Exercise 1. Linearised gravity

i) In linearised gravity, we write $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$. We change coordinates by defining

$$\tilde{x}^{\mu} = x^{\mu} - \epsilon \xi^{\mu}(x) + \mathcal{O}(\epsilon^2) , \qquad (1)$$

where $\xi^{\mu}(x)$ is a vector field. Show that under this change of coordinates, $h_{\mu\nu}$ changes to

$$\tilde{h}_{\mu\nu} = h_{\mu\nu} + \epsilon (\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}) + \mathcal{O}(\epsilon^2) .$$
(2)

ii) Calculate the Ricci tensor corresponding to $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ to second order in $h_{\mu\nu}$, starting from the definition of the Ricci tensor in terms of the metric and the Christoffel symbols,

$$R_{\mu\rho} = R_{\mu\nu\rho}^{\ \nu} = \partial_{\nu}\Gamma^{\nu}_{\mu\rho} - \partial_{\mu}\Gamma^{\nu}_{\nu\rho} + \Gamma^{\alpha}_{\mu\rho}\Gamma^{\nu}_{\alpha\nu} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\nu}_{\alpha\mu} .$$
(3)

Exercise 2. Geodesics on a 2-sphere

Show that geodesics on a 2-sphere are great circles. Compare the geodesic equations to the equations of motion (obtained from the Euler Lagrange equations) of the spherical pendulum in the absence of gravity.

Hint: A spherical pendulum consists of a mass m attached to a massless rigid string of length l. The Lagrangian (including gravity) is given by L = T - V, where $T = \frac{1}{2}mv^2 = \frac{1}{2}ml^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2)$ and $V = -mgl\cos\theta$.

Exercise 3. Isometries

Show that an isometry implies a conserved charge for the dynamics of a particle, the conserved charge (along geodesics) being $q = g_{\mu\nu}\dot{x}^{\mu}\xi^{\nu}$ where ξ^{ν} is the Killing vector. Show this (i) by showing that $\frac{d}{d\lambda}q = 0$ where $\dot{x}^{\mu} = \frac{dx^{\mu}}{d\lambda}$ and, (ii) using Noether's theorem.

Hint: An infinitesimal transformation $x^{\mu} \to x^{\mu} + \delta x^{\mu}$ is a symmetry if the corresponding off-shell variation of the Lagrangian is at most a total derivative, i.e., $\delta L = \frac{d\theta}{d\lambda}$ for some infinitesimal function $\theta(x^{\mu}, \dot{x}^{\mu})$ (without using the equations of motion). Noether's theorem then implies that the charge $q = \left(\frac{dL}{d\dot{x}^{\mu}}\delta x^{\mu} - \theta\right)$ is conserved when the equations of motion hold, i.e., $\frac{dq}{d\lambda} = 0$ on-shell.