1.1. On the importance of quantum gravity

Let us develop some intuition about orders of magnitude.
a) Consider a gravitational atom, that is an electron bound to a neutron by the gravitational interaction (neglect electromagnetic dipole effects). Perform a semiclassical calculation to determine the radius of the orbit of the electron (first Bohr radius). Relate this radius to a comparable distance in physics.
b) In natural units (where \hbar, G and c are set to 1), a stellar black hole radiates like a black body at a temperature given by

$$
\begin{equation*}
k_{B} T=\frac{1}{8 \pi M}, \tag{1.1}
\end{equation*}
$$

where k_{B} is the Boltzmann constant and M is the mass of the black hole. Give the temperature in SI units by reinserting G, \hbar and c appropriately, then compute the temperature of a black hole with mass equal to one solar mass.

1.2. Classical motion of strings and oscillation modes

Consider a string with tension T_{0} stretching along the x direction from $x=0$ to $x=2 a$. The string oscillates along the transversal direction y, and the transversal displacement $y(x, t)$ satisfies the equation ${ }^{1}$

$$
\begin{equation*}
\ddot{y}-\frac{\mu(x)}{T_{0}} y^{\prime \prime}=0, \tag{1.2}
\end{equation*}
$$

where we use the shorthand notation $\dot{y}:=\frac{\partial y}{\partial t}$ and $y^{\prime}:=\frac{\partial y}{\partial x}$.
a) With the ansatz

$$
\begin{equation*}
y(x, t)=\psi(x) \sin (\omega t+\phi), \tag{1.3}
\end{equation*}
$$

derive the (ordinary) differential equation that the profile of the oscillation $\psi(x)$ has to satisfy. What is the physical meaning of eq. 1.3)?
b) Assume for now that $\mu(x)=\mu_{0}$ constant. Consider mixed Dirichlet-Neumann boundary conditions

$$
y(0, t)=0, \quad y^{\prime}(a, t)=0 .
$$

Determine the allowed oscillation frequencies ω and the solution of the equation of motion for the string in this configuration. Use the ansatz of eq. (1.3).
c) Assume that $\mu(x)=\mu_{1}$ for $0 \leq x<a, \mu(x)=\mu_{2}$ for $a \leq x \leq 2 a$; this situation describes two strings joined at an endpoint. Consider now Dirichlet boundary conditions at the two endpoints, that is $y(0, t)=0, y(2 a, t)=0$.
c.1) What boundary conditions should be imposed on $\psi(x), \psi^{\prime}(x)$ at $x=a$?
c.2) Determine the conditions that the allowed oscillation frequencies must satisfy.
c.2) Calculate the lowest frequency of oscillation in the case of $\mu_{1}=3 \mu_{2}$.

[^0]
[^0]: ${ }^{1}$ We label both the direction and the displacement of the string with y, hoping not to generate confusion.

