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Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the
Ginzburg-Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the
GL functional in zero field reads

(a)

A B
Flm,m'| = Fy + /da: {Em(ac)2 + Zm(x)4 + g[m’(a:)]z} . (1)
Solve the GL equation with boundary conditions
m(x — +00) = £mg, m'(z — o) =0, (2)

where my is the magnetization of the uniform solution.

Solution. The Euler-Lagrange equation of the GL functional is
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Assuming A < 0 and B > 0 the uniform solution is
A
mo =yl - 5 (S.2)

By introducing rescaled variables s = z/£ and u(s) = m(s&)/mg, where

K
=yTa
is the correlation length, we arrive at the equation
u(s) —u(s)® +u”(s) = 0. (S.3)

Multiplying the above equation by «’ and integrating from —oo to s we obtain

1
W/ (s)? = B [1-— u(s)2]2
where we have used u(—o00) = —1 and v/(—o0) = 0. The correct solution for v’ is the positive root,
u'(s) = L [1—u(s)?]
V2
which can be integrated to give
u(s) = tanh [s \/2,80] = m(x) = mgtanh {xﬂzo] . (S.4)

Without loss of generality we set g = s9€ = 0 in the following.

First, find the energy of the uniformly polarized solution (no domain walls). Next,
compute the energy of the solution with a domain wall compared to the uniform
solution. Use the coefficients A, B and k according to the expansion of the mean-
field free energy of the Ising model (see Egs. (6.80) and (6.85)). Finally, find the
energy of a sharp step in the magnetization and compare it to the above results.



Solution. The free energy density of the uniformly polarized solution is f, = fo + Am2/4.

The energy of the domain wall as compared to the uniform solution is therefore

ar = [an{ G+ Zmayt + S @) - ot}

/ da {méx) [Am(x) + gm(m)g - fim”(l‘)] — fm%}
/d:r: [—fm($)4 - img}

- _AZT(%/dm {1— msgj.

In the second line we have used integration by parts and in the third line we have used the GL
equation. Changing to the integration variable ¢t = x/(/2¢) yields

Ami
4

AF = — ﬁg/dt [1 - (tanht)*], (S.5)

and by using tanh’ 2 = 1 — tanh? z we find

2
AF = 714210 \@g/dt [1 — tanh®#(1 — tanh’¢)]
2
= _AZLO V2¢ / dt {(tanht)’ + %(tanhg t)
2
:f”?%¢k. (S.6)

Using the expressions of Chapter 6 (see Egs. (6.80) and (6.85)) for the coefficients A, B and &
(derived for an Ising model with coarse graining), we find that

AF ~ Jm2 /1 — % -0 (T —T.). (S.7)

c

In contrast, a sharp step in the magnetization from —mg to mg costs an energy
E~ Jmd , (S.8)

(see Chap. 6.6), which for T — T, is less favorable.
1

Note that in the above energy discussions, the actual position of the domain wall (see entropy
contribution in Chap. 6.6) was not taken into account.

!Notice that (S.4) describes a sharp step in the magnetization if & — 0. One might think then
that (S.8) contradicts the expression (S.6), as the latter goes to zero if £ — 0 while the former does not.
However, one should keep in mind that the continuum model considered here is derived from a discrete
model by coarse-graining. In particular, £ depends on the lattice spacing a and the reduced temperature
7 according to

a
\7 .
The correlation length £ is thus always greater than a and can not be zero. The continuum limit keeps the
information about the discreteness of the original model. A sharp step in the discrete case corresponds
to a step of width a. At zero temperature, when the system is freezed and £ = a, both expressions (S.8)
and (S.7) agree.
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Exercise 2. Temperature dependence of the superfliuid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero tem-
perature [Eq. (7.31)]. In this exercise we want to determine the temperature dependence
of this fraction in the limit 7" — 0.

(a) Calculate the expectation value of the density of particles with momentum k,
L /..
e =g <a};ak> : (3)

(b) Approximate the temperature dependence of this density,
(5nk(T) = nk(T) — nk(T = 0) s (4)
in the limit 7" — 0.

(c) Calculate the temperature dependence of the density of condensed particles,

ong = — Z ong , (5)
k

in the same limit. What happens in a two-dimensional system?

Hint. Keep only the terms of lowest order in T .

(d) Calculate the expectation value <&L&T_k>. What is the physical interpretation of

this quantity?
Solution.
(a) The Bose-Einstein distribution for the Bogolyubov quasiparticles reads
1
i\
<’7k7k> - eﬁEk -1 . (Sg)

This allows us to easily calculate the particle number

Qny, = <(Uk%i - 'Uk's/—k) (uk’?k - UWT_,@)>

f2 o /0 st \ - o 2t
k-'Yk> + v <7—k7_k> UV (<’7k7—k> + <’Y_k'Yk>)
t

k

=} (i) + R (3aie +1) (S.10)
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(b) At T = 0 the first term vanishes as 8 — oo and Ej > 0, while the second term is independent
from temperature. Therefore the density difference is given by

1+Xi 1

Q(gnk = 71_)(% TgEk 1 .

(S.11)
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In the limit 7 — 0 we find 8 — oo such that the exponential e®F* is strongly peaked around
k = 0. Therefore we can approximate xg for £ — 0. There we obtain

h2k? R2k2 \?
=1 — 1 -1
X * 2mUnyg ( * 2mUn0)

e _\/h2k2 +( h2k? )2 (S.12)

2mUnyg mUng 2mUnyg
hk
vmUng

This leads to an approximation of the temperature-independent part of dng:

~1-—

2hk h2k?
1+Xi ~ I+1- vmUng + Unom

_ 2 2hk h2k2
1—xz 1—-1+ U~ Unom (5.13)

2hk

~ 2- vVmUng VmUnO 1

~ 2hk - hk o
vmUng

For finite k, where BEy = 1, we can approximate the Bose-Einstein distribution by the Boltzmann
distribution 1

_ -~ e BEk

P 1~ ° , (S.14)

where we use the linear approximation for the energy,

Ep ~ 1/% hk =: hkcs . (S.15)
m

Therefore, we obtain the approximation

Qony, ~ (”;; - 1) e~ Bhkes (S.16)

(¢) In three dimensions, the density of condensed particles is given by
d3k

Here, we insert the approximation (S.16) and obtain

A3k /me
~ — S . 7,6’hkcs
f2ono /(277)3 ( hk 1) ¢

1 mec,
———_ [ak ( Sk — k2) —Bhke,
272 h ¢

(S.18)

_ 1 mceg 2
T2 <h(ﬁh08)2 - (5hcs)3)
70  mkg o

- 2m2hic,

In two dimensions, a similar calculation would lead to a linear temperature-dependence,
ong < T'. (S.19)

However, in this calculation we underestimated the contributions for very small k: For SE, < 1
we can approximate the Bose-Einstein distribution by

1 1 1

~ ~ . S.20
ePEr —1  BE,  cshk ( )
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Due to the factor of k in the three-dimensional case, this contribution can be neglected. However,
in two dimensions, the integral for dngy diverges,

A%k mes 1 m dk
Qdng ~ mes - _ Bai N 21
1o / @r)? Tk ek 2nmz) k0 (8-21)

such that there exists no superfluid condensate at finite temperature.

(d) We can perform a similar calculation as in Eq. (S.10):

<d,t&tk> = <(uk’%]; - Uk’?—k) (Ulﬁik - vk%)>

= —uon () + (3owita)) + i (31408 ) + R (o)

2
= UKk (eﬁEk " 1) (S.22)
i ePPr 41
1—x3 Bk —1

= kaz [tanh (18EL)] " .
k

This quantity can be physically understood as the rate at which particles are exchanged with the
condensate.



