Exercise 1. Trace distance and distinguishability

Suppose you know the density operators of two quantum states $\rho, \sigma \in S(\mathcal{H})$. Then you are given one of the states at random – it may either be ρ or σ with equal probability. The challenge is to perform a single projective measurement of an observable O on your state and then guess which state that is.

- (a) What is your best strategy? In which basis do you think you should perform the measurement? Can you express that measurement using a single projector *P*?
- (b) Show that the probability of guessing correctly can be written as

$$P_{\text{guess}}(\rho \text{ vs. } \sigma) = \frac{1}{2} (1 + \operatorname{tr} \left[P(\rho - \sigma) \right]), \tag{1}$$

where P is the appropriate projector from (a).

Just like in the classical case, that can be shown to be equivalent to

$$P_{\text{guess}}(\rho \text{ vs. } \sigma) = \frac{1}{2} [1 + \delta(\rho, \sigma)], \qquad (2)$$

where $\delta(\rho, \sigma) := \frac{1}{2} \|\rho - \sigma\|_1$ is the trace distance between the two quantum states and $\|S\|_1 := \operatorname{tr}[\sqrt{S^{\dagger}S}]$ the 1-norm for matrices. (You do not have to show this here. Of course you can if you want.)

(c) Given a trace-preserving quantum operation $\mathcal E$ (i.e. a CPTP map) and two states ρ and $\sigma,$ show that

$$\delta\left(\mathcal{E}(\sigma), \mathcal{E}(\rho)\right) \le \delta(\sigma, \rho). \tag{3}$$

(d) What does (3) imply about the task of distinguishing quantum states?

Exercise 2. Fidelity and Uhlmann's Theorem

Given two states ρ_A and σ_A on \mathcal{H}_A with fixed basis $\{|i\rangle_A\}_i$ and a reference Hilbert space \mathcal{H}_B with fixed basis $\{|i\rangle_B\}_i$, which is a copy of \mathcal{H}_A , Uhlmann's theorem claims that the fidelity can be written as

$$F(\rho_A, \sigma_A) = \max_{|\Psi\rangle_{AB}, |\Phi\rangle_{AB}} |\langle \Psi | \Phi \rangle|, \qquad (4)$$

where the maximum is over all purifications $|\Psi\rangle_{AB}$ of ρ_A and $|\Phi\rangle_{AB}$ of σ_A on $\mathcal{H}_A \otimes \mathcal{H}_B$. Let us introduce the state $|\psi\rangle_{AB}$ as

$$|\psi\rangle = (\sqrt{\rho} \otimes U_B) |\Omega\rangle, \qquad |\Omega\rangle = \sum_i |i\rangle_A \otimes |i\rangle_B,$$
 (5)

where U_B is any unitary on \mathcal{H}_B . We have seen in Exercise Sheet 6 that $|\psi\rangle_{AB}$ is a purification of ρ_A and that any purification of ρ_A can be written in this form.

- (a) Use the construction presented in the proof of Uhlmann's theorem to calculate the fidelity between $\sigma'_A = \mathbb{1}_2/2$ and $\rho'_A = p|0\rangle\langle 0|_A + (1-p)|1\rangle\langle 1|_A$ in the 2-dimensional Hilbert space. *Hint:* Convince yourself that the vector $|\Omega\rangle$ has the property that $\mathbb{1} \otimes S |\Omega\rangle = S^T \otimes \mathbb{1} |\Omega\rangle$ for all linear operators S on \mathcal{H}_A .
- (b) Give an expression for the fidelity between any pure state and the completely mixed state $\mathbb{1}_n/n$ in the *n*-dimensional Hilbert space.

Hint: You may want to use a different characterization of the fidelity than the one by Uhlmann for this exercise.

Exercise 3. An interpretation of the quantum trace distance

In Exercise Sheet 3 we have seen an interpretation of the classical trace distance. We have shown that two probability distributions that are ε -close in trace distance allow for a joint distribution s.t. the corresponding reduced random variables differ with probability at most ε . In the quantum case, where probability distributions are replaced by quantum states, say ρ and $\sigma \in S(\mathcal{H})$, this statement does not have a direct translation. Instead, as we will see in this exercise, there is a similar but different way of interpreting the trace distance.

(a) Thinking of the classical version from Exercise Sheet 3 again, what goes wrong when trying to 'quantize' this interpretation directly? Why does this not work?

Suppose that $\delta(\rho, \sigma) = \varepsilon$. We will show that there is a quantum state $\omega \in \mathcal{S}(\mathcal{H})$ that can be written in two ways,

$$\begin{aligned}
\omega &= (1 - \varepsilon)\rho + \varepsilon\hat{\rho} \\
&= (1 - \varepsilon)\sigma + \varepsilon\hat{\sigma},
\end{aligned}$$
(6)

where $\hat{\rho}, \hat{\sigma} \in \mathcal{S}(\mathcal{H})$ are some quantum states.

(b) Use the fact that the operator $\rho - \sigma$ can be decomposed into $\rho - \sigma = R - S$, where both R and S are positive operators with mutually orthogonal support, and $tr[R] = \varepsilon$, to construct ω .

The above statement has two interpretations: (i) there exists a state ω that behaves as if it was ρ with probability $1 - \varepsilon$; (ii) the same state ω behaves exactly like σ with probability $1 - \varepsilon$.

(c) Can you construct a classical example of this interpretation in the language of density operators to illustrate the connection to the classical version?