7.1. Physical states and upper bound on critical dimension

We define the generators $K_{m}=k_{\mu} \alpha_{m}^{\mu}$ with $k^{\mu}=\frac{1}{2}(1,0 \ldots, 0,-1)$, and denote by \tilde{L}_{-2} the combination $\tilde{L}_{-2}=L_{-2}+\frac{3}{2} L_{-1}^{2}$, where L_{m} are the Virasoro generators with $c=D$.
a) Show that the commutation relations between the L_{m} and the K_{n} are of the form

$$
\begin{equation*}
\left[L_{m}, K_{n}\right]=-n K_{m+n}, \quad\left[K_{m}, K_{n}\right]=0 . \tag{7.1}
\end{equation*}
$$

b) Consider the state

$$
\begin{equation*}
|\psi\rangle=\left[\tilde{L}_{-2}+\left(\frac{D}{2}-13\right)\left(K_{-2}+2 K_{-1}^{2}\right)\right]|l\rangle, \tag{7.2}
\end{equation*}
$$

where $|l\rangle$ has momentum squared $l^{2}=-1$ so that $L_{0}|l\rangle=-|l\rangle$ (we work with $\alpha^{\prime}=1$) and moreover $K_{m}|l\rangle=0$ for $m>0$. Show that $|\psi\rangle$ is physical for any D. Calculate its norm and show that

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=13-\frac{D}{2} . \tag{7.3}
\end{equation*}
$$

In particular, this calculation shows that $D=26$ is the upper critical dimension. Hint: compute $L_{2}|\psi\rangle, L_{1}|\psi\rangle$ and $K_{0}|l\rangle$.

7.2. Basis for Fock space

With the notations of the previous question, let \mathcal{F}^{M} be the space of states $|f\rangle$ that satisfy

$$
\begin{equation*}
K_{m}|f\rangle=L_{m}|f\rangle=0 \quad \text { for } m>0, \tag{7.4}
\end{equation*}
$$

as well as $R|f\rangle=M|f\rangle$, where $R=L_{0}-p^{2}$ counts the excitation number. We take the momentum to be of the form $p=p_{0}+L k$ (where L is an arbitrary integer) with $p_{0}=(0,0, \ldots, 0,1)$. We introduce the short-hand notation

$$
\begin{equation*}
|\{\lambda, \mu\}, f, M, \nu\rangle=L_{-1}^{\lambda_{1}} \cdots L_{-m}^{\lambda_{m}} K_{-1}^{\mu_{1}} \cdots K_{-n}^{\mu_{n}}|f, M, \nu\rangle \tag{7.5}
\end{equation*}
$$

where $|f, M, \nu\rangle$ is an orthonormal basis for \mathcal{F}^{M} - the different basis vectors are labelled by ν.
We make the following claim: the vectors of the form

$$
\begin{equation*}
|\{\lambda, \mu\}, f, M, \nu\rangle \tag{7.6}
\end{equation*}
$$

give a basis for the states with $R=M+\sum_{r} r \lambda_{r}+\sum_{s} s \mu_{s}=N$, and, as N varies, for the whole vector space of states with momentum of the form $p=p_{0}+L k$. This means that at a given level N, the full space of states can be decomposed into \mathcal{F}^{N}, as well as the states that descend from $\mathcal{F}^{N^{\prime}}, N^{\prime}<N$ through eq. (7.5).
a) Verify this claim for $R=1$ and a given $|p\rangle$. Hint: Consider all descendants generated by α_{-m}^{μ}. Do the analysis for general spacetime dimension D.
b) Under the assumption that the claim holds, count the number of states at $R=2$ that satisfy eq. (7.4). What do you expect for $R>2$? (Both of these questions should be answered for general D.)
c) Verify the claim for $R=2, D=4$ and $p=(0,0,0,1)$. Hint: compute the descendants from the states at $R=0,1$ via the action of $L_{-i}, K_{-i}, i>0$. Count then the states that are annihilated by $L_{1}, L_{2}, K_{1}, K_{2}$. Confirm that your answer agrees with b) above.

