## title – semester

#### Tutorial 1

September 25, 2014 Lea Krämer

* Time evolution and Master equation: generalized derivation of the detailed balance condition *
*Stirling formula and its application to*

- give an interpretation of the H function

- approximate the number of realizations close to the fixed point distribution: 2-state and z-state system

Notes (Lea Krämer)

#### Tutorial 2

October 2, 2014 Roman Süsstrunk

* From the microcanonical ensemble to the thermodynamic entropy *
* Equivalence of the microcanonical and canonical ensembles *

Notes (Roman Süsstrunk)

#### Tutorial 3

October 9, 2014 Philipp Kammerlander

* Equivalence of definitions of entropy in different ensembles *
* Introduction to the density matrix, which is central to formulating quantum statistical physics *

Notes (Philipp Kammerlander)

#### Tutorial 4

October 16, 2014 Romain Müller

*Quantum harmonic oscillators in the microcanonical ensemble*
*Saddle point approximation*

Notes (Romain Müller)

#### Tutorial 5

October 23, 2014 Lea Krämer

* microcanonical versus grand canonical treatment of ideal quantum gases *
* equations of state: a quick look at equipartition *
* remarks on "correct counting" - classical partition function for Bosons & Fermions at high temperature *

Notes (Lea Krämer)

#### Tutorial 6

October 30, 2014 Romain Müller

*The Bose-Einstein condensate*

Notes (Romain Müller)

#### Tutorial 7

November 6 / 10, 2014 Lea Krämer

* Second Quantization: calculating thermal averages and particle number fluctuations for ideal quantum particles *

Notes (Lea Krämer)

#### Tutorial 8

November 13 / 17, 2014 Romain Müller

*The Bose-Einstein condensate in second quantization*
*Bogoliubov approximation and coherent states*

#### Tutorial 9

November 20 / 24, 2014 Lea Krämer

* Ising model - transfer matrix method *

Notes (Lea Krämer)

#### Tutorial 10

November 27 / December 1st, 2014 Romain Mülller

*Mean field approximation*
*Stoner model and Stoner criterion for ferromagnetism*

Notes (Romain Müller)

#### Tutorial 12

December 11, 2014 Romain Mülller

*Landau criterion for superfluidity*
*Bogoliubov theory of a weakly interacting Bose gas*

Notes (Romain Müller)