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Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the
Ginzburg-Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the
GL functional in zero field reads

F [m,m′] = F0 +

∫
dx

{
A

2
m(x)2 +

B

4
m(x)4 +

κ

2
[m′(x)]2

}
. (1)

(a) Solve the GL equation with boundary conditions

m(x→ ±∞) = ±m0, m′(x→ ±∞) = 0, (2)

where m0 is the magnetization of the uniform solution.

Solution. The Euler-Lagrange equation of the GL functional is

0 =
δF

δm
=

∂f

∂m
− d

dx

∂f

∂m′
= Am+Bm3 − κm′′. (S.1)

Assuming A < 0 and B > 0 the uniform solution is

m0 :=

√
−A
B
. (S.2)

By introducing rescaled variables s = x/ξ and u(s) = m(sξ)/m0, where

ξ =

√
− κ
A

is the correlation length, we arrive at the equation

u(s)− u(s)3 + u′′(s) = 0. (S.3)

Multiplying the above equation by u′ and integrating from −∞ to s we obtain

u′(s)2 =
1

2

[
1− u(s)2

]2
where we have used u(−∞) = −1 and u′(−∞) = 0. The correct solution for u′ is the positive root,

u′(s) =
1√
2

[
1− u(s)2

]
which can be integrated to give

u(s) = tanh

[
s− s0√

2

]
=⇒ m(x) = m0 tanh

[
x− x0√

2ξ

]
. (S.4)

Without loss of generality we set x0 = s0ξ = 0 in the following.

(b) First, find the energy of the uniformly polarized solution (no domain walls). Next,
compute the energy of the solution with a domain wall compared to the uniform
solution. Use the coefficients A, B and κ according to the expansion of the mean-
field free energy of the Ising model (see Eqs. (6.80) and (6.85)). Finally, find the
energy of a sharp step in the magnetization and compare it to the above results.
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Solution. The free energy density of the uniformly polarized solution is fu = f0 +Am2
0/4.

The energy of the domain wall as compared to the uniform solution is therefore

∆F =

∫
dx

{
A

2
m(x)2 +

B

4
m(x)4 +

κ

2
[m′(x)]2 − A

4
m2

0

}
=

∫
dx

{
m(x)

2

[
Am(x) +

B

2
m(x)3 − κm′′(x)

]
− A

4
m2

0

}
=

∫
dx

[
−B

4
m(x)4 − A

4
m2

0

]
= −Am

2
0

4

∫
dx

[
1− m(x)4

m4
0

]
.

In the second line we have used integration by parts and in the third line we have used the GL

equation. Changing to the integration variable t = x/(
√

2ξ) yields

∆F = −Am
2
0

4

√
2ξ

∫
dt
[
1− (tanh t)4

]
, (S.5)

and by using tanh′ x = 1− tanh2 x we find

∆F = −Am
2
0

4

√
2ξ

∫
dt
[
1− tanh2 t(1− tanh′ t)

]
= −Am

2
0

4

√
2ξ

∫
dt

[
(tanh t)′ +

1

3
(tanh3 t)′

]
= −2Am2

0

3

√
2ξ. (S.6)

Using the expressions of Chapter 6 (see Eqs. (6.80) and (6.85)) for the coefficients A, B and κ

(derived for an Ising model with coarse graining), we find that

∆F ∼ Jm2
0

√
1− T

Tc
→ 0 (T → Tc). (S.7)

In contrast, a sharp step in the magnetization from −m0 to m0 costs an energy

E ∼ Jm2
0 , (S.8)

(see Chap. 6.6), which for T → Tc is less favorable.

1

Note that in the above energy discussions, the actual position of the domain wall (see entropy

contribution in Chap. 6.6) was not taken into account.

1Notice that (S.4) describes a sharp step in the magnetization if ξ → 0. One might think then

that (S.8) contradicts the expression (S.6), as the latter goes to zero if ξ → 0 while the former does not.

However, one should keep in mind that the continuum model considered here is derived from a discrete

model by coarse-graining. In particular, ξ depends on the lattice spacing a and the reduced temperature

τ according to

ξ ∝ a√
τ
.

The correlation length ξ is thus always greater than a and can not be zero. The continuum limit keeps the

information about the discreteness of the original model. A sharp step in the discrete case corresponds

to a step of width a. At zero temperature, when the system is freezed and ξ = a, both expressions (S.8)

and (S.7) agree.
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Exercise 2. Temperature dependence of the superfluid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero tem-
perature [Eq. (7.31)]. In this exercise we want to determine the temperature dependence
of this fraction in the limit T → 0.

(a) Calculate the expectation value of the density of particles with momentum k,

nk :=
1

Ω

〈
â†kâk

〉
. (3)

(b) Approximate the temperature dependence of this density,

δnk(T ) := nk(T )− nk(T = 0) , (4)

in the limit T → 0.

(c) Calculate the temperature dependence of the density of condensed particles,

δn0 = −
∑
k

δnk , (5)

in the same limit. What happens in a two-dimensional system?

Hint. Keep only the terms of lowest order in T .

(d) Calculate the expectation value
〈
â†kâ

†
−k

〉
. What is the physical interpretation of

this quantity?

Solution.

(a) The Bose-Einstein distribution for the Bogolyubov quasiparticles reads〈
γ̂†kγ̂k

〉
=

1

eβEk − 1
. (S.9)

This allows us to easily calculate the particle number

Ωnk =
〈(
ukγ̂

†
k − vkγ̂−k

)(
ukγ̂k − vkγ̂

†
−k

)〉
= u2k

〈
γ̂†kγ̂k

〉
+ v2k

〈
γ̂−kγ̂

†
−k

〉
− ukvk

(〈
γ̂kγ̂−k

〉
+
〈
γ̂†−kγ̂

†
k

〉)
= u2k

〈
γ̂†kγ̂k

〉
+ v2k

〈
γ̂†−kγ̂−k + 1

〉
=
(
u2k + v2k

) 1

eβEk − 1
+ v2k

=
1 + χ2

k

1− χ2
k

1

eβEk − 1
+

χ2
k

1− χ2
k

.

(S.10)

(b) At T = 0 the first term vanishes as β → ∞ and Ek > 0, while the second term is independent

from temperature. Therefore the density difference is given by

Ω δnk =
1 + χ2

k

1− χ2
k

1

eβEk − 1
. (S.11)
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In the limit T → 0 we find β → ∞ such that the exponential eβEk is strongly peaked around

k = 0. Therefore we can approximate χk for k → 0. There we obtain

χk = 1 +
~2k2

2mUn0
−

√(
1 +

~2k2
2mUn0

)2

− 1

= 1 +
~2k2

2mUn0
−

√
~2k2
mUn0

+

(
~2k2

2mUn0

)2

≈ 1− ~k√
mUn0

.

(S.12)

This leads to an approximation of the temperature-independent part of δnk:

1 + χ2
k

1− χ2
k

≈
1 + 1− 2~k√

mUn0
+ ~2k2

Un0m

1− 1 + 2~k√
mUn0

− ~2k2

Un0m

≈
2− 2~k√

mUn0

2~k√
mUn0

=

√
mUn0
~k

− 1

(S.13)

For finite k, where βEk & 1, we can approximate the Bose-Einstein distribution by the Boltzmann

distribution
1

eβEk − 1
≈ e−βEk , (S.14)

where we use the linear approximation for the energy,

Ek ≈
√
Un0
m

~k =: ~kcs . (S.15)

Therefore, we obtain the approximation

Ω δnk ≈
(mcs

~k
− 1
)

e−β~kcs . (S.16)

(c) In three dimensions, the density of condensed particles is given by

δn0 = −
∑
k

δnk = −
∫

d3k

(2π)3
δnk . (S.17)

Here, we insert the approximation (S.16) and obtain

Ω δn0 ≈ −
∫

d3k

(2π)3

(mcs
~k
− 1
)

e−β~kcs

= − 1

2π2

∫
dk
(mcs

~
k − k2

)
e−β~kcs

= − 1

2π2

(
mcs

~(β~cs)2
− 2

(β~cs)3

)
T→0
≈ − mk2B

2π2~3cs
T 2 .

(S.18)

In two dimensions, a similar calculation would lead to a linear temperature-dependence,

δn0 ∝ T . (S.19)

However, in this calculation we underestimated the contributions for very small k: For βEk . 1

we can approximate the Bose-Einstein distribution by

1

eβEk − 1
≈ 1

βEk
≈ 1

cs~k
. (S.20)
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Due to the factor of k in the three-dimensional case, this contribution can be neglected. However,

in two dimensions, the integral for δn0 diverges,

Ω δn0 ≈
∫

d2k

(2π)2
mcs
~k

1

cs~k
=

m

2π~2

∫
dk

k
−→∞ , (S.21)

such that there exists no superfluid condensate at finite temperature.

(d) We can perform a similar calculation as in Eq. (S.10):〈
â†kâ
†
−k

〉
=
〈(
ukγ̂

†
k − vkγ̂−k

)(
ukγ̂

†
−k − vkγ̂k

)〉
= −ukvk

(〈
γ̂†kγ̂k

〉
+
〈
γ̂−kγ̂

†
−k

〉)
+ u2k

〈
γ̂†kγ̂

†
−k

〉
+ v2k

〈
γ̂kγ̂−k

〉
= −ukvk

(
2

eβEk − 1
+ 1

)
= − χk

1− χ2
k

eβEk + 1

eβEk − 1

= − χk

1− χ2
k

[
tanh

(
1
2βEk

)]−1
.

(S.22)

This quantity can be physically understood as the rate at which particles are exchanged with the

condensate.
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