that if (8.13) holds for some ε, then the protocol must be ε-correct and 2ε-secret.
Hint: you cannot assume that (8.13) is necessarily satisfied by the same simulator used to prove

the converse.

Exercise 8.3. Min-entropy chain rule → solution
Let ρX ZE be a ccq-state. Show that the following holds:

H ε
min(X |ZE)ρ ≥H ε

min(X |E)ρ− log |Z |.

Exercise 8.4. Privacy amplification with smooth min-entropy → solution
A function F : {0,1}n×{0,1}d →{0,1}m is a (quantum-proof, strong) (k ,ε)-extractor if for all cq

states ρX E with Hmin(X |E)≥ k and a uniform Y ,

δ
�

ρF (X ,Y )Y E ,τU ⊗τY ⊗ρE

�

≤ ε.

Show that for any (k ,ε)-extractor F , if a cq state ρX E has smooth min-entropy H ε̄
min(X |E) ≥ k,

then
δ
�

ρF (X ,Y )Y E ,τU ⊗τY ⊗ρE

�

≤ ε+ 2ε̄.

Exercise 8.5. Quantum one-time pad → solution
The quantum one-time pad encrypts a one qubit message ρ with two bits of key k1, k2 as

Ek1,k2
(ρ) =X k1Z k2ρZ k2X k1 .

Because Ek1,k2
is unitary, it guarantees that the encryption is reversible (given the secret key k1, k2)

and the receiver can read the message.
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For any purification |ψ〉AB of ρA, the mixture over all possible keys is then

1
4

∑

k1,k2

EA
k1,k2
⊗I B (|ψ〉〈ψ|AB ) = τA⊗ρB , (8.14)

where τA is the fully mixed state and ρB =TrA (|ψ〉〈ψ|AB ) .
Show that using two bits of key per qubit of message is optimal, i.e., for any alternative (but still

reversible) definition of the encryption operation Ek , (8.14) can only be satisfied for any state |ψ〉 if
the key k is at least 2 bits.

Exercise 8.6. Bit commitment → solution
Hooke’s law, regarding the stiffness of springs, was first published in 1676 as an anagram ‘ceii-

inosssttuu’, and only unscrambled in 1678 to read (in Latin) ut tensio sic vis (as the extension so the
force).[90]The use of anagrams was apparently common at the time, as it gave a means of committing
to a particular result without immediately revealing it. This bought time to build upon the discovery,
while still being able to claim priority.

This is the idea of the bit commitment cryptographic protocol. The protocol consists of two
steps. In step one, Alice commits a bit to Bob, giving him some physical system that contains the bit,
but which conceals it from him. We could think of the bit written on a piece of paper and stored in
an impenetrable safe. In the second step, Alice unveils the bit, giving Bob the key to the safe.

Consider the following bit commitment protocol for a bit b , using quantum systems. To commit,
Alice generates a random string X = {0,1}n and encodes every bit into a qubit using a basis B0 =
{|0〉, |1〉} if b = 0 or B1 = {|+〉, |−〉} if b = 1. These qubits are sent to Bob and he stores them. To
unveil the bit, Alice sends b and X to Bob and he will validate the process by applying measurements
on his states in basis Bb and comparing the results with X .

a) Show that Bob has no information about b before it is revealed, i.e. the protocol is concealing.

b) Show that if Alice commits honestly to 0, the probability of her unveiling a 1 without Bob
noticing the cheat is equal to 2−n .

c) Give a strategy that allows Alice to cheat perfectly, i.e. that allows her to unveil 0 or 1 in such
a way that Bobs probability of detecting her cheating is zero.
Hint: Consider the steering phenomenon.

Exercise 8.7. Data hiding → solution
Suppose you have two agents, Alice and Bond, at your service. You want them to deliver a secret

(classical) message to your ally Charlie. You will give Alice and Bond two different states (i.e. an
encryption of your message), so that they cannot extract the secret message unless they are physically
together. Specifically, data hiding is what you want: states that are easily distinguishable by doing
a certain class of operations, such as a global measurement on Alice and Bond’s systems together,
but they are nearly indistinguishable under a different, restricted class of operations, such as local
operations and classical communication (LOCC). Formally, we say that a family of states

�

ρi	

i is
ε-secure under a set of operations E if

δ(E (ρi ),E (ρ j ))< ε, ∀i , j , ∀E ∈E.
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In this exercise we will consider a data hiding scheme which is secure under LOCC and so the original
message can only be recovered if global measurements on the joint system are allowed. Consider a 2d -
qubit Hilbert space,HA⊗HB , and the computational basis of both spaces. Consider the projectors
onto the symmetric and antisymmetric subspaces ofHA⊗HB ,

ΠS =
1
2

∑

i< j

�

|i〉A| j 〉B + | j 〉A|i〉B
��

〈i |A〈 j |B + 〈 j |A〈i |B
�

+
∑

i

|i〉A|i〉B〈i |A〈i |B ,

ΠA=
1
2

∑

i< j

�

|i〉A| j 〉B − | j 〉A|i〉B
��

〈i |A〈 j |B −〈 j |A〈i |B
�

.

You will encode only one bit of information, b , giving Alice and Bond each their d−qubit part
of ρb

AB , with

ρb=0 =
2

d (d + 1)
ΠS , ρb=1 =

2
d (d − 1)

ΠA.

a) Show that ρb=0 and ρb=1 are valid density operators and explain how you would proceed to
recover b if you had access to Alice and Bond’s systems (together).

b) Consider the flip operator in basis {|i〉A| j 〉B}i j ,

F =ΠS −ΠA=
∑

i , j

|i〉A| j 〉B〈 j |A〈i |B .

Show that, for all operators MA ∈ End(HA),NB ∈ End(HB ),

Tr[F (MA⊗NB )] =Tr(MANB ).

In particular, for all pure states |x〉A, |y〉B , Tr[F |xy〉〈xy|] = |〈x|y〉|2.

c) Suppose that Alice and Bond perform local projective measurements in arbitrary bases {|x〉A}
and {|y〉B} respectively. We call the joint probability distribution of the outcomes PX Y when
they measure state ρb=0 and QX Y when they measure ρb=1. We want them to be unable to
determine which state they measured, i.e., to distinguish the two distributions, so we want to
show that δ(PX Y ,QX Y ) is small. Remember that

PX Y (x, y) =Tr(|xy〉〈xy|ρb=0), QX Y (x, y) =Tr(|xy〉〈xy|ρb=1).

Use the results from b ) to show that δ(PX Y ,QX Y )≤ 2
d+1 .

Hint: start from the trace distance as

δ(PX Y ,QX Y ) =
∑

x,y∈S
PX Y (x, y)−QX Y (x, y),

with S = {(x, y) : PX Y (x, y)>QX Y (x, y)}.
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AMathematical background
A.1 Hilbert spaces and operators on them

Consider a vector space H , for concreteness over the the field of complex numbers C. An inner
product onH is a bilinear function (·, ·) :H ×H →C with the properties that (i) (v, v ′) = (v ′, v)∗
where ∗ denotes the complex conjugate, (ii) (v,αv ′) = α(v, v ′) for α ∈C and (v, v ′+ v ′′) = (v, v ′) +
(v, v ′′), and (iii) (v, v) ≥ 0. (Note that the inner product is usually taken to be linear in the first
argument in mathematics literature, not the second as here.) The inner product induces a norm on
the vector space, a function || · || : H → C defined by ||v || :=

p

(v, v). A vector space with an
inner product is called an inner product space. If it is complete in the metric defined by the norm,
meaning all Cauchy1 sequences converge, it is called a Hilbert space. We will restrict attention to
finite-dimensional spaces, where the completeness condition always holds and inner product spaces
are equivalent to Hilbert spaces.

We denote the set of homomorphisms (linear maps) from a Hilbert spaceH to a Hilbert spaceH ′
by Hom(H ,H ′). Furthermore, End(H ) is the set of endomorphisms (the homomorphisms from a
space to itself) onH : End(H ) =Hom(H ,H ). The identity operator v 7→ v that maps any vector
v ∈H to itself is denoted by 1. The adjoint of a homomorphism S ∈Hom(H ,H ′), denoted S∗, is
the unique operator in Hom(H ′,H ) such that

(v ′, Sv) = (S∗v ′, v), (A.1)

for any v ∈H and v ′ ∈H ′. In particular, we have (S∗)∗ = S. If S is represented as a matrix, then the
adjoint operation can be thought of as the conjugate transpose.

Here we list some properties of endomorphisms S ∈ End(H ):
• S is normal if SS∗ = S∗S, unitary if SS∗ = S∗S = 1, and self-adjoint (or Hermitian) if S∗ = S.

• S is positive if (v, Sv) ≥ 0 for all v ∈ H . Positive operators are always self-adjoint. We will
sometimes write S ≥ 0 to express that S is positive.

• S is a projector if SS = S. Projectors are always positive.

Given an orthonormal basis {bi}i of H , we also say that S is diagonal with respect to {bi}i if the
matrix (Si , j ) defined by the elements Si , j = (bi , S b j ) is diagonal.

A map U ∈ Hom(H ,H ′) with dim(H ′) ≥ dim(H ) will be called an isometry if U ∗U = 1H .
It can be understood as an embedding of H into H ′, since all inner products between vectors are
preserved: (φ′,ψ′) = (Uφ, Uψ) = (φ, U ∗Uψ) = (φ,ψ).

A.2 The bra-ket notation

In this script we will make extensive use of a variant of Dirac’s bra-ket notation, where vectors are
interpreted as operators. More precisely, we can associate any vector v ∈H with an endomorphism
|v〉 ∈Hom(C,H ), called ket and defined as

|v〉 : γ 7→ γv, (A.2)

1Augustin-Louis Cauchy, 1789 – 1857, French mathematician.
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for any γ ∈ C. We will often regard |v〉 as the vector itself, a misuse of notation which enables a lot
of simplification. The adjoint |v〉∗ of this mapping is called bra and denoted by 〈v |. It is easy to see
that 〈v | is an element of the dual spaceH ∗ :=Hom(H ,C), namely the linear functional defined by

〈v | : u 7→ (v, u), (A.3)

for any u ∈H . Note, however, that bras and kets are not quite on equal footing, as the label of a bra
is an element ofH , notH ∗. The reason we can do this is the Riesz2 representation theorem, which
states that every element of the dual space is of the form given in (A.3).

Using this notation, the concatenation 〈u| ◦ |v〉 of a bra 〈u| ∈ Hom(H ,C) with a ket |v〉 ∈
Hom(C,H ) results in an element of Hom(C,C), which can be identified with C. It follows imme-
diately from the above definitions that, for any u, v ∈H ,

〈u| ◦ |v〉= (u, v). (A.4)

Thus, in the following we will omit the ◦ and denote the scalar product by 〈u|v〉.
Conversely, the concatenation |v〉◦〈u| is an element of End(H ) (or, more generally, of Hom(H ,H ′)

if u ∈H and v ∈H ′ are defined on different spaces). In fact, any endomorphism S ∈ End(H ) can
be written as a linear combination of such concatenations,

S =
∑

i

|ui 〉〈vi | (A.5)

for some families of vectors {u}i and {v}i . For example, the identity 1 ∈ End(H ) can be written as

1=
∑

i

|bi 〉〈bi | (A.6)

for any orthonormal basis {bi} ofH . This is often called the completeness relation of the basis vectors.

A.3 Representations of operators by matrices

Given an orthonormalbasis {|bk〉}dk=1, we can associate a matrix with any operator S ∈ End(H ),
S→ S j k = 〈b j |S |bk〉. (A.7)

Here we are “overloading” the notation a bit, and referring to both the matrix components as well
as the matrix itself as S j k . In the study of relativity, this is referred to as abstract index notation or
slot-naming index notation. We have chosen j to be the row index and k the column index, so that a
product of operators like ST corresponds to the product of the corresponding matrices, but the other
choice could have been made.

It is important to realize that the representation of an operator by a matrix is not unique, but
depends on the choice of basis. One way to see this is to use the completeness relation, equation (A.6),
to write

S = 1 S 1 (A.8)

=
∑

j ,k

|b j 〉〈b j |S |bk〉〈bk | (A.9)

=
∑

j ,k

S j ,k |b j 〉〈bk |. (A.10)

2Frigyes Riesz, 1880 – 1956, Hungarian mathematician.
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Now the basis dependence is plain to see. Matrix representations can be given for more general oper-
ators S ∈Hom(H ,H ′) by the same technique:

S = 1H ′ S 1H (A.11)

=
∑

j ,k

|b ′j 〉〈b ′j |S |bk〉〈bk | (A.12)

=
∑

j ,k

S j ,k |b ′j 〉〈bk |. (A.13)

In our version of Dirac notation, |v〉 is itself an operator, so we can apply the above method to this
case. Now, however, the input space is one-dimensional, so we drop the associated basis vector and
simply write

|v〉=∑
j

v j |b j 〉. (A.14)

According to the above convention, the representation of |v〉 is automatically a column vector, as it
is the column index (which would take only one value) that has been omitted. Following our use of
abstract index notation, the (vector) representative of |v〉 is called v j , not ~v or similar.

In terms of matrix representatives, the inner product of two vectors u and v is given by u∗j · v j ,
since the inner product is linear in the second argument, but antilinear in the first. We expect the
representation of the adjoint of an operator to be the conjugate transpose of the matrix, but let us
verify that this is indeed the case. The defining property of the adjoint is (A.1), or in Dirac notation

〈u|Sv〉= 〈S∗u|v〉. (A.15)

In terms of matrix representatives, reading the above from right to left we have

(S∗u)∗j · v j = u∗j · (Sv) j (A.16)

=
∑

j k

u∗j S j k vk (A.17)

=
∑

j k

([S j k]
∗u j )

∗vk (A.18)

=
∑

j k

([S j k]
†uk )

∗v j . (A.19)

Here † denotes the conjugate transpose of a matrix. Comparing the first expression with the last, it
must be that [S∗] j k = [S j k]

†, as we suspected.

A.4 Tensor products

Given vectors u and v from two Hilbert spacesHA andHB , we may formally define their product
u × v, which is an element of the Cartesian3 product HA×HB . However, the Cartesian product
does not respect the linearity of the underlying spaces. That is, while we may formally add u×v and
u ′× v, the result is not (u+ u ′)× v; it is just u× v+ u ′× v. The idea behind the tensor product is to

3René Descartes, 1596 – 1650, French philosopher and mathematician.
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enforce this sort of linearity onHA×HB . There are four combinations of vectors which we would
expect to vanish by linearity:

u × v + u ′× v − (u + u ′)× v,

u × v + u × v ′− u × (v + v ′),
α(u × v)− (αu)× v,
α(u × v)− u × (αv),

(A.20)

for any α ∈ C. These vectors define an equivalence relation on HA×HB in that we can consider
two elements of that space to be equivalent if they differ by some vector of the form in (A.20). These
equivalence classes themselves form a vector space, and the resulting vector space is precisely the tensor
productHA⊗HB .

Since the construction enforces linearity of the products of vectors, we may consider the tensor
product to be the space spanned by products of basis elements of each space. Furthermore, the inner
product ofHA⊗HB is defined by the linear extension of

(u ⊗ v, u ′⊗ v ′) = 〈u|u ′〉〈v |v ′〉. (A.21)

For two homomorphisms S ∈Hom(HA,H ′
A) and T ∈Hom(HB ,H ′

B ), the tensor product S⊗T
is defined as

(S ⊗T )(u ⊗ v) := (S u)⊗ (T v) (A.22)

for any u ∈HA and v ∈HB . The space spanned by the products S ⊗T can be canonically identified
with the tensor product of the spaces of the homomorphisms, i.e.

Hom(HA,H ′
A)⊗Hom(HB ,H ′

B )'Hom(HA⊗HB ,H ′
A⊗H ′

B ). (A.23)

That is, the mapping defined by (A.22) is an isomorphism between these two vector spaces. This
identification allows us to write, for instance,

|u〉⊗ |v〉= |u ⊗ v〉, (A.24)

for any u ∈HA and v ∈HB .

A.5 Trace and partial trace

The trace of an endomorphism S ∈ End(H ) over a Hilbert spaceH is defined by

Tr(S) :=
∑

i

〈bi |S |bi 〉, (A.25)

where {|bi 〉}i is any orthonormal basis ofH . The trace is well defined because the above expression
is independent of the choice of the basis, as one can easily verify.

The trace operation is obviously linear,

Tr(αS +βT ) = αTr(S)+βTr(T ), (A.26)

for any S,T ∈ End(H ) and α,β ∈C. It also commutes with the operation of taking the adjoint,

Tr(S∗) =Tr(S)∗, (A.27)
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since the adjoint of a complex number γ ∈C is simply its complex conjugate. Furthermore, the trace
is cyclic,

Tr(ST ) =Tr(T S). (A.28)

Also, it is easy to verify using the spectral decomposition that the trace Tr(S) of a positive operator
S ≥ 0 is positive. More generally

(S ≥ 0)∧ (T ≥ 0) =⇒ Tr(ST )≥ 0. (A.29)

The partial trace TrB is a mapping from the endomorphisms End(HA⊗HB ) on a product space
HA⊗HB onto the endomorphisms End(HA) onHA. (Here and in the following, we will use sub-
scripts to indicate the space on which an operator acts.) It is defined by the linear extension of the
mapping.

TrB : S ⊗T 7→Tr(T )S, (A.30)

for any S ∈ End(HA) and T ∈ End(HB ).
Similarly to the trace operation, the partial trace TrB is linear and commutes with the operation of

taking the adjoint. Furthermore, it commutes with the left and right multiplication with an operator
of the form TA⊗1B where TA ∈ End(HA). That is, for any operator SAB ∈ End(HA⊗HB ),

TrB
�

SAB (TA⊗1B )
�

=TrB (SAB )TA (A.31)

and

TrB
�

(TA⊗1B )SAB
�

= TATrB (SAB ). (A.32)

We will also make use of the property that the trace on a bipartite system can be decomposed into
partial traces on the individual subsystems. That is,

Tr(SAB ) =Tr(TrB (SAB )), (A.33)

or, more generally, for an operator SABC ∈ End(HA⊗HB ⊗HC ),

TrAB (SABC ) =TrA(TrB (SABC )). (A.34)

A.6 Decompositions of operators and vectors

Singular value decomposition. Let S ∈ Hom(H ,H ′) and let {bi}i ({b ′i }i ) be an orthonormal
basis of H . Then there exist unitaries U ,V ∈ End(H ) and an operator D ∈ End(H ) which is
diagonal with respect to {ei}i such that

S =U DV ∗. (A.35)

Polar decomposition. Let S ∈ End(H ). Then there exists a unitary U ∈ End(H ) such that

S =
p

SS∗U (A.36)

and

S =U
p

S∗S. (A.37)
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Spectral decomposition. Let S ∈ End(H ) be normal and let {|bi 〉}i be an orthonormal basis of
H . Then there exists a unitary U ∈ End(H ) and an operator D ∈ End(H ) which is diagonal with
respect to {|bi 〉}i such that

S =U DU ∗. (A.38)

The spectral decomposition implies that, for any normal S ∈ End(H ), there exists a basis {|bi 〉}i
ofH with respect to which S is diagonal. That is, S can be written as

S =
∑

i

αi |bi 〉〈bi | (A.39)

where αi ∈C are the eigenvalues of S.
Equation (A.39) can be used to give a meaning to a complex function f : C → C applied to a

normal operator S. We define f (S) by

f (S) :=
∑

i

f (αi )|bi 〉〈bi |. (A.40)

A.7 Operator norms and the Hilbert-Schmidt inner product

The Hilbert-Schmidt inner product between two operators S,T ∈ End(H ) is defined by

(S,T ) :=Tr(S∗T ). (A.41)

The induced norm ‖S‖2 :=
p

(S, S) is called Hilbert-Schmidt norm. If S is normal with spectral de-
composition S =

∑

i αi |bi 〉〈bi | then

‖S‖2 =
s

∑

i

|αi |2. (A.42)

An important property of the Hilbert-Schmidt inner product (S,T ) is that it is positive whenever
S and T are positive.

Lemma A.7.1. Let S,T ∈ End(H ). If S ≥ 0 and T ≥ 0 then

Tr(ST )≥ 0. (A.43)

Proof. If S is positive we have S =
p

S
2

and T =
p

T
2
. Hence, using the cyclicity of the trace, we

have

Tr(ST ) =Tr(V ∗V ) (A.44)

where V =
p

S
p

T . Because the trace of a positive operator is positive, it suffices to show that V ∗V ≥
0. This, however, follows from the fact that, for any φ ∈H ,

〈φ|V ∗V |φ〉= ‖Vφ‖2 ≥ 0. (A.45)
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The trace norm of S is defined by

‖S‖1 :=Tr|S | (A.46)

where

|S | :=pS∗S. (A.47)

If S is normal with spectral decomposition S =
∑

i αi |ei 〉〈ei | then

‖S‖1 =
∑

i

|αi |. (A.48)

The following lemma provides a useful characterization of the trace norm.

Lemma A.7.2. For any S ∈ End(H ),
‖S‖1 =max

U
|Tr(U S)| (A.49)

where U ranges over all unitaries onH .

Proof. We need to show that, for any unitary U ,

|Tr(U S)| ≤Tr|S | (A.50)

with equality for some appropriately chosen U .
Let S =V |S | be the polar decomposition of S. Then, using the Cauchy-Schwarz4 inequality

|Tr(Q∗R)| ≤ ‖Q‖2‖R‖2, (A.51)

with Q :=
p|S |V ∗U ∗ and R :=

p|S | we find

�

�Tr(U S)
�

�=
�

�Tr(UV |S |)��= ��Tr(UV
p|S |p|S |)��≤pTr(UV |S |V ∗U ∗)Tr(|S |) =Tr(|S |), (A.52)

which proves (A.50). Finally, it is easy to see that equality holds for U :=V ∗.

A.8 The vector space of Hermitian operators

The set of Hermitian operators on a Hilbert spaceH , in the following denoted Herm(H ), forms
a real vector space. Furthermore, equipped with the Hilbert-Schmidt inner product defined in the
previous section, Herm(H ) is an inner product space.

If {ei}i is an orthonormal basis ofH then the set of operators Ei , j defined by

Ei , j :=











1p
2
|ei 〉〈e j |+ 1p

2
|e j 〉〈ei | if i < j

ip
2
|ei 〉〈e j | − ip

2
|e j 〉〈ei | if i > j

|ei 〉〈ei | otherwise

(A.53)

4Karl Hermann Amandus Schwarz, 1843 – 1921, German mathematician.
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forms an orthonormal basis of Herm(H ). We conclude from this that

dim Herm(H ) = (dimH )2. (A.54)

For two Hilbert spacesHA andHB , we have in analogy to (A.23)

Herm(HA)⊗Herm(HB )∼=Herm(HA⊗HB ). (A.55)

To see this, consider the canonical mapping from Herm(HA)⊗Herm(HB ) to Herm(HA⊗HB ) de-
fined by (A.22). It is easy to verify that this mapping is injective. Furthermore, because by (A.54) the
dimension of both spaces equals dim(HA)

2 dim(HB )
2, it is a bijection, which proves (A.55).

A.9 Norm inequalities

Let x ∈Rn then ||x||2 ≤ ||x||1 ≤
p

n||x||2.

Proof. By definition of the 1 norm, we can write

||x||21 =
�

∑

i

|xi |
�2

=
∑

i

x2
i +

∑

i 6= j

|xi | |x j | ≥
∑

i

x2
i = ||x||22. (A.56)

Some simple algebra gives

0≤ 1
2

∑

i j

(|xi | − |x j |)2 =
1
2

∑

i j

�

|xi |2+ |x j |2− 2|xi | |x j |
�

= n
∑

i

|xi |2−
∑

i , j

|xi | |x j |= n||x||22− ||x||21,

which proves the assertion.

A.10 A useful operator inequality

Lemma A.10.1. For all 0≤ S ≤ 1, T ≥ 0, and any constant a ≥ 0,

1− (S +T )−1/2S(S +T )−1/2 ≤ (1+ a)(1− S)+ (2+ a+ a−1)T . (A.57)

154



BSolutions to Exercises
B.1 Exercises from Chapter 2

2.1 Statistical distance

a) The lower bound follows immediately from the fact that S = ; (or S = X ) is an event. The
upper bound follows because P [S] ≤ 1 and Q[S] ≥ 0 for every event S. To see the triangle
inequality, consider the following chain of inequalities

δ(P,Q) = sup
S⊆X
|P [S]−R[S]−Q[S]+R[S]| (B.1)

≤ sup
S⊆X

�|P [S]−R[S]|+ |R[S]−Q[S]|	 (B.2)

≤ sup
S⊆X
|P [S]−R[S]|+ sup

S⊆X
|R[S]−Q[S]| (B.3)

= δ(P, R)+δ(R,Q). (B.4)

b) Supposing the die is chosen uniformly at random, Bayes’ rule (the rule for conditional probabil-
ity) implies that, given the outcome of the throw, the die is more likely to be the one which has
the greater probability for the observed outcome. Thus, the optimal strategy is to guess the die
was the one which was more likely to yield the observed outcome of the throw. More formally,
defining the event S = {x ∈X : PX (x) ≥QX (x)} (the results that are more likely with die P ),
the best strategy is report P was the actual die for all outcomes x ∈ S and Q otherwise.

The probability that the guess is correct, again assuming the choice of die is uniform, is

Pcorrect =
1
2

P [S]+
1
2

Q[S̄] =
1
2
(P [S]+ 1−Q[S ]) = 1

2
(1+δ(P,Q)) ,

by definition (2.32) of the statistical distance.

c) For a finite alphabet we can write

δ(P,Q) =max
S⊆X
|∑

x∈S

P (x)−Q(x)|. (B.5)

Evidently, the optimal S only includes x for which P (x)≥Q(x) (or vice versa). Since X = S∪ S̄
we have

∑

x∈S

P (x)−Q(x)+
∑

x∈S̄

P (x)−Q(x) = 0 and (B.6)

∑

x∈S

P (x)−Q(x)−∑
x∈S̄

P (x)−Q(x) =
∑

x∈X
|P (x)−Q(x)| (B.7)

and therefore the desired equality (2.33) holds.

2.2 Jensen’s inequality
One can prove this inequality by induction, starting from the definition of the convex function

as the base of the induction. Then for the induction step we have, given a probability distribution
{p1, ..., pn+1}:
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f (
n+1
∑

k=1

pk xk ) = f ((1− pn+1)
n
∑

k=1

pk xk

1− pn+1
+ pn+1xn+1).

Now by the base of induction we have:

f ((1− pn+1)
n
∑

k=1

pk xk

1− pn+1
+ pn+1xn+1)≤ (1− pn+1) f (

n
∑

k=1

pk xk

1− pn+1
)+ pn+1 f (xn+1).

By the induction assumption that the Jensen’s inequality holds for the case n probabilities in the
distribution (here the distribution { pk

1−pn+1
}), we have:

(1− pn+1) f (
n
∑

k=1

pk xk

1− pn+1
)+ pn+1 f (xn+1)≤ (1− pn+1)

n
∑

k=1

pk

1− pn+1
f (xk )+ pn+1 f (xn+1).

→ f (
n+1
∑

k=1

pk xk )≤ (1− pn+1)
n
∑

k=1

pk

1− pn+1
f (xk )+ pn+1 f (xn+1) =

n+1
∑

k=1

pk f (xk ).

2.3 Weak law of large numbers

a) Multiply each term in the expression for P [A≥ ε] by a/ε≥ 1 to obtain

P [A≥ ε] =∑
a≥ε

PA(a)≤
∑

a≥ε

aPa(a)
ε
≤∑

a

aPa(a)
ε
=
〈A〉
ε

.

b) Set A= (X −µ)2 and use Markov’s inequality.

c) Defining X = 1
n
∑

Xi , the expectation value is still µ, but the variance becomes σ2/n. Using
Chebyshev’s inequality we get

P





�

1
n

∑

i

Xi −µ
�2

≥ ε


≤ σ
2

nε
,

and the weak law follows for any fixed ε > 0.

2.4 Conditional probabilities: Knowing more does not always help
Start by defining R to be the event that it rains and R′ that the radio predicts rain. Then, P [R∩

R′] is the probability that it rains and the radio has predicted rain, while P [R|R′] is the conditional
probability of rain given a prediction of rain by the radio. The problem statement amounts to the
definitions P [R] = 80%, P [R|R′] = 100%, and P [R∩R′]+ P [R̄∩ R̄′] = 80%.

a) The best thing your grandfather can do is to say it will rain every morning – this way he will
win 80% of the time. As for you, clearly if the radio predicts rain you should, too. The question
is what to do if the radio does not predict rain. But we have

P [R] = P [R|R′]P [R′]+ P [R|R̄′]P [R̄′] = 80% and (B.8)

P [R∩R′]+ P [R̄∩ R̄′] = P [R|R′]P [R′]+ P [R̄|R̄′]P [R̄′] = 80%, (B.9)

which implies that P [R|R̄′] = P [R̄|R̄′]. Thus, when the radio does not predict rain, it actually
delivers no useful information, since the probability of rain is 50%. Any strategy for this case
is equally good.
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b) Both you and your grandfather will be correct on approximately 80% of the days – this is easy
to see since one of your optimal strategies is to copy your grandfather and say it will always
rain.

B.2 Exercises from Chapter 3

3.1 Hadamard gate
a) A matrix U is unitary when U ∗U = 1. In fact, H ∗ =H , so we just need to verify that H 2 = 1,

which is the case.

b) Since H 2 = 1, its eigenvalues must be ±1. If both eigenvalues were equal, it would be propor-
tional to the identity matrix. Thus, one eigenvalue is+1 and the other−1. By direct calculation
we can find that the (normalized) eigenvectors are

|λ±〉=±
p

2±p2
2

|0〉+ 1
Æ

2(2±p2)
|1〉 (B.10)

c) The eigenbasis of σx̂ is formed by the two states |x̂±〉= 1p
2
(|0〉±|1〉). From the form of H given

in (3.56), it is clear that we can express H as

H = |x̂+〉〈0|+ |x̂−〉〈1| or (B.11)
H = |0〉〈x̂+|+ |1〉〈x̂−| (B.12)

The latter form follows immediately from the first since H † = H . Finally, we can express the
σẑ basis |0/1〉 in terms of the σx̂ basis as |0〉= 1p

2
(|x̂+〉+ |x̂−〉) and |1〉= 1p

2
(|x̂+〉− |x̂−〉). Thus,

if we replace |0〉 and |1〉 by these expressions in the equation for H we find

H = |0〉〈x̂+|+ |1〉〈x̂−|= 1p
2

�|x̂+〉〈x̂+|+ |x̂−〉〈x̂+|+ |x̂+〉〈x̂−| − |x̂−〉〈x̂−|
�

. (B.13)

Evidently, H has exactly the same representation in the σx̂ basis! In retrospect, we should have
anticipated this immediately once we noticed that H interchanges the σẑ and σx̂ bases.

For σŷ , we can proceed differently. What is the action of H on the σŷ eigenstates? These are

|ŷ±〉= 1p
2
(|0〉± i |1〉). Thus,

H |ŷ±〉= 1p
2
(H |0〉± i H |1〉) (B.14)

= 1
2 (|0〉+ |1〉± i |0〉∓ i |1〉) (B.15)

=
�

1± i
2

�

|0〉+
�

1∓ i
2

�

|1〉 (B.16)

= 1p
2

e i±π4
�

|0〉+
�

1∓ i
1± i

�

|1〉
�

(B.17)

= 1p
2

e i±π4 (|0〉∓ i |1〉) (B.18)

= e i±π4 |ŷ∓〉 (B.19)
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Therefore, the Hadamard operation just swaps the two states in the basis (note that if we used
a different phase convention for defining the σŷ eigenstates, there would be extra phase factors

in this equation). So, H =
�

0 e−i π4

e i π4 0

�

in this basis.

d) All unitary operators on a qubit are rotations of the Bloch sphere by some angle about some
axis. Since H 2 = 1, it must be a π rotation. Because the ŷ-axis is interchanged under H , the
axis must lie somewhere in the x̂-ẑ plane. Finally, since H interchanges the σx̂ and σẑ bases, it
must be a rotation about the m̂ = 1p

2
(x̂ + ẑ) axis.

3.2 State distinguishability

a) The the probability of correctly guessing, averaged over Alice’s choice of the state is

pguess =
1
2 (|〈ψ0||φ0〉|2+ |〈ψ1||φ1〉|2) (B.20)

To optimize the choice of measurement, suppose |ψ0〉 = α|0〉+β|1〉 for some α,β ∈ C such
that |α|2+ |β|2 = 1. Then |ψ1〉=−β∗|0〉+α∗|1〉 is orthogonal as intended. Using this in (B.20)
gives

pguess =
1
2

 
�

�

�

�

�

α∗+β∗p
2

�

�

�

�

�

2

+

�

�

�

�

�

iα−βp
2

�

�

�

�

�

2!

(B.21)

= 1
2 (1+ 2Re

��

1−i
2

�

αβ∗
�

). (B.22)

If we express α and β as α= ae iθ and β= b e iη for real a, b ,θ,η, then we get

pguess =
1
2 (1+ 2abRe

��

1−i
2

�

e i(θ−η)�). (B.23)

To maximize, we ought to choose a = b = 1p
2
, and we may also set η = 0 since only the

difference θ−η is relevant. Now we have

pguess =
1
2 (1+Re

��

1−i
2

�

e iθ
�

) (B.24)

= 1
2 (1+

1p
2
Re
�

e−iπ/4e iθ
�

), (B.25)

from which it is clear that the best thing to do is to setθ=π/4 to get pguess =
1
2 (1+

1p
2
)≈ 85.4%.

The basis states making up the measurement are |ψ0〉= 1p
2
(e iπ/4|0〉+|1〉) and |ψ1〉= 1p

2
(−|0〉+

e−iπ/4|1〉).
b) The point of this exercise is to show that thinking in terms of the Bloch sphere is a lot more

intuitive than just taking a brute force approach as we did in the solution of the previous exer-
cise. Let n̂0 and n̂1 be the Bloch vectors of the two states. Call m̂ the Bloch vector associated
with one of the two basis vectors of the measurement, specifically the one which indicates that
the state is |φ0〉 (the other is associated with −m̂). The guessing probability takes the form

pguess =
1
2 (|〈ψ0||φ0〉|2+ |〈ψ1||φ1〉|2) (B.26)

= 1
2

�

1
2 (1+ n̂0 · m̂)+ 1

2 (1− n̂1 · m̂)
�

(B.27)

= 1
4 (2+ m̂ · (n̂0− n̂1)) (B.28)
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The optimal m̂ lies along n̂0− n̂1 and has unit length, i.e.

m̂ =
n̂0− n̂1

p

(n̂0− n̂1) · (n̂0− n̂1)
(B.29)

=
n̂0− n̂1p
2− 2cosθ

. (B.30)

Therefore,

pguess =
1
4

�

2+
p

2− 2cosθ
�

(B.31)

= 1
2



1+

√

√

√1− cosθ
2



 (B.32)

= 1
2

�

1+ sin θ
2

�

. (B.33)

Finally, we should check that this gives sensible results. When θ = 0, pguess =
1
2 , as it should.

On the other hand, the states |φk〉 are orthogonal for θ = π, and indeed pguess = 1 in this
case. In the previous exercise we investigated the case θ = π

2 and here we immediately find
pguess =

1
2 (1+

1p
2
), as before.

3.3 Fidelity

a) First let’s just try to guess the result. The unknown state |ψ〉 is somewhere on the Bloch sphere,
and we might as well orient the sphere so that this direction is the ẑ direction. The fidelity of
|ψ〉 with any other state |φ〉 is given by

|〈ψ||φ〉|2 =Tr[PψPφ] =
1
2 (1+ cosθ), (B.34)

where θ is the angle between the two states on the Bloch sphere. Any state in the x̂-ŷ plane
has a fidelity of 1

2 , and since a random state is as likely to lie in the upper hemisphere as in the
lower, i.e. θ = π

2 + α and θ = π
2 − α are equally-likely, the average fidelity ought to be 1

2 . A
simple integration confirms this guess:

〈F 〉= 1
4π

∫ 2π

0
φ
∫ π

0
θ sinθ

1
2
(1+ cosθ) =

1
4

∫ π

0
θ sinθ=

1
2

. (B.35)

b) Given the outcome |k〉, the fidelity is Fk = |〈k||ψ〉|2 and this occurs with probability pk =
|〈k||ψ〉|2, so averaging over the measurement outcome gives F =

∑

k pk Fk =
∑

k |〈k||ψ〉|4.
Now we average over |ψ〉= cos θ2 |0〉+ sin θ

2 e iφ|1〉:

〈F 〉= 1
4π

∫ 2π

0
φ
∫ π

0
θ sinθ

�

cos4 θ

2
+ sin4 θ

2

�

=
2
3

. (B.36)

Thus making the measurement increases the fidelity of the guess.
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3.4 Indirect measurement
Since U is unitary, it preserves inner products, and therefore

〈φ1|φ2〉= 〈φ1|φ2〉〈blank|blank〉= 〈φ1|φ2〉〈β1|β2〉 ⇒ 〈β1|β2〉= 1

This means the states |β j 〉 are identical, and are therefore completely indistinguishable. The impli-
cation only holds if 〈φ1|φ2〉 6= 0, i.e. except when the states are orthogonal, since in that case an
extra factor 〈β1|β2〉 = 0 will not violate the equality. Of course, orthogonal states can already be
distinguished by direct, nondisturbing measurement of the associated projectors P j = |φ j 〉〈φ j |.
3.5 Broken measurement

Start with the Schmidt decomposition of |Ψ〉AB :

|Ψ〉AB =
∑

k

p
pk |αk〉|βk〉.

Bob’s measurement projectors P j can be expanded in his Schmidt basis as P j =
∑

k` c j
k`
|βk〉〈β`|. In

order for Alice’s measurement to replicate Bob’s, the probabilities of the various outcomes must be
identical, which is to say

〈Ψ|(P j )B |Ψ〉AB = 〈Ψ|(P ′j )A|Ψ〉AB ⇒ ∑

k

pk〈αk |P ′j |αk〉=
∑

k

pk〈βk |P j |βk〉.

Thus Alice should choose P ′j =
∑

k` c j
k`
|αk〉〈α`|. The post-measurement states when Alice or

Bob measures are given by

|Ψ ′j 〉=
∑

k`

p
pk c j

k`
|α`〉|βk〉 and |Ψ j 〉=

∑

k`

p
pk c j

k`
|αk〉|β`〉,

respectively. Neither is in Schmidt form, but note that they are related by a simple swap operation
|α j 〉A|βk〉B ↔ |αk〉A|β j 〉B , which is unitary; call it WAB so that |Ψ ′j 〉 =W |Ψ j 〉. Now let U ′j ⊗V ′j
be unitary operators which transform |Ψ j 〉 to Schmidt form in the |α j 〉|βk〉 basis. That is, (U ′j ⊗
V ′j )|Ψ j 〉=

∑

k

Ç

p j
k
|αk〉|βk〉, and it follows that W (U ′j ⊗V ′j )|Ψ j 〉= (U ′j ⊗V ′j )|Ψ j 〉. Therefore V ′j ⊗U ′j

takes |Ψ ′j 〉 to Schmidt form:

(V ′j ⊗U ′j )|Ψ ′j 〉=W W †(V ′j ⊗U ′j )W |Ψ j 〉=W (U ′j ⊗V ′j )|Ψ j 〉=
∑

k

Ç

p j
k
|αk〉|βk〉,

and thus

(U ′j ⊗V ′j )|Ψ j 〉= (V ′j ⊗U ′j )|Ψ ′j 〉
⇒ (U ′j ⊗V ′j )(1⊗ P j )|Ψ〉= (V ′j ⊗U ′j )(P

′
j ⊗1)|Ψ〉

⇒ (1⊗ P j )|Ψ〉= (U ′†j V ′j ⊗V ′†j U ′j )(P
′
j ⊗1)|Ψ〉.

3.6 Remote copy
Suppose Alice copies |ψ〉A to her half of the maximally entangled state |Φ〉A′B using the CNOT

gate UCnot | j , k〉= | j , j ⊕ k〉. This results in

U AA′
CNOT |ψ〉A|Φ〉A′B = 1p

2
(a|000〉+ a|011〉+ b |110〉+ b |101〉)AA′B

= 1p
2
[(a|00〉+ b |11〉)AB |0〉A′ +(a|01〉+ b |10〉)AB |1〉A′]

= 1p
2
(|Ψ〉AB |0〉A′ +(σx )B |Ψ〉AB |1〉A′) .
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As in teleportation, this creates the desired output state, up to the action of a Pauli operator on Bob’s
system which is indexed by an orthogonal state at Alice’s end. By measuring system A′ and telling
Bob the result (using just one bit since there are only two outcomes) he can undo the Pauli operator
to create |Ψ〉AB .
3.7 Measurements on a bipartite state

a) In accordance with the postulates, Alice describes B by the postmeasurement state as in (3.2).
Computing this we find, for any θ,

A〈θ|Φ〉AB =
1p
2
(cosθ〈0|+ sinθ〈1|)(|00〉+ |11〉) (B.37)

= 1p
2
(cosθ|0〉+ sinθ〈1|) = 1p

2
|θ〉B . (B.38)

Thus, she describes Bob’s state as |θ〉 or |π2 − θ〉 depending on the result of her measurement,
either of which is equally-likely as the other.

b) The calculation from the previous part shows that the outcomes of such a measurement on
|Φ〉AB are both equally-likely, no matter the value of θ. So, the probability distribution of his
outcomes should be uniform, as Alice’s mere implementation of the measurement should not
affect any observable quantity at his end.

But we must check this is consistent with the postulates. Conditioned on Alice’s measurement
result, the state of B is either |θ〉 or |π2 −θ〉, but Bob does not know which, so he must average
over the two possibilities. Alice, who knows the result, does not need to average. The prob-
ability of obtaining |0〉 in his measurement, given the state |θ〉, is simply cos2θ. The average
probability is then 1

2 cos2θ+ 1
2 cos2(π2 −θ) = 1

2 , as hoped.

3.8 The Hilbert-Schmidt inner product

a) The orthonormal bases
¦

|i〉R/Q

©

i
are arbitrary but fixed. We can expand any operator A as

A=
∑

k l ak l |k〉〈l |, and its transpose as AT =
∑

k l ak l |l 〉〈k|. We then have

A⊗1|Ω〉=∑
k l i

�

ak l |k〉〈l | ⊗1
�

|i〉 |i〉=∑
k l i

ak l δl i |k〉|i〉=
∑

k l

ak l |k〉|l 〉

Similarly,

1⊗AT |Ω〉=∑
k l i

�

1⊗ ak l |l 〉〈k|
�

|i〉|i〉=∑
k l i

ak l δki |i〉|l 〉=
∑

k l

ak l |k〉|l 〉.

b) From the first part it follows that

A⊗B |Ω〉= (1⊗B)(A⊗1)|Ω〉= (1⊗B)(1⊗AT )|Ω〉= (1⊗BAT )|Ω〉,
so we can write

〈Ω|A⊗B |Ω〉= 〈Ω|1⊗BAT |Ω〉.
Now we use the structure of |Ω〉 to write

∑

i j

〈i |〈i |1⊗BAT | j 〉| j 〉= δi j 〈i |BAT |k〉=TrBAT =TrAT B .
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3.9 Teleportation redux

a)

�

UA⊗U B

�

|Φ〉AB =
1p
2

∑

j k`mt

Uj k U `m (| j 〉〈k|A⊗ |`〉〈m|B ) |t , t 〉AB

=
1p
2

∑

j`t

Uj t U `t | j ,`〉AB =
1p
2

∑

j`

| j ,`〉AB

∑

t
Uj t (U

∗)t`

=
1p
2

∑

j`

| j ,`〉AB [U U ∗] j` =
1p
2

∑

j

| j , j 〉AB = |Φ〉AB

b)

A〈ψ|Φ〉AB =
1p
2

∑

j k

ψ∗j A〈 j |k〉A|k〉B =
1p
2

∑

k

ψ∗k |k〉B =
1p
2
|ψ∗〉B (B.39)

c) In the first case we have

|ψ′j 〉B = A′A〈Φ j | (|ψ〉A′UB |Φ〉AB ) = A′A〈Φ|
�

1A′ ⊗ (σ†
j )A⊗UB

�

|ψ〉A′ |Φ〉AB

= A′A〈Φ|
�

1A′ ⊗1A⊗ (Uσ∗j )B
�

|ψ〉A′ |Φ〉AB =
1
2 (Uσ

∗
j )B |ψ〉B .

After Bob receives Alice’s message and appliesσT
j they end up with the state |ψ′′j 〉= (σT

j Uσ∗j )|ψ〉.
For the second case

|ψ′j 〉B = A′A〈Φ j |UA′ (|ψ〉A′UB |Φ〉AB ) = A′A〈Φ j | (|Uψ〉A′UB |Φ〉AB ) =
1
2 (σ

∗
j U )B |ψ〉B .

Now Bob’s correction operation produces |ψ′′〉 = U |ψ〉. This is an important result, because
it shows that it is possible to perform an arbitrary single-qubit operation solely by measuring
an appropriately prepared state.

d) Work with the Schmidt decomposition: |ψ〉A1A2
=
∑

k
p

pk |αk〉A1
|βk〉A2

. Then following the
same calculation above we get

|ψ′j 〉A1B = A2A〈Φ j |
�

|ψ〉A1A2
|Φ〉AB

�

=
∑

k

p
pk A2A〈Φ j |(|αk〉A1

|βk〉A2
|Φ〉AB )

=
∑

k

p
pk |αk〉A1 A2A〈Φ j |(|βk〉A2

|Φ〉AB ) =
1
2

∑

k

p
pk |αk〉A1

(σ∗j )B |βk〉B
= 1

2 (σ
∗
j )B |ψ〉A1B .

Once again Bob can undo the σ∗j on system B and thus teleportation can also faithfully transfer
part of a larger, entangled system.

3.10 “All-or-nothing” violation of local realism
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a) Observe that the three operators commute, since X and Y anticommute. Since the state is
invariant under permutations of the three systems, we only need to check that it is an eigen-
state of the first operator, since the others are generated from it by permutation. Both X and
Y flip bits in the standard basis, but Y adds an extra −i if the input is |0〉 and i if |1〉. Thus
X Y Y |GHZ〉= 1p

2
(−i)2|111〉− (i2)|000〉= |GHZ〉.

b) Measuring Y on any two systems determines the X value on the third, so absent any “spooky
action at a distance”, the X value should be well-defined. Similarly, measurements of X and
Y on any two determine the Y value of the third, so it should also be well-defined. For X
measurements on each spin, the product x1x2x3 = 1 since x1x2x3 = (x1y2y3)(y1x2y3)(y1y2x3) (if
x j and yk all take the values ±1.)

c) Measuring X on each system and taking the product is the same as measuring X1X2X3. |GHZ〉
is clearly an eigenstate of this operator with eigenvalue −1, so X1X2X3 =−1.

B.3 Exercises from Chapter 4

4.1 The Bloch ball
a) We have

ρ1 =
1
2 (1+

1
2σx ) =

1
4

�

2 1
1 2

�

,

whose eigenvalues are {1/4,3/4}, corresponding to the vectors |+〉 and |−〉, respectively.

Meanwhile,

ρ2 =
1
2 (1+

1p
2
(σx +σz )) =

1

2
p

2

�

1+
p

2 1
1

p
2− 1

�

.

Observe that 1p
2
(σx+σz ) is in fact the Hadamard gate H from Exercise 3.1, whose eigenvalues

are ±1. Thus, the eigenvalues of ρ2 are {0,1}, corresponding to the eigenvectors of the H .

b) The Pauli matrices are Hermitian and the vector ~r is real, therefore ρ is Hermitian. As the
Pauli operators are traceless, the unit trace condition is also immediately satisfied. To show
positivity, we must compute the eigenvalues. Note that for a 2×2 Hermitian matrix, the trace
is the sum of the eigenvalues, while the determinant is their product. Hence, λ++λ− = 1 and

λ+λ− =
1
2 det

�

1+ rz rx − i ry
rx + i ry 1− rz

�

. We can conclude that

λ± =
1
2
(1+ |~r |),

so that the condition |~r | ≤ 1 ensures positivity of ρ.

c) First observe that any 2× 2 Hermitian operator can be expressed as a linear combination of
the Pauli operators and identity operator with real coefficients. For normalization to hold, the
coefficient of the identity operator must be 1/2. All that remains is positivity, which as we have
seen, implies that |~r | ≤ 1.
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d) The surface of the ball is defined by |~r |= 1, which leads to valid density operators with eigen-
values {0,1}, i.e. all pure states.

4.2 Partial trace

a) Let us express ρAB in terms of bases for A and B as

ρAB =
∑

j k l m

C j l ;k m | j 〉〈k|A⊗ |l 〉〈m|B .

Then ρA=
∑

j k l C j l ;k l | j 〉〈k|A. Clearly ρA is Hermitian since from Hermiticity of ρAB is must

hold that C k m; j k = C j l ;k m . For positivity of ρA, consider an arbitrary |ψ〉A and its tensor
product with any one of the basis states |l 〉B . Then, from positivity of ρAB we have 〈ψ| ⊗
〈l |ρ|p s i〉⊗ |l 〉 ≥ 0 and therefore

0≤∑
l

〈ψ| ⊗ 〈l |ρ|ψ〉⊗ |l 〉

=
∑

l

(〈ψ| ⊗ 〈l |)(∑
j k l ′m

C j l ′;k m | j 〉〈k| ⊗ |l ′〉〈m|)(|ψ〉⊗ |l 〉)

=
∑

j k l

C j l ;k l 〈ψ| j 〉〈k|ψ〉

= 〈ψ|ρA|ψ〉.
The normalization condition of ρA is simply the same as that of ρAB .

b) For ρA we have

ρA=TrB[|Ψ〉〈Ψ|AB]

=
∑

j k j ′k ′
C j kC̄ j ′k ′ | j 〉〈 j ′|δkk ′

=
∑

j j ′
| j 〉〈 j ′|∑

k

C j kC̄ j ′k

=
∑

j j ′
| j 〉〈 j ′|[C C †] j j ′

For ρB the calculation is entirely analogous.

c) For each one we obtain the maximally-mixed state 1
21A.

d) Clearly PX (x) = 1/2. We can represent PX Y by the state

ρX Y =
1
2 (|00〉〈00|+ |11〉〈11|).

The partial trace is then just the maximally-mixed state 1
21.

4.3 Canonical purifications

a) Tracing out B , we obtain

TrB[|ψ〉〈ψ|AB] =
p
ρTrB[UB |Ω〉〈Ω|U ∗B ]pρ=pρ1pρ= ρ.

164



B.3. Exercises from Chapter 4

b) By Proposition 4.1.1, any two purifications of ρA are related by unitaries (or isometries) on B .
Since applying another unitary to B gives a state of the same form, all purifications must have
this form.

4.4 Decompositions of density matrices

a) By Proposition 4.1.2 we have
p

p`|φ`〉=
∑

k

p

λk Uk`|k〉 for some unitary matrix Uk`. Taking
the norm of each expression results in

p` =
∑

k

λk |Uk`|2

since |k〉 is an orthonormal basis. Thus ~λmajorizes ~p. Note that we cannot turn this argument
around to say that ~p majorizes λ. Since starting from

p

λk |k〉 =
∑

`
p

p`U †
k`
|φ`〉 we cannot

easily compute the norm of the righthand side because the |φk〉 are not orthogonal.

b) ~u is majorized by every other distribution ~p (of length less or equal to n) since we can use the
doubly stochastic matrix T j k = 1/n for all j , k to produce ~u = T ~p. Therefore, to find a decom-
position in which all the weights are identical, we need to find a unitary matrix whose entries
all have the same magnitude, namely 1/

p
n. One choice that exists in every dimension is the

Fourier transform F j k =
1p
nω

j k , where ω = exp(2πi/n). The vectors in the decomposition
are therefore

|φ`〉=
∑

k

Æ

λkω
k`|k〉.

4.5 Generalized measurement by direct (tensor) product

a) Name the output states |φ00〉AB and |φ01〉AB , respectively. Although the specification of U is
not complete, we have the pieces we need, and we can write UAB =

∑

j k |φ j k〉〈 j k| for some
states |φ10〉 and |φ11〉. The measurement operators Ak are defined implicitly by

UAB |ψ〉A|0〉B =
∑

k

(Ak )A|ψ〉A|k〉B .

Thus Ak = B〈k|UAB |0〉B =
∑

j B〈k|φ j 0〉AB〈 j |A, which is an operator on system A, even though
it might not look like it at first glance. We then find

A0 =
2p
6

�

0 0
0 1

�

, A1 =
1p
6

� p
3 1

0 0

�

, A2 =
1p
6

� p
3 −1

0 0

�

.

b) The corresponding POVM elements are given by E j =A∗Aj :

E0 =
2
3

�

0 0
0 1

�

, E1 =
1
6

�

3
p

3p
3 1

�

, E2 =
1
6

�

3 −p3
−p3 1

�

.

They are each rank one (which can be verified by calculating the determinant). The POVM
elements project onto trine states |1〉, (p3|0〉± |1〉)/2.
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c) The averaged post-measurement state is given by ρ′ =
∑

j AjρA∗. In this case we have ρ′ =
diag(2/3,1/3).

4.6 Geometry of POVMs

a) We expand E in its eigenbasis and write

E = λ |0〉〈0|+∑
i 6=0

λi |i〉〈i |

= λ |0〉〈0|+(1−λ0)
∑

i 6=0

λi |i〉〈i |+λ
∑

i 6=0

λi |i〉〈i |

= λ (|0〉〈0|+∑
i 6=0

λi |i〉〈i |)
︸ ︷︷ ︸

E1

+(1−λ)∑
i 6=0

λi |i〉〈i |
︸ ︷︷ ︸

E2

.

Hence we can write the POVM {E ,1− E} as a convex combination of the POVMs {E1,1− E1}
and {E2,1− E2}.

b) Let E be an orthogonal projector on some subspace V ∈ H and let |ψ〉 ∈ V ⊥. If we assume
that E can be written as the convex combination of two positive operators then

0= 〈ψ|E |ψ〉
= λ〈ψ|E1|ψ〉+(1−λ)〈ψ|E2|ψ〉.

However, both terms on the right hand side are non-negative, thus they must vanish identically.
Since |ψ〉 was arbitrary we conclude that E1 = E2 = E .

c) The element-wise convex combination of elements an be interpreted as using two different mea-
surement devices with probability α and 1− α, but not knowing which measurement device
was used. In contrast to that, a simple convex concatenation of sets would be interpreted as us-
ing two different measurement devices with probability α and 1−α, but keeping track of which
measurement device was used. This is because by definition of a POVM, each POVM element
corresponds to a specific measurement outcome. If the two POVMs are concatenated, we can
still uniquely relate the measurement outcome to the corresponding measurement device.

4.7 Some common quantum channels

Dephasing The dephased output is the same as measuring the state in the standard basis: diag(ρ00,ρ11) =
∑1

j=0 P jρP j for P j = | j 〉〈 j |. Thus possible Kraus operators are A2 =
p

1− p1, Aj =
p

pP j , j = 0,1.

But we can find a representation with fewer Kraus operators. Notice that σzρσz =
�

ρ00 −ρ01
−ρ10 ρ11

�

.

Thus (ρ+σzρσz )/2= diag(ρ00,ρ11) and ρ′ =
∑1

j=0 AjρA∗j for A0 =
p

1− p/21 and A1 =
p

p/2σz .
Two is the minimal number of Kraus operators, since for one Kraus operator the trace preserving

condition becomes A∗A= 1 and implies A= 1 for qubit-to-qubit channels. The action of the dephas-
ing channel is to shrink the x − y components of the Bloch vector. We have found examples of both
projective and unitary Kraus operators.
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Depolarizing Since the action of conjugation by σz destroys off-diagonal elements in the basis in
which σz is diagonal, we could try separately conjugating by each Pauli operator and see what hap-
pens. The result is that E (ρ) =∑4

j=1 AjρA∗j for A0 =
p

1− 3 p/21, Ak =
p

p/2σk , k = 1,2,3.
The number of Kraus operators is at least the rank of the Choi state. Applying the depolarizing

channel to half of a maximally entangled state |Φ〉AB results in the mixture

ρ′AB = (1− p)|Φ〉〈Φ|AB + p 1
41AB . (B.40)

This state has rank four unless p = 0. The action of the depolarizing channel is to shrink all compo-
nents of the Bloch vector. The Kraus operators we have found are all (proportional to) unitaries.

Amplitude damping Finally, for the amplitude damping channel, we can read off the Kraus op-

erators from the unitary action since U |ψ〉|0〉 = ∑k Ak |ψ〉|k〉. Therefore A0 =
�

1 0
0

p

1− p

�

and

A1 =
�

0
p

p
0 0

�

.

The action of the amplitude damping channel is to map the Bloch vector towards the north pole
of the Bloch sphere (or whichever direction is associated with the state |0〉.)
4.8 Classical channels as CPTP maps

a) We have

PY (0) =
∑

x
PX (x)PY |X=x (0) = q(1− p)+ (1− q)p

PY (1) = q p +(1− q)(1− p),

which can be expressed as a quantum state ρy = [q(1− p)+(1−q)p] |0〉〈0|+[q p+(1−q)(1−
p)] |1〉〈1| ∈ L (HY ).

b) We take four operators, corresponding to the four different “branches" of the channel,

M0→0 =
p

1− p|0〉〈0|
M0→1 =

p
p|1〉〈0|

M1→0 =
p

p|0〉〈1|
M1→1 =

p

1− p|1〉〈1|.
To check that this works for the classical state ρX , we compute

E (ρX ) =
∑

xy
Mx→y ρX M ∗x→y

=
∑

xy
Mx→y

h

q |0〉〈0|+(1− q)|1〉〈1|
i

M ∗x→y

=(1− p) |0〉〈0|
h

q |0〉〈0|+(1− q)|1〉〈1|
i

|0〉〈0|+ p |1〉〈0|
h

q |0〉〈0|+(1− q)|1〉〈1|
i

|0〉〈1|
+ p |0〉〈1|

h

q |0〉〈0|+(1− q)|1〉〈1|
i

|1〉〈0|+(1− p) |1〉〈1|
h

q |0〉〈0|+(1− q)|1〉〈1|
i

|1〉〈1|
=q(1− p) |0〉〈0|+ q p |1〉〈1|+(1− q)p |0〉〈0|+(1− q)(1− p) |1〉〈1|.

As intended, E (ρX ) = ρY .
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c) In general, we can express the state in the computational basis as ρX =
∑

i j αi j |i〉〈 j |, with the
usual conditions (positivity, normalization). Applying the map gives us

E (ρX ) =
∑

xy
Mx→y

h

∑

i j

αi j |i〉〈i | j
i

M ∗x→y

=(1− p) |0〉〈0|
h

∑

i j

αi j |i〉〈i | j
i

|0〉〈0|+ p |1〉〈0|
h

∑

i j

αi j |i〉〈i | j
i

|0〉〈1|

+ p |0〉〈1|
h

∑

i j

αi j |i〉〈i | j
i

|1〉〈0|+(1− p) |1〉〈1|
h

∑

i j

αi j |i〉〈i | j
i

|1〉〈1|

=α11(1− p) |0〉〈0|+α11 p |1〉〈1|+α22 p |0〉〈0|+α22(1− p) |1〉〈1|.
Using α11 := α,α22 = 1− α, we get E (ρX ) = [α(1− p) + (1− α)p] |0〉〈0|+ [α p + (1− α)(1−
p)] |1〉〈1|. The channel ignores the off-diagonal terms of ρX : it acts as a measurement on the
computational basis followed by the classical binary symmetric channel.

d) We generalize the previous result as

EW (ρX ) =
∑

x,y
PY |X=x (y) |y〉〈x|ρX |x〉〈y|

=
∑

x,y
Ex→yρX E∗x→ y, Ex→y =

q

PY |X=x (y) |y〉〈x|.

To see that this works, take a classical state ρX =
∑

x PX (x) |x〉〈x| as input,

EW (ρX ) =
∑

x,y
PY |X=x (y) |y〉〈x|

�

∑

x ′
PX (x

′) |x ′〉〈x ′|
�

|x〉〈y|

=
∑

x,y
PY |X=x (y) PX (x) |y〉〈y|

=
∑

y
Py (y) |y〉〈y|.

4.9 Unital channels
Let Bk =V ∗Ak U . Then it’s easy to verify that Λ′ =

∑

k BkΛB∗k and that
∑

k BkB∗k =
∑

k B∗kBk =
1. Now consider the component form of each of these equations:

(Λ′)` =
∑

k ,n

(Bk )`n(B
∗
k )n`(Λn),

δ`m =
∑

k ,n

(Bk )`n(B
∗
k )nm ,

δ`m =
∑

k ,n

(B∗k )`n(Bk )nm .

We only need one index for Λ and Λ′ since they are diagonal. Defining D`n =
∑

k (Bk )`n(B
∗
k )n`, we

have Λ′ = DΛ (thinking of Λ and Λ′ as vectors), and the two conditions on the Bk imply that D is
doubly stochastic.
4.10 The Choi isomorphism
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a) First define the components of the Bloch representation by

ρ=
1
2

�

1+ z x − i y
x + i y 1− z

�

, x2+ y2+ z2 ≤ 1.

We apply the map to this state and get

ρ′ = 1
2

�

1+ 2αx 2αz
2αz 1− 2αx

�

.

The mapping is trace-preserving, hence it is positive if and only if the determinant of ρ′ is
positive for all allowed values of x, y and z. The determinant is given by

det(ρ′) = 1
4
(1− 4α2x2− 4α2z2)

≥ 1
4
−α2.

The map is positive for 0≤ α≤ 1
2 .

b) Using the Bell basis we have

(Eα⊗I )[|Φ〉〈Φ|] = 1
41AB +α(|Φx〉〈Φz |+ |Φz〉〈Φx |).

We could expand this in a local basis | j 〉|k〉 and compute the eigenvalues to determine positivity.
But we can just as well use the Bell basis, since the state is already partially expressed in this
basis. The identity operator is the equal mixture of all the Bell state projectors, and so in the
basis {|Φx〉, |Φz〉, |Φ〉, |Φy〉 we have

(Eα⊗I )[|Φ〉〈Φ|]' 1
4









1 4α 0 0
4α 1 0 0
0 0 1 0
0 0 0 1









.

For complete positivity the determiniant of the output must be nonnegative, which we can
easily see is only true for 0≤ α≤ 1

4 .

c) To construct Kraus operators, we use (4.57). At α = 1/4 there are only three eigenvectors of
the Choi state with nonzero eigenvalues, |Φ〉, |Φy〉, and 1p

2
(|Φx〉+ |Φz〉) = 1

2 (|00〉+ |01〉+ |10〉−
|11〉), corresponding to eigenvalues 1/4, 1/4, and 1/2, respectively. For |Φ〉 we have the Kraus
operator M0 such that

M0|φ〉=
p

2
2 A〈φ̄|Φ〉= 1

2 |φ〉,
using the results of Exercise 3.9. Hence, M0 =

1
21.

Similarly, for |Φy〉 we get M1 with

M1|φ〉=
p

2
2 A〈φ̄|Φy〉=

p
2

2 A〈φ̄|σy |Φ〉= 1
2σy |φ〉,

and thus M1 =
1
2σy . Since the last eigenvector is a superposition of |Φx〉 and |Φz〉, the same

reasoning implies that M2 =
1
2 (σx +σz ).
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B.4 Exercises from Chapter 5

5.1 Minimum-error state discrimination
a) No matter how many outcomes the physical apparatus produces, Bob will invariably group

them into two sets corresponding to the guess of ρ j . Hence without loss of generality we can
just regard the POVM whose elements are the sums of the two groups as a new POVM.

b) The probability of error is just

perror = p1Tr[ρ1E2]+ p2Tr[ρ2E1] = p1Tr[ρ1]+Tr[(p2ρ2− p1ρ1)E1].

Using the eigenvalues and eigenvectors of p2ρ2− p1ρ1 yields the desired result.

c) The quantities 〈ei |E1|ei 〉 are nonnegative, but the λ can be negative. The best choice is to choose
E1 to project onto the subspace corresponding to negative eigenvalues: E1 =

∑

i :λi<0 |ei 〉〈ei |.
d) Let B = p2ρ2 − p1ρ1. Then Tr[B] =

∑

i :λi≥0λi +
∑

i :λi<0λi , while ||B ||1 =
∑

i :λi≥0λi −
∑

i :λi<0λi . Thus
∑

i :λi<0λi = (Tr[B] − ||B ||1)/2. Substitution into the equation for perror
gives the desired result.

5.2 Unambiguous state discrimination

a) Since the two signal states are pure, they span a two-dimensional subspace and without loss
of generality we can restrict the support of the POVM elements to this subspace—an effective
qubit. Suppose E j are rank-one operators E j = αk |ξ j 〉〈ξ j | (if they aren’t, decompose them into
a set of rank-one operators). Then we want to fulfill 0 = Pr(E j |ρk ) = αk |〈ξ j |φk〉|2, which can
only work if |ξ j 〉= |φ⊥k 〉. That is, |ξ0〉 is the state orthogonal to |φ1〉 and vice versa; the unam-
biguous measurement works by rejecting rather than confirming one of the two hypotheses.
Thus E j = α j |φ⊥k 〉〈φ⊥k | for j 6= k and some 0≤ αk ≤ 1.

b) Since 〈φ1|φ2〉 6= 0 in general,
∑2

j=1 E j 6= 1, and therefore a third measurement element is
needed. This outcome tells Bob nothing about which signal was sent, so it is an inconclusive
result E?.

c) We know that a general unambiguous discrimination POVM has the form

E0 = α0|φ⊥1 〉〈φ⊥1 |, E1 = α1|φ⊥0 〉〈φ⊥0 |, E? = 1− E0− E1.

The sum-to-unity constraint is enforced by the form of E? and E0/1 are positive by construction,
so the only outstanding constraint is that E? be positive. Symmetry between the signal states
implies that α0 = α1, leaving

1−α(|φ⊥0 〉〈φ⊥0 |+ |φ⊥1 〉〈φ⊥1 |)≥ 0.

Thus we should choose the largest value of α consistent with this constraint. We can find a
closed-form expression in terms of Bloch-sphere quantities. Let |φ j 〉 have Bloch vector n̂ j ,
meaning |φ⊥j 〉 has Bloch vector −n̂ j . Then the constraint becomes

1− 1
2α (1− n̂1 · ~σ +1− n̂0 · ~σ) = (1−α)1+α(n̂0+ n̂1) · ~σ ≥ 0.
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We know the eigenvalues of a general expression in terms of the Pauli operators and identity
from the lecture on qubits, namely λ± = (1−α)±α|n̂0+ n̂1|. Thus, the largest possible α is

α=
1

1+ |n̂0+ n̂1|
.

When the |φ j 〉 are orthogonal, n̂0+ n̂1 = 0 and the unambiguous measurement goes over into
the usual projection measurement.

5.3 Decoupling

a) Clearly |Φ〉AA′ is a purification of the maximally mixed state 1A
dA

. The partial trace over A′ and

B ′ of the product state |Φ〉AA′ ⊗ |ψ〉BB ′ will just produce the tensor product of the partial trace
of |Φ〉AA′ and that of |ψ〉BB ′ over B ′, i.e. the state ρAB .

b) From (5.40) we have F (σAB , 1A
dA
⊗ρB )≥ 1−ε. Then, using the properties of fidelity there exists

a purification |φ〉ABA′B ′ of σAB such that F (|φ〉ABA′B ′ , |Ψ〉AA′) = F (σAB , 1A
dA
⊗ρB ). Using (5.41)

yields the desired result for this particular purification.

5.4 Entanglement and channel distinguishability

a) This follows immediately from the definition, since the set of input states considered in the
maximization for δ1−1 is a subset of those for δ itself.

b) First we calculate δ1−1(Ep ,I ):

δ1−1(Ep ,I ) =max
ρA
δ(p 1

21A+(1− p)ρA,ρA)

=max
ρA

1
2Tr

�

�

�p 1
21− pρA

�

�

�

=max
ρA

p
2 Tr

�

�

�

1
21−ρA

�

�

� .

Note that Tr|1/2−ρ| is the distance between the Bloch vector of ρ and the center of the Bloch
sphere. This implies that its maximum occurs when ρA is a pure state, and so the radius is 1.
Therefore δ1−1(Ep ,I ) = 1

2 p.

To compute or bound δ, first note that the channel can be thought of as leaving the input state
untouched with probability 1− p or else taking the trace of the state and then creating the new
state 1

21 with probability p. Therefore,

δ(E ,I ) =max
ρAR

δ(E ⊗I (ρAR),I ⊗I (ρAR))

=max
ρAR

1
2Tr|p 1

21A⊗ρR+(1− p)ρAR−ρAR|

=
p
2

max
ρAR

Tr| 121A⊗ρR−ρAR|.
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We can find a lower bound by choosing ρAR = |Φ〉〈Φ|AR. In that case ρR =
1
21 and thus

δ(E ,I )≥ p
2 Tr| 141AR− |Φ〉〈Φ|AR|

=
p
2
(3× 1

4 − (− 3
4 )) =

3
4 p.

Thus we have found a channel for which δ(E ,F ) > δ1−1(E ,F ), i.e. the general inequality
relating the two quantities is strict.

B.5 Exercises from Chapter 6

6.1 Properties of the von Neumann entropy
The first two properties are clear by inspection. The third follows from positivity of the relative

entropy by taking σ = 1
d 1, where 1 is the identity operator on suppρ and d = |suppρ|: Then,

D(ρA,σA) = log d −H (A)ρ ≥ 0.
To prove the fourth let ρA =

∑

k pk (ρk )A. Then
∑

k pk D(ρk ,ρ) = H (A)ρ−
∑

k pk H (A)ρk
≥ 0.

Since the relative entropy is only zero when the arguments are identical, at least on the support of
the first argument, for equality to hold it must be the case that restricting ρ to the support of ρk gives
back ρk itself. Thus all the states must be disjoint for concavity to hold with equality.

Finally, let ρ′ =
∑

k PkρPk . Observe that [Pk ,ρ′] = 0. Thus,

D(ρA,ρ′A) =−H (A)ρ−
∑

k

Tr[Pk (ρA logρ′A)Pk] =H (A)ρ′ −H (A)ρ ≥ 0.

6.2 Optimization in the conditional von Neumann entropy
Expanding D(ρAB ,1A⊗σB ) we have

D(ρAB ,1A⊗σB ) =Tr[ρAB logρAB]−Tr[ρAB log(1A⊗σB )]
=Tr[ρAB logρAB]−Tr[ρAB (1A⊗ logσB )]
=Tr[ρAB logρAB]−Tr[ρB logσB]
=Tr[ρAB logρAB]−Tr[ρB logσB]+Tr[ρB logρB]−Tr[ρB logρB]
=D(ρAB ,ρA⊗ρB )+D(ρB ,σB ).

Thus, maxσ −D(ρAB ,ρA⊗σB ) =−D(ρAB ,ρA⊗ρB ) +maxσ −D(ρB ,σB ). The maximum of the last
expression is clearly zero, which holds for σB = ρB .
6.3 Quantum mutual information

a) From the chain rule for mutual information we have I (A : B) = H (A) + H (B)− H (AB) ≤
H (A)+H (B)≤ 2 for bipartite qubit systems. The Bell state achieves this bound.

b) Write I (A : B) =H (A)−H (A|B) and use the bound H (A|B)≥ 0 since AB is a CQ state.

c) The AB subsystem is just a classically-correlated state, as is the ABC system, which accounts
for the first two expressions. However, ABC D is not a classical state and so I (A : B |C D) =
H (C D |A)−H (C D |AB) =−H (C D |AB) = 1.

6.4 Data processing for classical mutual information
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a) First observe that

PX Y |Z=z (x, y)

PY |Z=z (y)
=

PX Y Z (x, y, z)
PY Z (y, z)

= PX |Y=y,Z=z (x),

which implies I (X :Y |Z) =H (X |Z)−H (X |Y Z). Then

I (X :Y Z) =H (X )−H (X |Y Z) =H (X )+ I (X :Y |Z)−H (X |Z) = I (X :Z)+ I (X :Y |Z).

b) There are only two ways to expand this expression:

I (X :Y Z) = I (X :Z)+ I (X :Y |Z) = I (X :Y )+ I (X :Z |Y ).
Since X and Z are conditionally independent given Y , I (X :Z |Y ) = 0. Meanwhile, I (X :Y |Z)≥
0, since it is a mixture (over Z) of positive quantities I (X :Y |Z = z). Therefore I (X :Y ) ≥
I (X :Z).

6.5 Fano’s inequality

a) The random variables X , Y , and ÒX form a Markov chain, so we can use the data processing
inequality. It leads directly to H (X |ÒX )≥H (X |Y ).

b) H (E |X ,ÒX ) = 0 since E is determined from X and ÒX . H (E |ÒX ) ≤ H (E) = h2(Perror) since
conditioning reduces entropy.

H (X |E ,ÒX ) =H (X |E = 0,ÒX )p(E = 0)+H (X |E = 1,ÒX )p(E = 1)

= 0(1− Perror)+H (X |E = 1,ÒX )Perror ≤ Perror log |X |
Putting this together we have

H (X |Y )≤H (X |ÒX )≤ h2(Perror)+ Perror log |X | ≤ 1+ Perror log |X |,
where the last inequality follows since h2(x)≤ 1. Rearranging terms gives the Fano inequality.

6.6 Squashed entanglement of separable states
Any separable state can be written ρAB =

∑

k pk (σk )A⊗ (γk )B , which we can extend to ρABE =
∑

k pk (σk )A⊗ (γk )B ⊗ |k〉〈k|E . This is a CQ state with E classical, so we can interpret I (A : B |E) as
the mixture of I (A : B)k over the values of k in E . But each of these terms is zero since AB is a product
state given the value of k.
6.7 A sufficient entanglement criterion

a) ApplyingF⊗I to each state in the mixture defining the separable state results in a valid prod-
uct state sinceF is positive. Mixtures of positive states are positive, so the output is positive.

b) Clearly the identity remains unchanged by the operation. We found the partial transpose of
|Φ〉 in (4.47) so the output state is

ρ′ = 1
4









2− ε 0 0 0
0 ε 2− 2ε 0
0 2− 2ε ε 0
0 0 0 2− ε









.
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Clearly there is a doubly-degenerate eigenvalue (2−ε)/4 and for the other two we only need to
look at the 2× 2 middle block. Clearly its eigenvectors are |±〉, with eigenvalues (2− ε)/4 and
3ε− 2, respectively. The latter is negative for ε > 2/3, and therefore we can conclude that the
state is certainly not separable for 2/3< ε≤ 1.

B.6 Exercises from Chapter 7

7.1 Optimality of superdense coding
Suppose X and Y are perfectly correlated, but random 2-bit random variables. Then, I (X : Y ) =

2. Suppose now that Y is transmitted through the putative superdense coding scheme using a units
of entanglement and b units of quantum communication. Before the decoding step, the receiver has
a system B consisting of a+ b qubits. Supposing the protocol works as intended, the Holevo bound,
Corollary 7.3.1 implies a+ b ≥ 2.
7.2 Classical resource inequalities

a) Since E is independent of A and B by the security condition, I (A : B |E) = I (A : B). Since A and
B are perfectly correlated but each uniformly distributed, I (A : B |E) = l .

b) After any putative LOCC operation, we would have I (A′ : B ′|E ′)≤ l . From the previous part
we know that if A′ and B ′ make a length-l ′ secret key, then I (A′ : B ′|E ′) = l ′, whence it follows
that l ′ ≤ l .

c) By the chain rule we have (A,X : B |E) = H (AX |E)− H (AX |BE) = H (A|E) + H (X |AE)−
H (A|BE)−H (X |ABE) = I (A : B |E)+ I (X : B |AE). But since X is independent of everything
else, the second term vanishes.

d) This follows by monotonicity.

e) The proof is entirely similar to the monotonicity of squashed entanglement, Proposition 6.6.1.

7.3 Classical channel capacities
For any classical random variable Y we have

I (X : Y ) =H (Y )−H (Y |X ) =H (Y )−∑
x

PX (x)H (Y |X = x),

where H (Y |X = x) = H (Y )PY |X=x
. The BSC and BEC are symmetric channels, in the sense that

H (Y |X = x) is independent of x. That is, the output has the same entropy conditioned on the input,
for any input. In the case of the BSC the entropy equals h2(p) =−p log p − (1− p) log(1− p), often
called the binary entropy. This also holds for the BEC. Therefore, the capacity of either channel is

max
PX

H (Y )− h2(p),

the only difference being how Y is related to X . To determine the optimal distribution for either case,
we can explicitly optimize, or note the fact that PY is a convex mixture of distributions and use the
concavity of entropy. That is, PY =

∑

x PX (x)PY |X=x and therefore the optimal input distribution
must be PX ∼uniform. This reasoning holds for any symmetric channel in the sense defined above,
but still does not tell us the value of the capacity.

But we need only evaluate H (Y ) for X uniform. Under the BSC, a uniform input is mapped to
a uniform output, so H (Y ) = 1 and the capacity is 1− h2(p). Under the BEC, the uniform input
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is mapped to the distribution with values ((1− p)/2, p, (1− p)/2). Computing the entropy we find
H (Y ) = h2(p)+ (1− p), and thus the capacity is simply 1− p.
7.4 Classical capacity of the depolarizing channel

a) These are nearly the same as in the BSC: PY |X=x (x) = 1− p + p/2= 1− p/2.

b) By the previous exercise we know q = 1/2 is optimal and the capacity is 1− h2(p/2).

c)

B.7 Exercises from Chapter 8

8.1 One-time pad
First note that

I (C : M )− I (C : M |K) = I (M : K)− I (M : K |C )
= I (K : C )− I (K : C |M ),

and that mutual information is non-negative. We introduce x = I (C : M |K), y = I (M : K |C ) and
z = I (K : C |M ) and, using I (C : M ) = 0, we get

x − I (C ; M ) = x = y − I (M ;K) = z − I (K ;C ). (B.41)

Using the two conditions, we write

H (M ) =H (M |C ,K)+ I (C : M )+ I (K : M |C ) = y, and
H (K) =H (K |M ,C )+ I (M : K)+ I (M : C |K)≥ y − x + z.

However, since y ≥ x and z ≥ x (from (B.41)), we get H (K)≥H (M ).
8.2 Secrecy and correctness

Let ρ̃ABE be the tripartite state held be the distinguisher after interacting with the ideal system
σEK for an optimal simulator σE , and let Γ be the positive operator which projects the AB system
on all states with A 6= B . Then

ε≥ δ(ρABE , ρ̃ABE )≥ δ(ρAB , ρ̃AB )≥Tr[Γ (ρAB − ρ̃AB )] = Pr[A 6= B]ρ.

The last equality holds because by construction of the ideal key resourceK , Tr(Γ ρ̃AB ) = 0 (for any
simulator σE ).

Let pkeyρ
key
AE be the state of the real AE system held by the distinguisher after projecting on the

subspace in which a key is generated, and let p̃keyτA⊗ ρ̃key
E be the state of the ideal AE system for the

same projection. Note that we cannot assume that pkey = p̃key or ρkey
E = ρ̃key

E , since we do not know
how the simulator σE works.

Since

ε≥ δ(ρABE , ρ̃ABE )≥ δ(pkeyρ
key
AE , p̃keyτA⊗ ρ̃key

E )≥ δ(pkeyρ
key
E , p̃keyρ̃

key
E ),
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we have

pkeyδ
�

ρkey
AE ,τA⊗ρkey

E

�

= δ
�

pkeyρ
key
AE , pkeyτA⊗ρkey

E

�

≤ δ
�

pkeyρ
key
AE , p̃keyτA⊗ ρ̃key

E

�

+δ
�

p̃keyτA⊗ ρ̃key
E , pkeyτA⊗ρkey

E

�

≤ ε+ ε.

8.3 Min-entropy chain rule
Let ρX ZE =

∑

x,z px,z |x〉〈x| ⊗ |z〉〈z | ⊗ ρx,z
E and let {Γ z

x }x be the optimal measurement of the E
system to guess x given that Z = z. A possible strategy for guessing X Z given E is to pick z uniformly
at random then apply the measurement {Γ z

x }x to the E system. This strategy would succeed with
probability

∑

x,z
px,z

1
|Z |Tr(Γ z

x ρ
x,z
E ) =

1
|Z | pguess(X |ZE)ρ.

We thus have
pguess(X |E)ρ ≥ pguess(X Z |E)ρ ≥

1
|Z | pguess(X |ZE)ρ,

hence
Hmin(X |ZE)ρ ≥Hmin(X |E)ρ− log |Z |.

To prove the smooth version, let ρ̄X E ∈ Bε(ρX E ) be the state which maximizes Hmin(X |E)ρ̄.
Let ρ̄X ZE be an extension of ρ̄X E such that P (ρX ZE , ρ̄X ZE ) = P (ρX E , ρ̄X E ). By the property of the
purified distance, such a state is guaranteed to exist. Then

H ε
min(X |ZE)ρ ≥Hmin(X |ZE)ρ̄ ≥Hmin(X |E)ρ̄− log |Z |=H ε

min(X |E)ρ− log |Z |.
8.4 Privacy amplification with smooth min-entropy

Let ρ̄X E ∈B ε̄(ρX E ) be the state which maximizes Hmin(X |E)ρ̄. Then

δ
�

ρ̄F (X ,Y )Y E ,τU ⊗τY ⊗ ρ̄E

�

≤ ε.

Furthermore,

δ(ρF (X ,Y )Y E , ρ̄F (X ,Y )Y E )≤ δ(ρX E ⊗τY , ρ̄X E ⊗τY )≤ P (ρX E , ρ̄X E ),

δ(τU ⊗τY ⊗ρE ,τU ⊗τY ⊗ ρ̄E )≤ P (ρX E , ρ̄X E ).

The result follows from two uses of the triangle inequality.
8.5 Quantum one-time pad

Consider the following encoding of 2 bit messages in the Bell states:

|β00〉=
|00〉+ |11〉p

2
, |β01〉=

|01〉+ |10〉p
2

,

|β10〉=
|00〉− |11〉p

2
, |β11〉=

|01〉− |10〉p
2

,

We then encrypt the first qubit of the Bell pair with a (reversible) scheme satisfying (8.14). The
resulting cipher is ρC = τA ⊗ τB , regardless of the original message. This is a perfect encryption
of a two bit message, satisfying I (M : C ) = 0 and H (M |C K) = 0. In Exercise 11.1 we proved that any
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scheme satisfying these two conditions must have H (K) > H (M ), hence the key must be at least 2
bits.
8.6 Bit commitment

a) Obviously ρb=0 = ρb=1 = 1
21 for this algorithm. Thus, Bob has no information about b .

b) If Bob measures in the wrong basis, he hits the correct Xi with probability 1/2. So the proba-
bility that he gets the whole string right is given by 2−n .

c) Alice prepares a singlet state

|Ψ4〉= 1p
2
(|01〉− |10〉) = 1p

2
(|+−〉− |−+〉)

and sends half of it to Bob. He gets the state 1/2 as he is supposed to. However, when revealing,
Alice first measures the qubit she kept in the Bb basis and send the negated results to Bob. His
measurements will then always agree with the data he got and he does not know Alice cheated.

8.7 Data hiding

a) Both ΠS and ΠA are projectors (they have the form
∑

i |φi 〉〈φi |, for orthonormal {|φi 〉}i ), so
ρb=0 and ρb=1 are Hermitian and positive semi-definite. As for normalization, we have

ρb=0 =
2

d (d + 1)









d terms
︷︸︸︷

∑

i

|i i〉〈i i |+ 1
2

d (d−1)
2 terms
︷ ︸︸ ︷

∑

j

∑

i< j

|i j 〉〈i j |+ | j i〉〈 j i |+ |i j 〉〈i j | j i + | j i〉〈 j i |i j









Tr(ρb=0) =
2

d (d + 1)

�

d +
1
2

�

d (d − 1)
2

+
d (d − 1)

2

��

= 1;

and

ρb=1 =
2

d (d − 1)









1
2

d (d−1)
2 terms
︷ ︸︸ ︷

∑

j

∑

i< j

|i j 〉〈i j |+ | j i〉〈 j i | − |i j 〉〈i j | j i − | j i〉〈 j i |i j









Tr(ρb=1) =
2

d (d − 1)

�

1
2

�

d (d − 1)
2

+
d (d − 1)

2

��

= 1.

If we had access to both systems, we could perform the global measurement described by the
POVM

�

ΠS ,ΠA,1−ΠS −ΠA	. The probabilities of the three possible outcomes are (1,0,0)
if the state is ρb=10 and (0,1,0) if the state is ρb=1, so we could recover the value of b with
certainty.

b) We expand the operators in the basis of the flip operator,

M =
∑

i , j

xi j |i〉〈i | j , N =
∑

k ,`

yk`|k〉〈k|`.
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Applying the flip operator, we have

F (MA⊗NB ) =
∑

i , j ′
|i ′ j ′〉〈i ′ j ′| j ′i ′

 

∑

i , j ,k ,`

xi j yk` |i k〉〈i k| j`
!

=
∑

i , j ,k ,`

xi j yk` |ki〉〈ki | j`.

Now we take the trace,

Tr[F (MA⊗NB )] =
∑

i ′, j ′
〈i ′, j ′|

 

∑

i , j ,k ,`

xi j yk` |ki〉〈ki | j`
!

|i ′, j ′〉

=
∑

i , j

xi j y j i .

On the other hand,

MANB =

 

∑

i , j

xi j |i〉〈i | j
! 

∑

k ,`

yk`|k〉〈k|`
!

=
∑

i , j ,`

xi j y j`|i〉〈i |`,

Tr(MANB ) =
∑

i ′, j ′
〈i ′|

 

∑

i , j ,`

xi j y j`|i〉〈i |`
!

|i ′〉=∑
i , j

xi j y j i ,

which proves our claim. In the particular case of pure states, M = |x〉〈x|,N = |y〉〈y|, we can
take the trace using an on. basis {|xi 〉}i , such that |x0〉= |x〉,

Tr(M N ) =
∑

i

〈xi |x〉〈x|y〉〈y|xi 〉= 〈x|y〉〈y|x〉= |〈x|y〉|2 .

c)

δ(PX Y ,QX Y ) =
∑

x,y∈S
PX Y (x, y)−QX Y (x, y)

=
∑

x,y∈S
Tr(|xy〉〈xy|ρb=0)−Tr(|xy〉〈xy|ρb=1)

=
∑

x,y∈S
Tr(|xy〉〈xy|[ρb=0−ρb=1])

=
∑

x,y∈S
Tr
�

|xy〉〈xy|
�

2
d (d + 1)

ΠS − 2
d (d − 1)

ΠA
��

Note:
2

d (d − 1)
=

2
d (d + 1)

+
4

d (d − 1)(d + 1)

=
2

d (d + 1)

∑

x,y∈S
Tr
�

|xy〉〈xy|
�

ΠS −ΠA
��

− 4
d (d − 1)(d + 1)

∑

x,y∈S
Tr(|xy〉〈xy|ΠA)

≤ 2
d (d + 1)

∑

x,y∈S
Tr (F |xy〉〈xy|) Because ΠAprojector ⇒ 0≤Tr(|xy〉〈xy|ΠA)≤ 1

≤ 2
d (d + 1)

d
∑

x

d
∑

y
|〈x|y〉|2 Note: |x〉=

d
∑

y
〈y|x〉|y〉⇒ |〈x|x〉|2 =∑

y
|〈y|x〉|2

=
2

d (d + 1)

d
∑

x
〈x|x〉2 = 2

d + 1
.
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