Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the Ginzburg-Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the GL functional in zero field reads

$$
\begin{equation*}
F\left[m, m^{\prime}\right]=F_{0}+\int d x\left\{\frac{A}{2} m(x)^{2}+\frac{B}{4} m(x)^{4}+\frac{\kappa}{2}\left[m^{\prime}(x)\right]^{2}\right\} . \tag{1}
\end{equation*}
$$

(a) Solve the GL equation with boundary conditions

$$
\begin{equation*}
m(x \rightarrow \pm \infty)= \pm m_{0}, \quad m^{\prime}(x \rightarrow \pm \infty)=0 \tag{2}
\end{equation*}
$$

where m_{0} is the magnetization of the uniform solution.

Solution. The Euler-Lagrange equation of the GL functional is

$$
\begin{equation*}
0=\frac{\delta F}{\delta m}=\frac{\partial f}{\partial m}-\frac{d}{d x} \frac{\partial f}{\partial m^{\prime}}=A m+B m^{3}-\kappa m^{\prime \prime} . \tag{S.1}
\end{equation*}
$$

Assuming $A<0$ and $B>0$ the uniform solution is

$$
\begin{equation*}
m_{0}:=\sqrt{-\frac{A}{B}} . \tag{S.2}
\end{equation*}
$$

By introducing rescaled variables $s=x / \xi$ and $u(s)=m(s \xi) / m_{0}$, where

$$
\xi=\sqrt{-\frac{\kappa}{A}}
$$

is the correlation length, we arrive at the equation

$$
\begin{equation*}
u(s)-u(s)^{3}+u^{\prime \prime}(s)=0 . \tag{S.3}
\end{equation*}
$$

Multiplying the above equation by u^{\prime} and integrating from $-\infty$ to s we obtain

$$
u^{\prime}(s)^{2}=\frac{1}{2}\left[1-u(s)^{2}\right]^{2}
$$

where we have used $u(-\infty)=-1$ and $u^{\prime}(-\infty)=0$. The correct solution for u^{\prime} is the positive root,

$$
u^{\prime}(s)=\frac{1}{\sqrt{2}}\left[1-u(s)^{2}\right]
$$

which can be integrated to give

$$
\begin{equation*}
u(s)=\tanh \left[\frac{s-s_{0}}{\sqrt{2}}\right] \quad \Longrightarrow \quad m(x)=m_{0} \tanh \left[\frac{x-x_{0}}{\sqrt{2} \xi}\right] . \tag{S.4}
\end{equation*}
$$

Without loss of generality we set $x_{0}=s_{0} \xi=0$ in the following.
(b) First, find the energy of the uniformly polarized solution (no domain walls). Next, compute the energy of the solution with a domain wall compared to the uniform solution. Use the coefficients A, B and κ according to the expansion of the meanfield free energy of the Ising model (see Eqs. (6.80) and (6.85)). Finally, find the energy of a sharp step in the magnetization and compare it to the above results.

Solution. The free energy density of the uniformly polarized solution is $f_{u}=f_{0}+A m_{0}^{2} / 4$.
The energy of the domain wall as compared to the uniform solution is therefore

$$
\begin{aligned}
\Delta F & =\int d x\left\{\frac{A}{2} m(x)^{2}+\frac{B}{4} m(x)^{4}+\frac{\kappa}{2}\left[m^{\prime}(x)\right]^{2}-\frac{A}{4} m_{0}^{2}\right\} \\
& =\int d x\left\{\frac{m(x)}{2}\left[A m(x)+\frac{B}{2} m(x)^{3}-\kappa m^{\prime \prime}(x)\right]-\frac{A}{4} m_{0}^{2}\right\} \\
& =\int d x\left[-\frac{B}{4} m(x)^{4}-\frac{A}{4} m_{0}^{2}\right] \\
& =-\frac{A m_{0}^{2}}{4} \int d x\left[1-\frac{m(x)^{4}}{m_{0}^{4}}\right]
\end{aligned}
$$

In the second line we have used integration by parts and in the third line we have used the GL equation. Changing to the integration variable $t=x /(\sqrt{2} \xi)$ yields

$$
\begin{equation*}
\Delta F=-\frac{A m_{0}^{2}}{4} \sqrt{2} \xi \int d t\left[1-(\tanh t)^{4}\right] \tag{S.5}
\end{equation*}
$$

and by using $\tanh ^{\prime} x=1-\tanh ^{2} x$ we find

$$
\begin{align*}
\Delta F & =-\frac{A m_{0}^{2}}{4} \sqrt{2} \xi \int d t\left[1-\tanh ^{2} t\left(1-\tanh ^{\prime} t\right)\right] \\
& =-\frac{A m_{0}^{2}}{4} \sqrt{2} \xi \int d t\left[(\tanh t)^{\prime}+\frac{1}{3}\left(\tanh ^{3} t\right)^{\prime}\right] \\
& =-\frac{2 A m_{0}^{2}}{3} \sqrt{2} \xi \tag{S.6}
\end{align*}
$$

Using the expressions of Chapter 6 (see Eqs. (6.80) and (6.85)) for the coefficients A, B and κ (derived for an Ising model with coarse graining), we find that

$$
\begin{equation*}
\Delta F \sim J m_{0}^{2} \sqrt{1-\frac{T}{T_{c}}} \rightarrow 0 \quad\left(T \rightarrow T_{c}\right) \tag{S.7}
\end{equation*}
$$

In contrast, a sharp step in the magnetization from $-m_{0}$ to m_{0} costs an energy

$$
\begin{equation*}
E \sim J m_{0}^{2} \tag{S.8}
\end{equation*}
$$

(see Chap. 6.6), which for $T \rightarrow T_{c}$ is less favorable.
1

Note that in the above energy discussions, the actual position of the domain wall (see entropy contribution in Chap. 6.6) was not taken into account.

[^0]
Exercise 2. Temperature dependence of the superfluid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero temperature [Eq. (7.31)]. In this exercise we want to determine the temperature dependence of this fraction in the limit $T \rightarrow 0$.
(a) Calculate the expectation value of the density of particles with momentum \boldsymbol{k},

$$
\begin{equation*}
n_{\boldsymbol{k}}:=\frac{1}{\Omega}\left\langle\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}}\right\rangle . \tag{3}
\end{equation*}
$$

(b) Approximate the temperature dependence of this density,

$$
\begin{equation*}
\delta n_{\boldsymbol{k}}(T):=n_{\boldsymbol{k}}(T)-n_{\boldsymbol{k}}(T=0), \tag{4}
\end{equation*}
$$

in the limit $T \rightarrow 0$.
(c) Calculate the temperature dependence of the density of condensed particles,

$$
\begin{equation*}
\delta n_{0}=-\sum_{k} \delta n_{\boldsymbol{k}}, \tag{5}
\end{equation*}
$$

in the same limit. What happens in a two-dimensional system?
Hint. Keep only the terms of lowest order in T.
(d) Calculate the expectation value $\left\langle\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{-\boldsymbol{k}}^{\dagger}\right\rangle$. What is the physical interpretation of this quantity?

Solution.

(a) The Bose-Einstein distribution for the Bogolyubov quasiparticles reads

$$
\begin{equation*}
\left\langle\hat{\gamma}_{k}^{\dagger} \hat{\gamma}_{k}\right\rangle=\frac{1}{\mathrm{e}^{\beta E_{k}}-1} . \tag{S.9}
\end{equation*}
$$

This allows us to easily calculate the particle number

$$
\begin{align*}
\Omega n_{k} & =\left\langle\left(u_{k} \hat{\gamma}_{k}^{\dagger}-v_{k} \hat{\gamma}_{-k}\right)\left(u_{k} \hat{\gamma}_{k}-v_{k} \hat{\gamma}_{-k}^{\dagger}\right)\right\rangle \\
& =u_{k}^{2}\left\langle\hat{\gamma}_{k}^{\dagger} \hat{\gamma}_{k}\right\rangle+v_{k}^{2}\left\langle\hat{\gamma}_{-k} \hat{\gamma}_{-k}^{\dagger}\right\rangle-u_{k} v_{k}\left(\left\langle\hat{\gamma}_{k} \hat{\gamma}_{-k}\right\rangle+\left\langle\hat{\gamma}_{-k}^{\dagger} \hat{\gamma}_{k}^{\dagger}\right\rangle\right) \\
& =u_{k}^{2}\left\langle\hat{\gamma}_{k}^{\dagger} \hat{\gamma}_{k}\right\rangle+v_{k}^{2}\left\langle\hat{\gamma}_{-k}^{\dagger} \hat{\gamma}_{-k}+1\right\rangle \tag{S.10}\\
& =\left(u_{k}^{2}+v_{k}^{2}\right) \frac{1}{\mathrm{e}^{\beta E_{k}}-1}+v_{k}^{2} \\
& =\frac{1+\chi_{k}^{2}}{1-\chi_{k}^{2}} \frac{1}{\mathrm{e}^{\beta E_{k}}-1}+\frac{\chi_{k}^{2}}{1-\chi_{k}^{2}} .
\end{align*}
$$

(b) At $T=0$ the first term vanishes as $\beta \rightarrow \infty$ and $E_{k}>0$, while the second term is independent from temperature. Therefore the density difference is given by

$$
\begin{equation*}
\Omega \delta n_{k}=\frac{1+\chi_{k}^{2}}{1-\chi_{k}^{2}} \frac{1}{\mathrm{e}^{\beta E_{k}}-1} . \tag{S.11}
\end{equation*}
$$

In the limit $T \rightarrow 0$ we find $\beta \rightarrow \infty$ such that the exponential $\mathrm{e}^{\beta E_{k}}$ is strongly peaked around $\boldsymbol{k}=0$. Therefore we can approximate $\chi_{\boldsymbol{k}}$ for $k \rightarrow 0$. There we obtain

$$
\begin{align*}
\chi_{\boldsymbol{k}} & =1+\frac{\hbar^{2} k^{2}}{2 m U n_{0}}-\sqrt{\left(1+\frac{\hbar^{2} k^{2}}{2 m U n_{0}}\right)^{2}-1} \\
& =1+\frac{\hbar^{2} k^{2}}{2 m U n_{0}}-\sqrt{\frac{\hbar^{2} k^{2}}{m U n_{0}}+\left(\frac{\hbar^{2} k^{2}}{2 m U n_{0}}\right)^{2}} \tag{S.12}\\
& \approx 1-\frac{\hbar k}{\sqrt{m U n_{0}}}
\end{align*}
$$

This leads to an approximation of the temperature-independent part of $\delta n_{\boldsymbol{k}}$:

$$
\begin{align*}
\frac{1+\chi_{\boldsymbol{k}}^{2}}{1-\chi_{\boldsymbol{k}}^{2}} & \approx \frac{1+1-\frac{2 \hbar k}{\sqrt{m U n_{0}}}+\frac{\hbar^{2} k^{2}}{U n_{0} m}}{1-1+\frac{2 \hbar k}{\sqrt{m U n_{0}}}-\frac{\hbar^{2} k^{2}}{U n_{0} m}} \tag{S.13}\\
& \approx \frac{2-\frac{2 \hbar k}{\sqrt{m U n_{0}}}}{\frac{2 \hbar k}{\sqrt{m U n_{0}}}}=\frac{\sqrt{m U n_{0}}}{\hbar k}-1
\end{align*}
$$

For finite \boldsymbol{k}, where $\beta E_{\boldsymbol{k}} \gtrsim 1$, we can approximate the Bose-Einstein distribution by the Boltzmann distribution

$$
\begin{equation*}
\frac{1}{\mathrm{e}^{\beta E_{k}}-1} \approx \mathrm{e}^{-\beta E_{k}} \tag{S.14}
\end{equation*}
$$

where we use the linear approximation for the energy,

$$
\begin{equation*}
E_{\boldsymbol{k}} \approx \sqrt{\frac{U n_{0}}{m}} \hbar k=: \hbar k c_{\mathrm{s}} \tag{S.15}
\end{equation*}
$$

Therefore, we obtain the approximation

$$
\begin{equation*}
\Omega \delta n_{\boldsymbol{k}} \approx\left(\frac{m c_{\mathrm{s}}}{\hbar k}-1\right) \mathrm{e}^{-\beta \hbar k c_{\mathrm{s}}} \tag{S.16}
\end{equation*}
$$

(c) In three dimensions, the density of condensed particles is given by

$$
\begin{equation*}
\delta n_{0}=-\sum_{\boldsymbol{k}} \delta n_{\boldsymbol{k}}=-\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \delta n_{\boldsymbol{k}} . \tag{S.17}
\end{equation*}
$$

Here, we insert the approximation (S.16) and obtain

$$
\begin{align*}
\Omega \delta n_{0} & \approx-\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}}\left(\frac{m c_{\mathrm{s}}}{\hbar k}-1\right) \mathrm{e}^{-\beta \hbar k c_{\mathrm{s}}} \\
& =-\frac{1}{2 \pi^{2}} \int \mathrm{~d} k\left(\frac{m c_{\mathrm{s}}}{\hbar} k-k^{2}\right) \mathrm{e}^{-\beta \hbar k c_{\mathrm{s}}} \\
& =-\frac{1}{2 \pi^{2}}\left(\frac{m c_{\mathrm{s}}}{\hbar\left(\beta \hbar c_{\mathrm{s}}\right)^{2}}-\frac{2}{\left(\beta \hbar c_{\mathrm{s}}\right)^{3}}\right) \tag{S.18}\\
& { }^{T \rightarrow 0}{ }^{2}-\frac{m k_{\mathrm{B}}^{2}}{2 \pi^{2} \hbar^{3} c_{\mathrm{s}}} T^{2}
\end{align*}
$$

In two dimensions, a similar calculation would lead to a linear temperature-dependence,

$$
\begin{equation*}
\delta n_{0} \propto T \tag{S.19}
\end{equation*}
$$

However, in this calculation we underestimated the contributions for very small k : For $\beta E_{\boldsymbol{k}} \lesssim 1$ we can approximate the Bose-Einstein distribution by

$$
\begin{equation*}
\frac{1}{\mathrm{e}^{\beta E_{k}}-1} \approx \frac{1}{\beta E_{k}} \approx \frac{1}{c_{\mathrm{s}} \hbar k} \tag{S.20}
\end{equation*}
$$

Due to the factor of k in the three-dimensional case, this contribution can be neglected. However, in two dimensions, the integral for δn_{0} diverges,

$$
\begin{equation*}
\Omega \delta n_{0} \approx \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \frac{m c_{\mathrm{s}}}{\hbar k} \frac{1}{c_{\mathrm{s}} \hbar k}=\frac{m}{2 \pi \hbar^{2}} \int \frac{\mathrm{~d} k}{k} \longrightarrow \infty \tag{S.21}
\end{equation*}
$$

such that there exists no superfluid condensate at finite temperature.
(d) We can perform a similar calculation as in Eq. (S.10):

$$
\begin{align*}
\left\langle\hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{-\boldsymbol{k}}^{\dagger}\right\rangle & =\left\langle\left(u_{\boldsymbol{k}} \hat{\gamma}_{\boldsymbol{k}}^{\dagger}-v_{\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}\right)\left(u_{\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}^{\dagger}-v_{\boldsymbol{k}} \hat{\gamma}_{\boldsymbol{k}}\right)\right\rangle \\
& =-u_{\boldsymbol{k}} v_{\boldsymbol{k}}\left(\left\langle\hat{\gamma}_{\boldsymbol{k}}^{\dagger} \hat{\gamma}_{\boldsymbol{k}}\right\rangle+\left\langle\hat{\gamma}_{-\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}^{\dagger}\right\rangle\right)+u_{\boldsymbol{k}}^{2}\left\langle\hat{\gamma}_{\boldsymbol{k}}^{\dagger} \hat{\gamma}_{-\boldsymbol{k}}^{\dagger}\right\rangle+v_{\boldsymbol{k}}^{2}\left\langle\hat{\gamma}_{\boldsymbol{k}} \hat{\gamma}_{-\boldsymbol{k}}\right\rangle \\
& =-u_{\boldsymbol{k}} v_{\boldsymbol{k}}\left(\frac{2}{\left.\mathrm{e}^{\beta E_{\boldsymbol{k}}-1}+1\right)}\right. \tag{S.22}\\
& =-\frac{\chi_{\boldsymbol{k}}}{1-\chi_{\boldsymbol{k}}^{2}} \frac{\mathrm{e}^{\beta E_{\boldsymbol{k}}}+1}{\mathrm{e}^{\beta E_{\boldsymbol{k}}}-1} \\
& =-\frac{\chi_{\boldsymbol{k}}}{1-\chi_{\boldsymbol{k}}^{2}}\left[\tanh \left(\frac{1}{2} \beta E_{\boldsymbol{k}}\right)\right]^{-1} .
\end{align*}
$$

This quantity can be physically understood as the rate at which particles are exchanged with the condensate.

[^0]: ${ }^{1}$ Notice that (S.4) describes a sharp step in the magnetization if $\xi \rightarrow 0$. One might think then that (S.8) contradicts the expression (S.6), as the latter goes to zero if $\xi \rightarrow 0$ while the former does not. However, one should keep in mind that the continuum model considered here is derived from a discrete model by coarse-graining. In particular, ξ depends on the lattice spacing a and the reduced temperature τ according to

 $$
 \xi \propto \frac{a}{\sqrt{\tau}}
 $$

 The correlation length ξ is thus always greater than a and can not be zero. The continuum limit keeps the information about the discreteness of the original model. A sharp step in the discrete case corresponds to a step of width a. At zero temperature, when the system is freezed and $\xi=a$, both expressions (S.8) and (S.7) agree.

