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Exercise 1. Differential forms

Check that the exterior derivative of a 2-form Ω, defined by

dΩ(X1, X2, X3) =X1(Ω(X2, X3))−X2(Ω(X1, X3)) +X3(Ω(X1, X2))

− Ω([X1, X2], X3) + Ω([X1, X3], X2)− Ω([X2, X3], X1) (1)

defines indeed a 3-form, i.e., that

dΩ(fX1, X2, X3) = dΩ(X1, fX2, X3) = dΩ(X1, X2, fX3) = fdΩ(X1, X2, X3) . (2)

Exercise 2. Lie derivative

In components, the action of the Lie derivative LX on a vector field R is given as

(LX(R))µ =
∂Rµ

∂xν
Xν −Rν ∂X

µ

∂xν
, (3)

while the action on a 1-form ω is

(LX(ω))µ =
∂ωµ
∂xν

Xν + ων
∂Xν

∂xµ
. (4)

i) Show that
LX(Y ) = [X,Y ] . (5)

ii) Check that
L[X,Y ] = LXLY − LY LX (6)

when applying both sides to vector fields and 1-forms.

Exercise 3. Integration of forms

Let us consider an n-dimensional orientable manifold M , i.e., a manifold for which all transition
functions satisfy that

det
(∂x′
∂x

)
> 0 . (7)

i) Suppose ω is an n-form, whose support is contained in a single chart. Using the arguments
from Exercise 3 ii) of Sheet 3, we can write the n-form as

ω =
1

n!
ωi1 ··· in(x) dxi1 ∧ · · · ∧ dxin = ω̃(x)

1

n!
εi1 ··· indxi1 ∧ · · · ∧ dxin

= ω̃(x) dx1 ∧ dx2 ∧ · · · ∧ dxn , (8)

where εi1 ··· in is the Levi-Civita symbol and ω̃(x) is a scalar density.

Show that the integral ∫
M
ω :=

∫
M
ω̃(x) dx1 · dx2 · · · · · dxn (9)

is well-defined, i.e., independent of the specific coordinates that are being used (we only
consider charts for which the support of ω is contained within).
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ii) Now suppose that the n-dimensional manifold M has a boundary ∂M , and that ω is an
(n− 1)-form that has support in one chart (which may now also intersect the boundary).
Prove Stokes’ Theorem ∫

M
dω =

∫
∂M

ω . (10)

[Hint: See Fig. 1 and consider separately the two depicted cases: a) (left) the chart in
which ω has support contains the boundary and the boundary satisfies x1 = 0, b) (right)
the chart in which ω has support does not contain the boundary.]

Figure 1: An n-dimensional manifold M with (n− 1)-dimensional boundary ∂M is locally home-
omorph to Rn− = {

(
x1, . . . , xn

)
∈ Rn

∣∣x1 ≤ 0} and we can always define local coordinates(
x1, . . . , xn

)
for M , in which ∂M satisfies x1 = 0.

Exercise 4. Inner product

Let X be a vector field and Ω a p-form. We define the (p− 1)-form (iXΩ) by

(iXΩ)(Y1, . . . , Yp−1) = Ω(X,Y1, . . . , Yp−1)

Prove the following properties:

i) Let Ωi be a pi-form for i = 1, 2. Then

iX(Ω1 ∧ Ω2) = iX(Ω1) ∧ Ω2 + (−1)p1Ω1 ∧ iX(Ω2) .

ii) We have the identity i2X = 0.

iii) If f is a function then
iX(df) = (df)(X) = X(f) .

iv) The Lie derivative LX , acting on 0 and 1-forms, can be written as

LX = iX ◦ d + d ◦ iX ,

where d is the exterior derivative.
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Exercise 5. Electrodynamics in form language

In this problem we consider the familiar theory of electromagnetism on a 4-dimensional manifold
with signature (−,+,+,+). Maxwell’s theory involves a one-form electromagnetic potential
A = Aµ dxµ from which one constructs the field-strength (a two-form) via the exterior derivative,

F = dA =
1

2!
Fµν dxµ ∧ dxν . (11)

i) Show that the components of F are given by Fµν = ∂µAν − ∂νAµ. Using that the exterior
derivative is nilpotent, d2 = 0, deduce that dF = 0. Write dF = 0 in components — how
many independent equations are there? — and relate them to the homogeneous Maxwell
equations.

[Hint: Deduce from the definition of the 4-potentials that the field strength tensor is given
(in flat space) as

Fµν ∼


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 .]

ii) Define the Hodge dual ?F of the field strength 2-form F via

? F =
1

2!

Fµν
2!
εµνρσ dxρ ∧ dxσ , (12)

where εµ ν ρ σ =
√
|g|εµ ν ρ σ (Levi-Civita tensor) and εµ ν ρ σ is the Levi-Civita symbol.

[The Hodge dual can be defined more generally for p-forms in D dimensions, and it is in
general a D − p form; for the case of a 2-form in D = 4 dimensions, the Hodge dual is
therefore again a 2-form.] Show that

F ∧ ?F = α
√
|g|FµνFµν dx0 ∧ dx1 ∧ dx2 ∧ dx3 (13)

and

F ∧ F = ?F ∧ ?F = β
√
|g|εµνρσFµνF ρσ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (14)

and find the explicit value of the numeric constants α and β. Both of these quantities
are 4-forms and may be integrated over the spacetime manifold. The combination (13)
is proportional to the Lagrangian density that yields Maxwell’s equations in the absence
of sources as equations of motion. Use Stokes’ theorem to show that the integral of (14)
reduces to a boundary term (on a manifold with boundary).

[Hint: you may want to use that the Levi-Civita symbol in D dimensions satisfies the
identity

εµ1...µrµr+1...µDεν1...νrµr+1...µD = (D − r)! δµ1...µrν1...νr , (15)

where δµ1...µrν1...νr = r!δµ1[ν1δ
µ2
ν2 · · · δ

µr
νr]

is the antisymmetrised product of r Kronecker deltas

(notice that the r! factor in front cancels, for example δµ1µ2ν1ν2 = δµ1ν1 δ
µ2
ν2 − δ

µ1
ν2 δ

µ2
ν1 , etc). This

can for example be used to write:

dxν1∧ . . .∧dxνn =
1

n!(D − n)!
εµ1 ···µD−n ν1 ··· νnεµ1 ···µD−n ···α1 ···αn dxα1∧ . . .∧dxαn .] (16)
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iii) The adjoint exterior derivative is defined via the identity

d† F = ? d( ?F ) ,

where the Hodge dual of a 3-form ω in 4 dimensions equals

(?ω)µ1 =
1

3!
ων1 ν2 ν3ε

ν1ν2ν3
µ1 , (17)

and εν1ν2ν3µ1 is again the Levi-Civita tensor.

Assemble the electric charge density ρ and the electric vector current density ~J into a
one-form current J = ηµνJ

νdxµ = −ρ dt+ ~J · d~x. Show that the inhomogeneous Maxwell
equations (in flat space)

∂µF
µν = Jν (18)

can be written succinctly in form language as

d†F = J . (19)

[Note that the operator d† is in fact the adjoint of d with respect to the inner product
defined on p-forms by the integral

(ω, η) =

∫
M
ω ∧ ?η ,

and ? is the Hodge dual that maps a p-form to a D − p form. In particular we have
(dχ, η) = (χ, d†η) if η and χ are a p-form and (p− 1)-form, respectively.]
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