Exercise 1. Partial trace

The partial trace is an important concept in the quantum mechanical treatment of multi-partite systems, and it is the natural generalisation of the concept of marginal distributions in classical probability theory. Let ρ_{AB} be a density matrix on the bipartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ and $\rho_A = \operatorname{tr}_B(\rho_{AB})$ the marginal on \mathcal{H}_A .

- (a) Show that ρ_A is a valid density operator by proving it is:
 - (i) Hermitian: $\rho_A = \rho_A^{\dagger}$.
 - (ii) Positive: $\rho_A \ge 0$.
 - (iii) Normalised: $tr(\rho_A) = 1$.
- (b) Calculate the reduced density matrix of system A in the Bell state

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right), \quad \text{where} \quad |ab\rangle = |a\rangle_{\text{A}} \otimes |b\rangle_{\text{B}}.$$
 (1)

- (c) Consider a classical probability distribution P_{XY} with marginals P_X and P_Y .
 - (i) Calculate the marginal distribution P_X for

$$P_{XY}(x,y) = \begin{cases} 0.5 & \text{for } (x,y) = (0,0), \\ 0.5 & \text{for } (x,y) = (1,1), \\ 0 & \text{else}, \end{cases}$$
(2)

with alphabets $\mathcal{X}, \mathcal{Y} = \{0, 1\}.$

- (ii) How can we represent P_{XY} in form of a quantum state?
- (iii) Calculate the partial trace of P_{XY} in its quantum representation.
- (d) Can you think of an experiment to distinguish the bipartite states of parts (b) and (c)?

Exercise 2. Bipartite systems and measurement

(a) Consider a state ρ_{AB} in a composed system $\mathcal{H}_A \otimes \mathcal{H}_B$ shared by Alice, who is in possession of system A, and Bob, who has access to B. Suppose Alice wants to perform a measurement described by an observable O_A on subsystem \mathcal{H}_A . The operator O_A has eigenvalues (possible outcomes) $\{x\}_x$ and may be written as the spectral decomposition $O_A = \sum_x x P_x$, where $\{P_x\}_x$ are projectors – operators that only have eigenvalues 0 and 1.

Show that the measurement statistics (probabilities of obtaining the different outcomes) are the same whether you apply $O_A \otimes \mathbb{1}_B$ on the joint state ρ_{AB} or first trace out the system \mathcal{H}_B and then apply O_A on the reduced state ρ_A .

(b) Suppose now that Alice and Bob share a two-qubit system in a maximally entangled state,

$$|\Phi\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B\right).$$
(3)

Alice then performs a measurement in the basis $\{|\theta\rangle, |\frac{\pi}{2} + \theta\rangle\}$, with $|\theta\rangle := \cos \theta |0\rangle + \sin \theta |1\rangle$ for $\theta \in \mathbb{R}$, on her qubit. In the notation from (a) the basis corresponds to the projectors $P_{+1} = |\theta\rangle\langle\theta|$ and $P_{-1} = |\frac{\pi}{2} + \theta\rangle\langle\frac{\pi}{2} + \theta|$.

- (i) What description does Alice give to system B, given the outcome of her measurement?
- (ii) If Bob performs the measurement in the basis $\{|0\rangle, |1\rangle\}$ on his part of the system, B, what is the probability distribution for his outcomes? How would Alice, who knows the outsome of her measurement, describe his probability distribution?
- (c) Finally, Alice and Bob share an arbitrary pure state $|\Psi\rangle_{AB}$, and Bob would like to perform a measurement on *B* described by projectors $\{Q_y\}_y$. Unfortunately his measurement apparatus is broken, however he can still perform arbitrary unitary operations. Meanwhile, Alice's measurement apparatus is in good working order. Show that there exist projectors $\{P_y\}_y$ on Alice's part and unitaries U_y on *A* and V_y on *B* so that

$$|\widetilde{\Psi}_y\rangle_{AB} := (\mathbb{1}_A \otimes Q_y) |\Psi\rangle_{AB} = (U_y \otimes V_y) (P_y \otimes \mathbb{1}_B) |\Psi\rangle_{AB}.$$
(4)

(Note that the 'state' $|\tilde{\Psi}_y\rangle_{AB}$ is unnormalized, so that it implicitly encodes the probability of outcome y.)

By showing this we have proven that Alice can assist Bob by performing a related measurement herself, after which they can *locally* correct the state using the *local* unitaries U_y and V_y . Notice that Alice will have to (classically) communicate to Bob what her outcome was.

Hint: Use the Schmidt decomposition and work in the Schmidt basis of $|\Psi\rangle_{AB}$.