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Exercise 1. Condensation and crystallization in the lattice gas model.

The lattice gas model is obtained by dividing the volume V into microscopic cells which are
assumed to be small enough such that they contain at most one gas molecule. In two and three
dimensions, the result is a square and a cubic lattice, respectively. We neglect the kinetic energy
of a molecule and assume nearest neighbors interactions. The total energy is given by

H = −λ
∑
〈i,j〉

ninj (1)

where the sum runs over nearest-neighbor pairs and λ is the nearest-neighbor coupling. There
is at most one particle in each cell (ni = 0 or 1). This model is a simplification of hard-core
potentials, like the Lennard-Jones potential, characterized by an attractive interaction and a
very short-range repulsive interaction that prevents particles from overlapping.

In order to study the case of a repulsive interaction, λ < 0, we divide the lattice into two
alternating sublattices A and B. For square or cubic lattices, we find that all lattice sites A only
have points in B as their nearest neighbors.

Figure 1: Schematic view of the lattice gas model.

(a) Show the equivalence of the grand canonical ensemble of the lattice gas model with the
canonical ensemble of an Ising model in a magnetic field.

Solution. We consider the grand canonical Hamiltonian

H − µN = −λ
∑
〈i,j〉

ninj − µ
∑
i

ni . (S.1)

By introducing Ising spins si through the relation

ni =
1

2
(1 + si) , si = ±1 , (S.2)

we arrive at an Ising model

H − µN = −J
∑
〈i,j〉

sisj − h
∑
i

si −
(
h− γ

2
J
)
NL = HI −

(
h− γ

2
J
)
NL (S.3)

with

J =
λ

4
, h =

λ

4
γ +

µ

2
. (S.4)

Here, γ denotes the coordination number (number of nearest neighbors) and NL is the total number of

lattice sites. The grand partition function Z = Tr [exp[−β(H − µN)]] of the lattice gas is thus related to

the canonical partition function ZI = Tr [exp(−βHI)] of the Ising model through

ZG = ZI eβ(λ
8
γ+ µ

2 )NL (S.5)

with the relations (S.4) for the exchange coupling J and the magnetic field h.
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(b) Introduce two mean-field parameters mA and mB, corresponding to the two sublattices A
and B, and adapt the mean-field solution of the Ising model discussed in Sec. 5.2 of the
lecture notes for these two parameters. What are the self-consistency conditions for mA

and mB?

Solution. The Hamiltonian of the Ising model is

HI = −J
∑
〈i,j〉

sisj − h
∑
i

si . (S.6)

We introduce the mean-field parameters mA and mB, which are defined as

mA = 〈si〉i∈A , mB = 〈sj〉j∈B . (S.7)

Now we can write

si = mA,B + δi := mA,B + (si −mA,B) , (S.8)

where we assume δi to be small. Now we can expand the Hamiltonian as

HI = −J
∑
〈i,j〉

(mA + δi)(mB + δj)− h
∑
i

si

= −J
∑
〈i,j〉

(mAmB +mBδi +mAδj + δiδj)− h
∑
i

si

≈ −J
∑
〈i,j〉

[mAmB +mB(si −mA) +mA(sj −mB)]− h
∑
i

si

=
γN

2
JmAmB − γJ

∑
i∈A

mBsi − γJ
∑
j∈B

mAsj − h
∑
i

si

=
γN

2
JmAmB −

∑
i∈A

(γJmB + h)si −
∑
j∈B

(γJmA + h)sj ,

(S.9)

where we used that nearest neighbors always belong to different sublattices and neglected the product δiδj .

We find that the two sublattices A and B behave as paramagnets in the effective fields

hA
eff = γJmB + h , hB

eff = γJmA + h . (S.10)

The partition function of a paramagnet was already discussed previously, so the partition function of this

mean-field Hamiltonian is

ZI = exp
[
− 1

2
βγNJmAmB

]
·
[
2 cosh

(
βhA

eff

)]N/2
·
[
2 cosh

(
βhB

eff

)]N/2
. (S.11)

This immediately leads to the Helmholtz free energy

FI(β, h,N) =
N

2

(
JγmAmB −

1

β

{
log
[
2 cosh(βhA

eff)
]

+ log
[
2 cosh(βhB

eff)
]})

. (S.12)

The self-consistent solutions are given by the local minima of the free energy. The conditions are therefore

∂FI

∂mA
= 0 ⇔ mB = tanh

[
βhA

eff

]
(S.13a)

∂FI

∂mB
= 0 ⇔ mA = tanh

[
βhB

eff

]
, (S.13b)

where hA
eff and hA

eff are given by (S.10).

(c) Use your results from parts (a) and (b) to calculate the grand potential for the lattice gas
and determine the self-consistency relations for the two mean-field parameters ρA = 〈ni〉i∈A
and ρB = 〈ni〉i∈B.
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Solution. We use the mean-field approximation (S.12) derived in part (b) and the relations (S.4) in order

to write the grand potential

Ω(β, µ,NL) = − 1

β
logZG = FI(β, h,NL)−

(
λ

8
γ +

µ

2

)
NL

=
NL

2

[
−
(
λγ

4
+ µ

)
+
λγ

4
(2ρA − 1)(2ρB − 1)

− 1

β

{
log

[
2 cosh

(
β

2
(λγρA + µ)

)]
+ log

[
2 cosh

(
β

2
(λγρB + µ)

)]}]
,

(S.14)

where we defined ρ = 1
2
(1 +m). Here, the effective magnetic fields (S.10) are replaced by

hA,Beff → 1
2
(λγρB,A + µ) . (S.15)

We can now reformulate the self-consistency equations (S.13) for the lattice gas by inserting the rela-

tions (S.15). Using artanhx = 1
2

log[(1 + x)/(1− x)] for x ∈ [−1, 1], we obtain the two relations

µ =
1

β
log

ρA

1− ρA
− λγρB =

1

β
log

ρB

1− ρB
− λγρA , (S.16)

which can also be written in the form

ρA =
1

1 + e−β(λγρB+µ)
, (S.17a)

ρB =
1

1 + e−β(λγρA+µ)
. (S.17b)

By inserting Eq. (S.17b) into Eq. (S.17a), we can in principle obtain the single condition

ρA =

[
1 + exp

(
−β
[

γλ

1 + exp (−β(γλρA + µ))
+ µ

])]−1

. (S.18)

In the following we will use the mean-field solution of the lattice gas model in order to discuss
the liquid-gas transition for an attractive interaction λ > 0.

(d) Argue, why in this case the mean-field results can be simplified as the two densities must be
equal, ρA = ρB = ρ. Use your knowledge of the Ising model to define a critical temperature
Tc, below which there are multiple solutions to the self-consistency equations, and discuss
the solutions of ρ for temperatures above or below Tc. Define also the critical chemical
potential µ0 corresponding to h = 0 in the Ising model and use this for a distinction of
cases.

Solution. The two self-consistency equations (S.17) are of the mathematical form

a = φ(b) b = φ(a) , (S.19)

where the function is given by

φ(x) =
1

1 + e−β(λγx+µ)
. (S.20)

It is easy to see that for λ > 0 this function is monotonically increasing, while it is decreasing for λ < 0.

Now if we assume b > a, this implies f(b) > f(a). This immediately leads to a contradiction, as a =

f(b) ≥ f(a) = b > a. The same contradiction follows for b < a. Therefore, for λ > 0 there are only

symmetric solutions ρA = ρB for the self-consistency equations and we can simplify the whole treatment

by just omitting the second mean-field parameter altogether.

From Eq. (S.4) we see that h = 0 corresponds to µ = −λγ/2 =: µ0. For this case we can use the knowledge

about the magnetic transition in the zero-field Ising model. In particular, there is a critical temperature

kBTc = γλ/4 = −µ0/2 below which there exist two degenerate solutions.
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Figure 2: The density ρ as a function of temperature T for different values of the chemical potential µ.

In the lattice gas, these solutions correspond to the liquid and to the gaseous phase and we will denote

them by ρl(T ) and ρg(T ), respectively (see Fig. 2). The third solution of Eq. (S.17) for µ = µ0, namely

ρ = 1/2, is only stable above Tc.

In the general case, there is a unique solution of Eq. (S.17) for T > Tc while for T ≤ Tc there are

three solutions in the neighborhood of µ = µ0 = −2kBTc but only one minimizes Ω (see Figs. 2 and 3).

The solution with dρ/dµ > 0 is stable or metastable while the solution with dρ/dµ < 0 is unstable and

corresponds to a local maximum of the grand potential Ω. Thus, for T < Tc, the density ρ(T, µ) jumps at

µ0 reflecting the first-order liquid-gas transition (see Fig. 3).

(e) Find the equation of state p = p(T, ρ) or p = p(T, v) and discuss the liquid-gas transition
in the p− v diagram. Thereby, v = 1/ρ is the specific volume. Compare with the van der
Waals equation of state: (

p+
ã

v2

)(
v − b̃

)
= kBT .

What is different in our model?

Hint. For the lattice gas, we have b̃ = 1.

Solution. The pressure is given by

p(β, µ) = − ∂

∂NL
Ω(β, µ,NL)

=
µ

2
−
(
λγ

2
(ρ2 − ρ)− 1

β
log

{
2 cosh

[
β

(
λγ

2
ρ+

µ

2

)]})
, (S.21)

where we used Eq. (S.14). For ρ(β, µ) ≤ ρg(β) and ρ(β, µ) ≥ ρl(β) we can simply insert Eq. (S.16) into

the above equation and obtain

p(T, ρ) = −λγ
2
ρ2 − 1

β
log(1− ρ) (S.22)

or in terms of the specific volume v = 1/ρ

p(T, v) = −λγ
2

1

v2
− kBT log(1− 1

v
) . (S.23)

But for ρg(β) ≤ ρ(β, µ) ≤ ρl(β) there is coexistence of the liquid and the gas. We have to set µ = µ0 and

ρ = ρg,l(T ) in Eq. (S.21) (this corresponds to the Maxwell construction) leading to a constant pressure!

This is shown in the p− v diagram Fig. 4.
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Figure 3: The density ρ as function of the chemical potential µ for different temperatures. For T < Tc there is a

jump in ρ at µ = µ0 = −2kBTc.

We can rewrite the van der Waals equation of state as follows:

p(T, v) = − ã

v2
+ kBT

1

v − b̃
.

The elementary volume of the gas (hard core volume) b̃ equals 1 in our model, since the volume is given by

the total number of lattice sites, NL. Comparing this with Eq. (S.23), we see that the first term is identical

if we set ã = λγ/2, whereas the second term diverges either linearly (van der Walls) or logarithmically

(our model) with v → 1. This different behavior is present in the limiting case of high density and can be

attributed to the short-range difference of the potential for the discrete lattice gas model and the continuous

van der Waals gas.

(f) Find the phase diagram (T − p diagram). Determine the phase boundary (T, pc(T )) and,
in particular, compute the critical point (Tc, pc(Tc)).

Solution. The critical pressure is given by Eq. (S.22) for µ = µ0 = −2kBTc and ρ = ρg,l(T )

pc(T ) = −2kBTcρ
2
g,l(T )− kBT log(1− ρg,l(T )), (S.24)

as shown in Fig. 5. In particular, for T = Tc we have ρg,l(Tc) = 1/2 and

pc(Tc) =
kBTc

2
(log 4− 1) . (S.25)

Instead of the liquid-gas transition, which we have observed for an attractive interaction λ > 0,
a crystallization transition (sublimation) can be observed for nearest-neighbor repulsion, λ < 0.
In this case, we will find that the two mean-field parameters are different, ρA 6= ρB, below some
critical temperature Tc.

(g) Discuss the solutions below the critical temperature for λ < 0. Plot the densities ρA and
ρB, as well as the average, (ρA + ρB)/2 for both attractive and repulsive nearest-neighbor
interaction at low temperature, T < Tc.
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Figure 4: The isotherms p(T, v). The shaded region denotes the region of liquid-gas phase coexistence.
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Figure 5: p-T phase diagram of the lattice gas model. The two phases coexist when µ = µ0 and T < Tc

(equilibrium line). Above Tc there is only one phase (a single density for a given pressure).

Solution. Below the same critical temperature kBTc = γ|λ|/4 as for an attractive interaction and in a

certain range around µ0 = γλ/2, we find graphically that three different solutions for the self-consistency

relations (S.17) exist, corresponding to the crossings of φ(ρA) and φ(ρB) shown in Fig. 7. There are two

degenerate asymmetric solutions ρA 6= ρB, which are related by ρA ↔ ρB, and one symmetric solution with

ρA = ρB.

The exact range µ ∈ [µ0 −∆µ, µ0 + ∆µ] for which three solutions exist is given by the condition

φ′(ρ)|φ(ρ)=ρ < −1 . (S.26)

This can be understood by looking again at Fig. 7 and by noting that since φ(ρ) > 0, there must exist two

asymmetric solutions whenever φ′(ρ) < 1 at the symmetric solution (the middle crossing). By inserting

the definition of φ into Eq. (S.26) and solving for µ, one obtains

µ0 −∆µ < µ < µ0 + ∆µ, (S.27)

with

∆µ =
γλ

2
θ +

1

β
log

(
1 + θ

1− θ

)
, θ =

√
1 +

4

βγλ
. (S.28)

The asymmetric solutions, which are generally lower in energy, correspond to a crystal structure, where

(at T = 0) one of the sublattices is occupied while the other one is empty. The densities for attraction and
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repulsion are shown in Fig. 6. While for a nearest-neighbor attraction the densities of the sublattices are

identical, there is a symmetry-broken phase for nearest-neighbor repulsion.
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Figure 6: Densities on the two sublattices for attractive (λ > 0) and repulsive (λ < 0) nearest-neighbor interaction

at T = 0.5Tc. The thick lines show the average densities, the dashed and dotted lines the densities of the two

sublattices.
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Figure 7: Plot of φ(ρA) and φ(ρB), defined in Eq. (S.20), for µ ∈ [µ0 −∆µ, µ0 + ∆µ].
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