Exercise 1. Depolarizing channel

We are given two two-dimensional Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B} and a completely positive trace preserving (CPTP) map $\mathcal{E}_{p}: \mathcal{S}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{S}\left(\mathcal{H}_{B}\right), 0 \leq p \leq 1$, defined as

$$
\begin{equation*}
\mathcal{E}_{p}(\rho)=p \frac{\mathbb{1}}{2}+(1-p) \rho . \tag{1}
\end{equation*}
$$

(a) An operator-sum representation (also called the Kraus-operator representation) of a CPTP map $\mathcal{E}: \mathcal{S}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{S}\left(\mathcal{H}_{B}\right)$ is a decomposition $\left\{E_{k}\right\}_{k}$ of operators $E_{k} \in \operatorname{Hom}\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$, $\sum_{k} E_{k} E_{k}^{\dagger}=\mathbb{1}$, such that

$$
\mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger} .
$$

Find an operator-sum representation for \mathcal{E}_{p}.
Hint: Remember that $\rho \in \mathcal{S}\left(\mathcal{H}_{A}\right)$ can be written in the Bloch sphere representation:

$$
\begin{equation*}
\rho=\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma}), \quad \vec{r} \in \mathbb{R}^{3}, \quad|\vec{r}| \leq 1, \quad \vec{r} \cdot \vec{\sigma}=r_{x} \sigma_{x}+r_{y} \sigma_{y}+r_{z} \sigma_{z}, \tag{2}
\end{equation*}
$$

where σ_{x}, σ_{y} and σ_{z} are Pauli matrices. It may be useful to show that

$$
\mathbb{1}=\frac{1}{2}\left(\rho+\sigma_{x} \rho \sigma_{x}+\sigma_{y} \rho \sigma_{y}+\sigma_{z} \rho \sigma_{z}\right) .
$$

(b) What happens to the radius \vec{r} when we apply \mathcal{E}_{p} ? How can this be interpreted?
(c) A probability distribution $P_{A}(0)=q, P_{A}(1)=1-q$ can be encoded in a quantum state on \mathcal{H}_{A} as $\hat{\rho}=q|0\rangle\left\langle\left. 0\right|_{A}+(1-q) \mid 1\right\rangle\left\langle\left. 1\right|_{A}\right.$. Calculate $\mathcal{E}(\hat{\rho})$ and the conditional probabilities $P_{B \mid A}$ as well as P_{B} after measuring $\mathcal{E}(\hat{\rho})$ in the standard basis $\left\{|0\rangle_{B},|1\rangle_{B}\right\}$.

Exercise 2. A sufficient entanglement criterion

Given a bipartite quantum state $\rho_{A B}$ we say it is separable if it can be written in the form

$$
\begin{equation*}
\rho_{A B}=\sum_{k} p_{k} \sigma_{A}^{(k)} \otimes \sigma_{B}^{(k)} \tag{3}
\end{equation*}
$$

where $\left\{p_{k}\right\}_{k}$ is a probability distribution and $\left\{\sigma_{A}^{(k)}\right\}_{k}$ and $\left\{\sigma_{B}^{(k)}\right\}_{k}$ are some states on A and B, respectively. Bipartite states that are not separable are called entangled.

In general it is very difficult to determine if a state is entangled or not. In this exercise we will construct a simple entanglement criterion that correctly identifies all entangled states in low dimensions.
(a) Let $\mathcal{E}_{A}: \operatorname{End}\left(\mathcal{H}_{A}\right) \rightarrow \operatorname{End}\left(\mathcal{H}_{A}\right)$ be a positive superoperator. Show that $\mathcal{E}_{A} \otimes \mathcal{I}_{B}$ maps separable states to positive operators.
(b) Let $\left\{\left|v_{i}\right\rangle_{A}\right\}$ be an orthonormal basis for system A and define the transpose \mathcal{T} as

$$
\begin{equation*}
\mathcal{T}: S=\sum_{i j} s_{i j}\left|v_{i}\right\rangle\left\langle v_{j}\right| \mapsto S^{T}:=\sum_{i j} s_{i j}\left|v_{j}\right\rangle\left\langle v_{i}\right| . \tag{4}
\end{equation*}
$$

Show that the transpose \mathcal{T} is a positive superoperator and that it is basis dependent.
(c) Define the Werner state on a two-qubit system $A B$ to be

$$
\begin{equation*}
W=x\left|\psi^{-}\right\rangle\left\langle\left.\psi^{-}\right|_{A B}+(1-x) \frac{\mathbb{1}_{A B}}{4},\right. \tag{5}
\end{equation*}
$$

where $0 \leq x \leq 1$ and $\left|\psi^{-}\right\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|00\rangle_{A B}-|11\rangle_{A B}\right)$. What happens to the eigenvalues of W if we apply the partial transpose on A to it, i.e., what are the eigenvalues of $W^{T_{A}}:=$ $\left(\mathcal{T}_{A} \otimes \mathcal{I}_{B}\right)(W)$?
(d) Given a description of a bipartite quantum state, explain how the partial transpose could be used to determine if a state is entangled.

