Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the Ginzburg-Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the GL functional in zero field reads

$$F[m,m'] = F_0 + \int dx \left\{ \frac{A}{2}m(x)^2 + \frac{B}{4}m(x)^4 + \frac{\kappa}{2}[m'(x)]^2 \right\}.$$
 (1)

(a) Solve the GL equation with boundary conditions

$$m(x \to \pm \infty) = \pm m_0, \quad m'(x \to \pm \infty) = 0, \tag{2}$$

where m_0 is the magnetization of the uniform solution.

(b) First, find the energy of the uniformly polarized solution (no domain walls). Next, compute the energy of the solution with a domain wall compared to the uniform solution. Use the coefficients A, B and κ according to the expansion of the mean-field free energy of the Ising model (see Eqs. (5.78) and (5.83)). Finally, find the energy of a sharp step in the magnetization and compare it to the above results.

Exercise 2. Temperature dependence of the superfluid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero temperature [Eq. (7.31)]. In this exercise we want to determine the temperature dependence of this fraction in the limit $T \rightarrow 0$.

(a) Calculate the expectation value of the density of particles with momentum \boldsymbol{k} ,

$$n_{\boldsymbol{k}} := \frac{1}{\Omega} \left\langle \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}} \right\rangle \,. \tag{3}$$

(b) Approximate the temperature dependence of this density,

$$\delta n_{\boldsymbol{k}}(T) := n_{\boldsymbol{k}}(T) - n_{\boldsymbol{k}}(T=0) , \qquad (4)$$

in the limit $T \to 0$.

(c) Calculate the temperature dependence of the density of condensed particles,

$$\delta n_0 = -\sum_{\boldsymbol{k}} \delta n_{\boldsymbol{k}} \,, \tag{5}$$

in the same limit. What happens in a two-dimensional system? *Hint. Keep only the terms of lowest order in T.*

(d) Calculate the expectation value $\langle \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}^{\dagger}_{-\boldsymbol{k}} \rangle$. What is the physical interpretation of this quantity?

Office Hours: Monday, December 15, 8-10 AM (Lea Krämer, HIT K 32.2).