13.1. Jacobi theta functions

An important set of functions in the theory of modular forms ${ }^{11}$ are the so-called Jacobi theta functions. Here we consider the three functions

$$
\begin{align*}
& \theta_{2}(\tau)=\sum_{n \in \mathbb{Z}+1 / 2} q^{\frac{n^{2}}{2}}=2 q^{\frac{1}{8}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+q^{n}\right)^{2}, \\
& \theta_{3}(\tau)=\sum_{n \in \mathbb{Z}} q^{\frac{n^{2}}{2}} \tag{13.1}\\
& =\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+q^{n-\frac{1}{2}}\right)^{2} \\
& \theta_{4}(\tau)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{n^{2}}{2}}
\end{align*}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{n-\frac{1}{2}}\right)^{2}, ~ l
$$

where $q=e^{2 \pi i \tau}$. Here and from now on, $\tau \in \mathbb{H}^{+}$, where \mathbb{H}^{+}is the complex upper half plane.
a) Show that

$$
\begin{align*}
& \theta_{2}(\tau+1)=e^{i \frac{\pi}{4}} \theta_{2}(\tau), \\
& \theta_{3}(\tau+1)=\theta_{4}(\tau), \tag{13.2}\\
& \theta_{4}(\tau+1)=\theta_{3}(\tau)
\end{align*}
$$

b) In order to compute the behaviour of θ 's under the inversion $\tau \rightarrow-\frac{1}{\tau}$, we can employ the so-called Poisson resummation formula. Prove that, for any $f: \mathbb{R} \mapsto \mathbb{C}$ smooth and small at infinity ${ }^{2}$, the following equality holds

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \tilde{f}(n), \quad \text { where } \quad \tilde{f}(y):=\int_{-\infty}^{\infty} e^{2 \pi i x y} f(x) d x \tag{13.3}
\end{equation*}
$$

Hint: show that the function $g(x):=\sum_{n \in \mathbb{Z}} f(x+n)$ is well-defined and periodic; exploit this fact and that $\sum_{n} f(n) \equiv g(0)$.
c) Using the Poisson resummation formula, show that

$$
\begin{align*}
& \theta_{2}\left(-\frac{1}{\tau}\right)=\sqrt{-i \tau} \theta_{4}(\tau), \\
& \theta_{3}\left(-\frac{1}{\tau}\right)=\sqrt{-i \tau} \theta_{3}(\tau), \tag{13.4}\\
& \theta_{4}\left(-\frac{1}{\tau}\right)=\sqrt{-i \tau} \theta_{2}(\tau) .
\end{align*}
$$

d) The Dedekind η function is defined as

$$
\begin{equation*}
\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{13.5}
\end{equation*}
$$

[^0]Show that

$$
\begin{equation*}
[\eta(\tau)]^{3}=\frac{1}{2} \theta_{2}(\tau) \theta_{3}(\tau) \theta_{4}(\tau) \tag{13.6}
\end{equation*}
$$

Hence, show that

$$
\begin{equation*}
\eta(\tau+1)=e^{i \frac{\pi}{12}} \eta(\tau), \quad \eta\left(-\frac{1}{\tau}\right)=\sqrt{-i \tau} \eta(\tau) . \tag{13.7}
\end{equation*}
$$

13.2. Modular properties of Dedekind $\boldsymbol{\eta}$ function

In this exercise, we want to derive directly the modular transformation

$$
\begin{equation*}
\eta\left(-\frac{1}{\tau}\right)=\sqrt{-i \tau} \eta(\tau) \tag{13.8}
\end{equation*}
$$

of the Dedekind eta function.
Consider first $\tau=i y, y$ real and positive. We will establish the transformation in eq. (13.8) along the imaginary axis since we can then analytically continue the result in the whole \mathbb{H}^{+}. From now on, we thus fix $\tau=i y$ and work with positive real y.
a) Show that eq. 13.8 is equivalent to the equality

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1-e^{2 \pi m y}}-\sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1-e^{2 \pi m / y}}-\frac{\pi}{12}\left(y-\frac{1}{y}\right)=-\frac{1}{2} \log y \tag{13.9}
\end{equation*}
$$

b) Our aim is to prove eq. 13.9 via residue calculus.

We now fix $y>0$ and consider the function

$$
\begin{equation*}
F_{n}(z)=-\frac{1}{8 z} \cot \left[i \pi\left(n+\frac{1}{2}\right) z\right] \cot \left[\frac{\pi\left(n+\frac{1}{2}\right) z}{y}\right] . \tag{13.10}
\end{equation*}
$$

Let C be the parallelogram in the z complex plane that joins the vertices $y, i,-y,-i$. Compute the integral $\int_{C} F_{n}(z) d z$ via the residue theorem and show that the limit for $n \rightarrow \infty$ of $2 \pi i$ times the sum of residues equals the l.h.s. of eq. 13.9). Hint: there are $4 n$ simple poles and a triple pole you have to consider.
c) What is left to do is to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{C} F_{n}(z) d z=-\frac{1}{2} \log y \tag{13.11}
\end{equation*}
$$

The tricky part is to show that we can liberally exchange sum and integration, so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{C} F_{n}(z)=\int_{C} \lim _{n \rightarrow \infty} z F_{n}(z) \frac{d z}{z} . \tag{13.12}
\end{equation*}
$$

You can assume this ${ }^{3}$, and then show that this integral equals $-\frac{1}{2} \log y$. This completes the proof.

[^1]
[^0]: ${ }^{1}$ Modular forms are holomorphic functions $f: \mathbb{H}^{+} \mapsto \mathbb{C}$ that, loosely speaking, "transform nicely" under (finite index subgroups of) $\mathrm{SL}(2, \mathbb{Z})$. Here $\mathrm{SL}(2, \mathbb{Z})$ acts on $z \in \mathbb{H}^{+}$as $\operatorname{SL}(2, \mathbb{Z}) \ni \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): z \mapsto$ $\frac{a z+b}{c z+d}$.
 ${ }^{2} \mathrm{~A}$ sufficient condition is that $f \in L^{1}(\mathbb{R})$.

[^1]: ${ }^{3}$ Notice that the sequence $\left\{z F_{n}(z)\right\}$ is uniformly bounded and convergent almost everywhere on C. Moreover, each $z F_{n}$ is (Lebesgue) integrable on each side of C; then eq. 13.12) is a consequence of Lebesgue's dominated convergence theorem.

