Exercise 1. Chained Bell inequalities

In this exercise we will encounter a Bell violation that is stronger in quantum mechanics than what we have seen so far. Let A and B denote random variables describing the input Alice and Bob give to their devices in space-like separated locations, respectively. The outputs of their devices, described by RVs X and Y, can take on values in $\{0,1\}$. Alice and Bob can choose their inputs from N different values, $A \in \mathcal{A}=\{0,2,4, \ldots, 2 N-2\}$ and $B \in \mathcal{B}=\{1,3,5 \ldots, 2 N-1\}$.

We define I_{N}, a measure of correlations, by

$$
\begin{equation*}
I_{N}=P[X=Y \mid A=0, B=2 N-1]+\sum_{|a-b|=1} P[X \neq Y \mid A=a, B=b] \tag{1}
\end{equation*}
$$

If I_{N} is small this implies that the outcomes of adjacent inputs are almost perfectly correlated - a fact that can be used for secret key agreement.
(a) Assuming that the boxes allow for a hidden variable model s.t. X and Y can be seen as independent random variables, show that $I_{N} \geq 1$.
Hint: Define X_{a} to be Alice's outcome when she inputs a and Y_{b} to be Bob's outcome when he inputs b and consider the quantity

$$
\begin{equation*}
F_{N}=1-\delta_{X_{0} Y_{2 N-1}}+\sum_{|a-b|=1} \delta_{X_{a} Y_{b}} \tag{2}
\end{equation*}
$$

$\delta_{x y}$ being the Kronecker-Delta. Show that for any realisation of the different random variables $F_{N} \geq 1$ and follow that $I_{N} \geq 1$.
(b) Within quantum mechanics, e.g. if the boxes contain quantum spins and A and B are inputs defining the measurement basis, one can show that $I_{N}<1$ is possible. To see this, assume that Alice and Bob share the 2-qubit state $|\Psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ and perform their measurement in the basis $\left\{\left|\frac{k \pi}{2 N}\right\rangle,\left|\frac{k \pi}{2 N}+\pi\right\rangle\right\}$ for $k \in\{0,1,2, \ldots, 2 N-1\}$ (for Alice $k \in \mathcal{A}$, for Bob $k \in \mathcal{B})$. Here, $|\theta\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$.
Show that in this case

$$
\begin{equation*}
I_{N}=2 N \sin ^{2} \frac{\pi}{4 N} \leq \frac{\pi^{2}}{8 N} \tag{3}
\end{equation*}
$$

(c) Consider the case $N=2$ and compare the above quantum violation of $I_{2} \geq 1$ with the violation of the standard Bell inequality.

