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Exercise 1. Trace distance and distinguishability

Suppose you know the density operators of two quantum states ρ, σ ∈ S(H). Then you are given
one of the states at random – it may either be ρ or σ with equal probability. The challenge is to
perform a single projective measurement of an observable O on your state and then guess which
state that is.

(a) What is your best strategy? In which basis do you think you should perform the measure-
ment? Can you express that measurement using a single projector P?

(b) Show that the probability of guessing correctly can be written as

Pguess(ρ vs. σ) =
1

2
(1 + tr [P (ρ− σ)]), (1)

where P is the appropriate projector from (a).

Just like in the classical case, that can be shown to be equivalent to

Pguess(ρ vs. σ) =
1

2
[1 + δ(ρ, σ)], (2)

where δ(ρ, σ) := 1
2‖ρ − σ‖1 is the trace distance between the two quantum states and ‖S‖1 :=

tr|S| ≡ tr[
√
S†S] the 1-norm for matrices. (You do not have to show this here. Of course you

can if you want.)

(c) Given a trace-preserving quantum operation E (i.e. a CPTP map) and two states ρ and
σ, show that

δ (E(σ), E(ρ)) ≤ δ(σ, ρ). (3)

(d) What does (3) imply about the task of distinguishing quantum states?

Exercise 2. Fidelity and Uhlmann’s Theorem

Given two states ρA and σA on HA with fixed basis {|i〉A}i and a reference Hilbert space HB

with fixed basis {|i〉B}i, which is a copy of HA, Uhlmann’s theorem claims that the fidelity can
be written as

F (ρA, σA) = max
|Ψ〉AB ,|Φ〉AB

|〈Ψ|Φ〉| , (4)

where the maximum is over all purifications |Ψ〉AB of ρA and |Φ〉AB of σA on HA ⊗HB. Let us
introduce the state |ψ〉AB as

|ψ〉 = (
√
ρ⊗ UB) |Ω〉, |Ω〉 =

∑
i

|i〉A ⊗ |i〉B, (5)

where UB is any unitary on HB. We have seen in Exercise Sheet 6 that |ψ〉AB is a purification
of ρA and that any purification of ρA can be written in this form.
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(a) Use the construction presented in the proof of Uhlmann’s theorem to calculate the fidelity
between σ′A = 12/2 and ρ′A = p|0〉〈0|A + (1− p)|1〉〈1|A in the 2-dimensional Hilbert space.

Hint: Convince yourself that the vector |Ω〉 has the property that 1⊗ S |Ω〉 = ST ⊗ 1|Ω〉
for all linear operators S on HA.

(b) Give an expression for the fidelity between any pure state and the completely mixed state
1n/n in the n-dimensional Hilbert space.

Hint: You may want to use a different characterization of the fidelity than the one by
Uhlmann for this exercise.

Exercise 3. An interpretation of the quantum trace distance

In Exercise Sheet 3 we have seen an interpretation of the classical trace distance. We have
shown that two probability distributions that are ε-close in trace distance allow for a joint
distribution s.t. the corresponding reduced random variables differ with probability at most ε.
In the quantum case, where probability distributions are replaced by quantum states, say ρ and
σ ∈ S(H), this statement does not have a direct translation. Instead, as we will see in this
exercise, there is a similar but different way of interpreting the trace distance.

(a) Thinking of the classical version from Exercise Sheet 3 again, what goes wrong when trying
to ‘quantize’ this interpretation directly? Why does this not work?

Suppose that δ(ρ, σ) = ε. We will show that there is a quantum state ω ∈ S(H) that can be
written in two ways,

ω = (1− ε)ρ+ ερ̂

= (1− ε)σ + εσ̂,
(6)

where ρ̂, σ̂ ∈ S(H) are some quantum states.

(b) Use the fact that the operator ρ−σ can be decomposed into ρ−σ = R−S, where both R
and S are positive operators with mutually orthogonal support, and tr[R] = ε, to construct
ω.

The above statement has two interpretations: (i) there exists a state ω that behaves as if it was
ρ with probability 1− ε; (ii) the same state ω behaves exactly like σ with probability 1− ε.

(c) Can you construct a classical example of this interpretation in the language of density
operators to illustrate the connection to the classical version?
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