1.1. On the importance of quantum gravity

Let us develop some intuition about orders of magnitude.

- a) Consider a gravitational atom, that is an electron bound to a neutron by the gravitational interaction (neglect electromagnetic dipole effects). Perform a semiclassical calculation to determine the radius of the orbit of the electron (first Bohr radius). Relate this radius to a comparable distance in physics.
- **b)** In *natural units* (where \hbar , G and c are set to 1), a stellar black hole radiates like a black body at a temperature given by

$$k_B T = \frac{1}{8\pi M},\tag{1.1}$$

where k_B is the Boltzmann constant and M is the mass of the black hole. Give the temperature in SI units by reinserting G, \hbar and c appropriately, then compute the temperature of a black hole with mass equal to one solar mass.

1.2. Classical motion of strings and oscillation modes

Consider a string with tension T_0 stretching along the x direction from x = 0 to x = 2a. The string oscillates along the transversal direction y, and the transversal displacement y(x,t) satisfies the equation ¹

$$\ddot{y} - \frac{\mu(x)}{T_0} y'' = 0, \qquad (1.2)$$

where we use the shorthand notation $\dot{y} := \frac{\partial y}{\partial t}$ and $y' := \frac{\partial y}{\partial x}$.

a) With the ansatz

$$y(x,t) = \psi(x)\,\sin(\omega t + \phi)\,,\tag{1.3}$$

derive the (ordinary) differential equation that the profile of the oscillation $\psi(x)$ has to satisfy. What is the physical meaning of eq. (1.3)?

b) Assume for now that $\mu(x) = \mu_0$ constant. Consider mixed Dirichlet-Neumann boundary conditions

$$y(0,t) = 0$$
, $y'(a,t) = 0$.

Determine the allowed oscillation frequencies ω and the solution of the equation of motion for the string in this configuration. Use the ansatz of eq. (1.3).

- c) Assume that $\mu(x) = \mu_1$ for $0 \le x < a$, $\mu(x) = \mu_2$ for $a \le x \le 2a$; this situation describes two strings joined at an endpoint. Consider now Dirichlet boundary conditions at the two endpoints, that is y(0,t) = 0, y(2a,t) = 0.
 - **c.1)** What boundary conditions should be imposed on $\psi(x), \psi'(x)$ at x = a?
 - c.2) Determine the conditions that the allowed oscillation frequencies must satisfy.
 - c.2) Calculate the lowest frequency of oscillation in the case of $\mu_1 = 3\mu_2$.

¹We label both the direction and the displacement of the string with y, hoping not to generate confusion.