Exercise 1. Vector fields

A vector field is a linear map on the space of differentiable functions \mathcal{F}

$$
X: \mathcal{F} \rightarrow \mathcal{F}
$$

satisfying the derivation property,

$$
X(f g)=X(f) g+f X(g)
$$

i) Show that $X \circ Y$ and $Y \circ X$ are not vector fields, but that the commutator,

$$
[X, Y]=X \circ Y-Y \circ X,
$$

is a vector field.
ii) Confirm that the commutator also satisfies the Jacobi identity

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 . \tag{1}
\end{equation*}
$$

Exercise 2. Decomposition of a (2,0) tensor to its symmetric and antisymmetric part

i) Show that any $(2,0)$ tensor M can be written as $M=S+A$, where S is a totally symmetric $(2,0)$ tensor and A is a totally antisymmetric $(2,0)$ tensor. Write the components of S and A explicitly in terms of those of M.
ii) Show that the $(0,2)$ tensors constructed from S and A via the metric (i.e. $S_{i j}=g_{i a} g_{j b} S^{a b}$, etc) have the same symmetry properties as their $(2,0)$ counterparts, and that

$$
S_{a b} A^{a b}=S^{a b} A_{a b}=0
$$

iii) Let T be an arbitrary $(2,0)$ tensor. Show that $S_{a b} T^{a b}=S_{a b} T^{(a b)}$ and $A_{a b} T^{a b}=A_{a b} T^{[a b]}$, where

$$
T^{(a b)}=\frac{1}{2}\left(T^{a b}+T^{b a}\right), \quad T^{[a b]}=\frac{1}{2}\left(T^{a b}-T^{b a}\right) .
$$

Exercise 3. The Levi-Civita symbol and tensor

The Levi-Civita symbol in n dimensions is defined as

$$
\varepsilon_{\mu_{1} \ldots \mu_{i} \ldots \mu_{j} \ldots \mu_{n}}=\left\{\begin{array}{cl}
+1 & \text { for even permutations of } 012 \ldots n-1 \tag{2}\\
0 & \text { if } \mu_{i}=\mu_{j} \\
-1 & \text { for odd permutations of } 012 \ldots n-1
\end{array}\right.
$$

or, equivalently, as the totally antisymmetric symbol with $\varepsilon_{012 \ldots n-1}=+1$.
i) Show that if we require that the components of this object take the same value in every chart, then they must transform as

$$
\begin{equation*}
\varepsilon_{\mu_{1} \ldots \mu_{n}}^{\prime}=\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right) \frac{\partial x^{\nu_{1}}}{\partial x^{\prime \mu_{1}}} \ldots \frac{\partial x^{\nu_{n}}}{\partial x^{\prime \mu_{n}}} \varepsilon_{\nu_{1} \ldots \nu_{n}} \tag{3}
\end{equation*}
$$

An object with this property is called a tensor density of weight 1 - the weight refers to the power of the determinant of the Jacobian in the transformation property.
[Hint: It is useful to notice that the determinant of a general matrix Λ (here expanded along the columns) can be written as

$$
\begin{equation*}
\operatorname{det}(\Lambda)=\Lambda^{\nu_{1}}{ }_{0} \Lambda^{\nu_{2}}{ }_{1} \ldots \Lambda^{\nu_{n}}{ }_{n-1} \varepsilon_{\nu_{1} \ldots \nu_{n}} . \tag{4}
\end{equation*}
$$

This can be taken as the definition of the determinant, or proven by induction if so desired.]
ii) Let V be an n-form (i.e., a totally antisymmetric ($0, n$)-tensor) on an n-dimensional space. Show that this object has only one independent component, and that it can therefore be written as

$$
\begin{equation*}
V_{\mu_{1} \ldots \mu_{n}}=\varepsilon_{\mu_{1} \ldots \mu_{n}} \phi(x) \tag{5}
\end{equation*}
$$

How should $\phi(x)$ transform in order to respect the tensorial character of V ?
iii) Use the results from the previous two parts to show that, under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$, the components of the above n-form satisfy

$$
\begin{equation*}
V_{\mu_{1} \ldots \mu_{n}}^{\prime}=\operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right) V_{\mu_{1} \ldots \mu_{n}} . \tag{6}
\end{equation*}
$$

iv) Now assume that the manifold M is endowed with a metric g, and that the transition functions between any two overlapping charts of the atlas satisfy

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right)>0 \tag{7}
\end{equation*}
$$

On such manifold we may define the Levi-Civita tensor ϵ by

$$
\begin{equation*}
\epsilon=\sqrt{|g(x)|} \varepsilon \tag{8}
\end{equation*}
$$

where $g(x)$ is the determinant of the metric g at point x. Prove that ϵ is a tensor. [The requirement of eq. (7) on the atlas implies that M is an orientable manifold, for which this choice of charts then defines an orientation.]

