Exercise 1. Chained Bell inequalities

In this exercise we will encounter a Bell violation that is stronger in quantum mechanics than what we have seen so far. Let A and B denote random variables describing the input Alice and Bob give to their devices in space-like separated locations, respectively. The outputs of their devices, described by RVs X and Y, can take on values in $\{0, 1\}$. Alice and Bob can choose their inputs from N different values, $A \in \mathcal{A} = \{0, 2, 4, ..., 2N - 2\}$ and $B \in \mathcal{B} = \{1, 3, 5..., 2N - 1\}$.

We define I_N , a measure of correlations, by

$$I_N = P[X = Y | A = 0, B = 2N - 1] + \sum_{|a-b|=1} P[X \neq Y | A = a, B = b].$$
(1)

If I_N is small this implies that the outcomes of adjacent inputs are almost perfectly correlated – a fact that can be used for secret key agreement.

(a) Assuming that the boxes allow for a hidden variable model s.t. X and Y can be seen as independent random variables, show that $I_N \ge 1$. *Hint:* Define X_a to be Alice's outcome when she inputs a and Y_b to be Bob's outcome when he inputs b and consider the quantity

$$F_N = 1 - \delta_{X_0 Y_{2N-1}} + \sum_{|a-b|=1} \delta_{X_a Y_b} , \qquad (2)$$

 δ_{xy} being the Kronecker-Delta. Show that for any realisation of the different random variables $F_N \ge 1$ and follow that $I_N \ge 1$.

(b) Within quantum mechanics, e.g. if the boxes contain quantum spins and A and B are inputs defining the measurement basis, one can show that $I_N < 1$ is possible. To see this, assume that Alice and Bob share the 2-qubit state $|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and perform their measurement in the basis $\{|\frac{k\pi}{2N}\rangle, |\frac{k\pi}{2N} + \pi\rangle\}$ for $k \in \{0, 1, 2, ..., 2N - 1\}$ (for Alice $k \in \mathcal{A}$, for Bob $k \in \mathcal{B}$). Here, $|\theta\rangle = \cos \frac{\theta}{2}|0\rangle + \sin \frac{\theta}{2}|1\rangle$. Show that in this case

$$I_N = 2N\sin^2\frac{\pi}{4N} \le \frac{\pi^2}{8N} \,. \tag{3}$$

(c) Consider the case N = 2 and compare the above quantum violation of $I_2 \ge 1$ with the violation of the standard Bell inequality.