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Exercise 1. Tight-binding model

Consider non-interacting particles on a lattice of N sites with periodic boundary condition,
i.e. on a discrete ring. The position variable becomes a discrete variable ~r → xi and the field

operators with spin label s, Ψ
(†)
s (~r), become Ψ

(†)
s,i ≡ Ψ

(†)
s (xi).

(a) Find the eigensolutions of the problem for the Hamiltonian

H = −t
∑
s

N−1∑
j=0

(
Ψ†s,j+1Ψs,j + Ψ†s,jΨs,j+1

)
, (1)

by the use of the Fourier transform of the field operators

as,k =
1√
N

N−1∑
j=0

e−ijkΨs,j , k ∈
{

2π

N

(
n−

⌊
N − 1

2

⌋) ∣∣∣∣n = 0, 1, 2, . . . , N − 1

}
, (2)

where bxc denotes the integer part of x. Write the result in occupation number basis of

the eigenstates. How can the terms Ψ†s,j+1Ψs,j be interpreted?

Solution. The interpretation of the term Ψ†s,j+1Ψs,j is that a particle hops from site j to site j+ 1, from

where the term hopping model arises.

Using the inverse transformation,

Ψs,j =
1√
N

∑
k

eijkas,k (S.1)

gives

H = −2t
∑
s,k

cos(k)a†s,kas,k = −2t
∑
s,k

cos(k)ns,k, (S.2)

where ns,k is the occupation number (operator) of the one-particle state labeled by quasi-momentum k

and spin s.

(b) Given the particles are fermionic, the transformation

bs,k =
1√
N

∑
j

e−ijkΨ†s,j (3)

diagonalizes the Hamiltionian as well. Rewrite the problem in the occupation number

basis of the b
(†)
k operators. What is the difference between the two formulations, how are

they related?

Solution. Repeating the calculation from above, we find

H = 2t
∑
s,k

cos(k)b†s,kbs,k = 2t
∑
s,k

cos(k)ñs,k, (S.3)

where ñs,k is the occupation number of the one-hole state labeled by quasi-momentum k and spin s.

The formulations differ by the interpretation of the particles corresponding to the operators a and b. In

the first case we consider the fermionic particles we startet with, in the second we consider the fermionic

anti-particles of the initial fermions. Correspondingly, the vacuum associated with the occupation basis is
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once the vacuum of having no particles in the system and once the vacuum of having no anti-particles in

the system. Having no anti-particles is equivalent to having all states filled with particles.

There is a one-to-one correspondence of the eigensolutions to the problem in either formulation: the system

has particle-hole symmetry.

(c) Consider now a fixed number of M particles to be in the system. Calculate the leading
order of the entropy in the high temperature expansion T → ∞. Compare it to the case
of free fermions. Can you recover the particle-hole symmetry in the result?

Solution. As usual, the entropy is given by

S = −∂F
∂T

, (S.4)

with the free energy

F = − 1

β
logZ . (S.5)

Unlike in the case of free particles, the spectrum is bounded. Therefore, in the high-temperature limit the

partition sum can be approximated by

Z = tr e−βH = tr

(
∞∑
l=0

(−βH)l

l!

)
= tr(H0) +

∞∑
l=1

(−β)l trHl

l!
=

(2N)!

(2N −M)!M !
+O(T−1) , (S.6)

where 2N corresponds to the total number of available states for spin-1/2 particles. From this follows that

S ≈ kB log
(2N)!

(2N −M)!M !
(S.7)

in leading order. The entropy in this system is bounded and temperature independent in the high-

temperature limit, while the entropy of a free Fermi gas is not. The origin of the difference lies within the

(un)boundedness of the spectra.

The particle-hole symmetry can be seen by replacing the number of particles M by the number of holes

2N −M , which leaves the expression for the entropy invariant.

(d) Find the magnetic susceptibility using the fluctuation-dissipation theorem

χ =
1

N

1

kBT

[
〈M2

z 〉 − 〈Mz〉2
]
, (4)

where the magnetization operator is defined by

Mz =
gµB
~
∑
j

Sj = µB

N∑
j=0

∑
s=±1

sΨ†s,jΨs,j . (5)

Determine the result in the low-temperature limit by taking N →∞.

Hint: Rewrite the magnetization operator in occupation basis and use the Fermi-Dirac
distribution.

Solution. We first observe that
N∑
j=0

Ψ†s,jΨs,j =
∑
k

a†s,kas,k (S.8)

and hence, with 〈n1,k〉 = 〈n−1,k〉,
〈Mz〉 = µB

∑
k,s

s〈ns,k〉 = 0 . (S.9)
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We are left with calculating 〈M2
z 〉:

〈M2
z 〉 = µ2

B

∑
s,s′

∑
k,k′

ss′〈a†s,kas,ka
†
s′,k′as′,k′〉 = µ2

B

∑
s,s′

∑
k,k′

ss′〈ns,kns′,k′〉 (S.10)

= µ2
B

∑
k,k′

[〈n1,kn1,k′〉+ 〈n−1,kn−1,k′〉 − 〈n−1,kn1,k′〉 − 〈n1,kn−1,k′〉] . (S.11)

As we are dealing with non-interacting fermions, we find

〈ns,kns,k′〉 =

{
〈n1,k〉 k = k′ , s = s′

〈ns,k〉〈ns,k′〉 otherwise
(S.12)

and by using again that 〈n1,k〉 = 〈n−1,k〉 ≡ 〈nk〉, we arrive at

〈M2
z 〉 = µ2

B2
∑
k

[
〈nk〉 − 〈nk〉2

]
. (S.13)

The states are occupied according to the Fermi-Dirac distribution and the susceptibility is therefore

χ =
1

N

1

kBT
µ2
B

∑
k

1

2 cosh2{β[−t cos(k)− µ/2]}
. (S.14)

In the limit N →∞ we can approximate the sum by an integral to obtain

χ =
1

kBT
µ2
B

∫ π

−π
dk

1

2 cosh2{β[−t cos(k)− µ/2]}
=

1

kBT
µ2
B

∫ ∞
−∞

dεN(ε)
1

4 cosh2{β[ε− µ]/2}
, (S.15)

where N(ε) denotes the density of states. In the low-temperature limit only energy values around the

chemical potential, which in this case coincides with the Fermi energy, contribute. This allows us to

approximate∫ ∞
−∞

dεN(ε)
1

4 cosh2{β[ε− µ]/2}
≈
∫ ∞
−∞

dεN(εF )
1

4 cosh2{β[ε− µ]/2}
= kBTN(εF ) . (S.16)

The suceptibility in the low-temperature limit reads

χ = µ2
BN(εF ) . (S.17)

Note that is exactly the same form as for the free Fermi gas in three dimensions (cf. script). Actually,

this form holds for any non-interacting Fermi system. What changes is the density of states at the Fermi

energy. Formulating the problem in second quantized form therfore simplies the calculation significantly.

(e*) Restricting the problem to spinless Fermions and turning on a magnetic field (introduced
in a specific gauge) perpendicular to the ring, changes the Hamiltonian to

H = −t
N−1∑
j=0

(
e−iϕΨ†j+1Ψj + eiϕΨ†jΨj+1

)
. (6)

In this case, calculate the expectation value of the current density operator

j =
1

N

∑
n

jn , jn = −i
(

Ψ†n+1Ψn −Ψ†nΨn+1

)
. (7)

Interpret the current density operator in terms of particles hopping from site to site.

Solution. The Hamiltonian can still be diagonalized by the corresponding Fourier transform Eq. (2):

H = −2t
∑
k

cos(k − ϕ)a†kak = −2t
∑
k

cos(k − ϕ)nk = −2t
∑
k

cos(k)nk+ϕ . (S.18)

The phase factor in the hopping model leads to a shift in the dispersion relation.
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For the expectation value of the current density operator we find

〈j〉 =
−i
N

∑
n

1

N

∑
k,k′

[
ein(k−k′)eik〈a†kak′〉+ h.c.

]
=

1

N

∑
k

2 sin(k)〈nk〉 , (S.19)

where we used that

Ψ†n+1Ψn =
1

N

∑
k,k′

ein(k−k′)eika†kak′ . (S.20)

In the limit of N →∞, at fixed chemical potential µ = 0, this becomes

〈j〉 →
∫ π

−π
2 sin(k)〈nk〉 =

∫ π

−π
dk 2 sin(k + ϕ)〈nk+ϕ〉 (S.21)

=

∫ π

−π
dk 2 [sin(k) cos(ϕ) + sin(ϕ) cos(k)]

1

e−2tβ cos(k) + 1
(S.22)

= sin(ϕ)

∫ π

−π
dk 2 cos(k)

1

e−2tβ cos(k) + 1
, (S.23)

and we arrive at the temperature dependence given in figure 1.
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Figure 1: Temperature dependence of the current expectation value.

We conclude that a magnetic field induces an equilibrium persistent current in the ring.

In the limit of vanishing magnetic field (linearization about ϕ = 0), the same result could directly be

obtained from the fluctuation-dissipation theorem

∂〈j〉
∂ϕ

=
Nt

kBT

(
〈j2〉 − 〈j〉2

)
=

Nt

kBT
〈j2〉 , (S.24)

with

〈j2〉 =
4

N2

∑
k,k′

sin(k) sin(k′)〈nkn′k〉 =
4

N2

[∑
k,k′

sin(k) sin(k′)〈nk〉〈n′k〉+
∑
k

sin2(k)
(
〈nk〉 − 〈nk〉2

)]
(S.25)

=
4

N2

[(∑
k

sin(k)〈nk〉

)2

+
∑
k

sin2(k)〈nk〉 (1− 〈nk〉)

]
=

4

N2

∑
k

sin2(k)〈nk〉 (1− 〈nk〉) (S.26)

where we used that

〈nknk′〉 =

{
〈nk〉〈nk′〉 k 6= k′

〈nk〉 k = k′
and 〈nk〉 = 〈n−k〉 . (S.27)

Taking anew the limit N →∞ gives, with the explicit form of 〈nk〉,

〈j2〉 → 4

N

∫ π

−π
dk sin2(k)

e−2tβ cos(k)

(e−2tβ cos(k) + 1)
2 =

4

N

∫ π

−π
dk sin(k)

1

−2tβ

d

dk

1

(e−2tβ cos(k) + 1)
(S.28)

=
2kBT

tN

∫ π

−π
dk cos(k)

1

(e−2tβ cos(k) + 1)
, (S.29)
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and we recover
∂〈j〉
∂ϕ

=

∫ π

−π
dk 2 cos(k)

1

(eβ cos(k) + 1)
. (S.30)

Exercise 2. Exact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable interacting
models, the one-dimensional Ising model (Ising chain). Consider a chain of N + 1 Ising-spins
with free ends and nearest neighbor coupling −J (J > 0 for ferromagnetic coupling)

HN+1 = −J
N∑
i=1

σiσi+1, σi = ±1. (8)

We are interested in the thermodynamic limit of this system, i.e. we assume N to be very large.

(a) Compute the partition function ZN+1 using a recursive procedure.

Solution. We can split off the last spin in the Hamiltonian as follows:

HN+1 = −J
N−1∑
i=1

σiσi+1 − JσNσN+1 (S.31)

= HN − JσNσN+1. (S.32)

Notice that HN now describes an identical system with one less spin, i.e. spin N is now the last on the

chain. The Hamiltonian HN no longer depends on σN+1, and we therefore write the partition function as:

ZN+1 =
∑

{σi=±1}

[
e−βHN

∑
σN+1=±1

eβJσNσN+1

]
(S.33)

=
∑

{σi=±1}

e−βHN

(
2 cosh

(
βJσN

))
(S.34)

We can now repeat1 splitting off the last spin σN to obtain

ZN+1 =
∑

{σi=±1}

e−βHN−1
∑

σN=±1

eβJσN−1σN
(

2 cosh
(
βJσN

))
(S.37)

=
(

2 coshβJ
) ∑
{σi=±1}

[
e−βHN−1

(
2 cosh

(
βJσN−1

))]
, (S.38)

where we have used the fact that cosh(x) is an even function. Continuing this sum, one finds

ZN+1 =
(

2 coshβJ
)N−2 ∑

σ1,σ2=±1

eβJσ1σ2
(

2 cosh(βJσ2)
)

(S.39)

=
(

2 coshβJ
)N−1 ∑

σ1=±1

(
2 cosh(βJσ1)

)
(S.40)

= 2
(

2 coshβJ
)N

(S.41)

1Alternatively, notice that the term σNσN+1 is always equal to ±1, independent of the value of σN . Hence it

will always evaluate to 2 cosh(βJ). This means we get:

ZN+1 =
∑

{σi=±1}

exp(−βHN)

︸ ︷︷ ︸
=ZN

2 coshβJ (S.35)

= Z2(2 coshβJ)N−1 = 2(2 coshβJ)N . (S.36)

In the last line we used that Z2 =
∑

{σ1,σ2}
exp (βJσ1σ2) = 4 coshβJ .
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The same result can be obtained by mapping the problem to a non-interacting Ising paramagnet. The

quantity Si = σiσi+1 might be viewed as a new pseudo-spin for which the Hamiltonian reads

H = −J
N∑
i=1

Si (S.42)

The partition sum of the system of N pseudo-spins (instead of N + 1 reals spins σ) is

Z = (2 coshβJ)N (S.43)

The additional factor 2 appearing in Eqs. (S.36) and (S.41) comes from the fact that the mapping from

the spin system to pseudo-spins is not unique but two-fold; inverting all real spins σi → −σi produced the

same state in pseudo-spin space.

(b) Find expressions for the free energy and entropy, as well as for the internal energy and
heat capacity. Compare your results to the ideal paramagnet.

Solution. The energy, entropy and response functions follow directly from the partition function ZN+1

as follows:

The free energy is given by

F = −kBT ln(ZN+1) = −kBT (N + 1) ln(2)−NkBT ln
[

cosh(βJ)
]
,

from which we can compute the entropy as

S = −
(
∂F

∂T

)
= kB

[
(N + 1) ln(2) +N ln

[
cosh(βJ)

]
−NβJ tanh(βJ)

]
.

Next, the internal energy can be found via

U = − ∂

∂β
ln(ZN+1)

= −N ∂

∂β
ln
[

cosh(βJ)
]

= −NJ tanh(βJ).

Then the heat capacity can be found through computing

C = T
∂S

∂T
= −T ∂

2F

∂T 2

or

C =

(
∂U

∂T

)
.

Both evaluate to

C = NkB
(βJ)2

cosh2(βJ)
.

The heat capacity (see figure 2) shows no dependence on the sign of J , and is therefore identical for either

a ferromagnet (J < 0) or an antiferromagnet (J > 0).

Comparing the results to the ideal paramagnet (see script), one sees that there is an exact correspondence

if we set J = Hm (where H is the external field, and m is the magnetization of the paramagnet). Based

on the mapping of this model to a non-interacting Ising paramagnet mentioned in part a), this was to be

expected. Conversely, one may realize the possibility of this mapping given these identical results.

(c) Calculate the magnetization density m = 〈σj〉 where the spin σj is not close to either end
of the chain. Which symmetries does the system exhibit? Interpret you result in terms of
symmetry arguments.
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Figure 2: Heat capacity of the Ising chain.

Solution. The magnetization density can be computed in a similar way:

〈σj〉 =
1

ZN+1

∑
{σi=±1}

∑
σN+1=±1

σj exp
(
βJ
∑
i

σiσi+1

)

=
(2 coshβJ)N+1−j

ZN+1

∑
σ1=±1

. . .
∑
σj=±1

σj exp

(
βJ

j−1∑
k=1

σkσk+1

)

=
(2 coshβJ)N+1−j

ZN+1

∑
σ1=±1

. . .
∑

σj−1=±1

exp

(
βJ

j−2∑
k=1

σkσk+1

) ∑
σj=±1

σje
βJσj−1σj

︸ ︷︷ ︸
σj−1(2 sinh βJ)

=
(2 coshβJ)N+1−j(2 sinhβJ)j−2

ZN+1

∑
σ1=±1

∑
σ2=±1

σ2 exp (βJσ1σ2)︸ ︷︷ ︸
=0

= 0.

This result can easily be interpreted in terms of symmetry. The Hamiltonian (1) on the exercise sheet is

invariant under time-reversal, i.e. σi 7→ −σi, ∀ i ∈ {1, . . . , N+1}. Therefore, a finite magnetization, which

breaks time-reversal invariance, cannot be found by means of analyzing the partition function (a weighted

sum over all states respecting the symmetries of the system).

One could also have obtained this result by considering only the terms involved with spin σj .

(d*) Show that the spin correlation function Γij = 〈σiσj〉 − 〈σi〉〈σj〉 decays exponentially with
increasing distance |j − i| on the scale of the so-called correlation length ξ, i.e. Γij ∼
e−|j−i|/ξ. Show that ξ = −[log(tanhβJ)]−1 and interpret your result in the limit T → 0.

Solution. Due to a vanishing magnetization 〈σi〉 = 0, the spin correlation function simplifies to Γij =

〈σiσj〉. We assume j > i. We will use a trick, namely to assume bond-dependent exchange constants Jk.

In the end of the calculation Jk will be set to J . A generalization of a) leads to

ZN+1 = 2
N∏
k=1

(2 coshβJk), (S.44)
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while, using the property σ2
k = 1, the correlation function reads

〈σiσj〉 =
1

ZN+1

∑
{σk=±1}

(σiσi+1)(σi+1σi+2) . . . (σj−1σj) exp
(∑

l

βJlσlσl+1

)
(S.45)

=
1

ZN+1

1

βj−i
∂j−iZN+1

∂Ji . . . ∂Jj−1

∣∣∣∣
Jk=J

= (tanhβJ)|j−i| = e−|j−i|/ξ (S.46)

where the correlation length is

ξ = −
[

log(tanhβJ)
]−1

> 0.

In the limit T → 0, ξ diverges. This is an universal feature of systems undergoing a continuous phase

transition.

(e*) Calculate the magnetic susceptibility in zero magnetic field using the fluctuation-dissipation
relation of the form

χ(T )

N
=

1

kBT

N/2∑
j=−N/2

Γ0j , (9)

in the thermodynamic limit, N →∞. For simplicity we assume N to be even. Note that
χ(T ) is defined to be extensive, such that we obtain the intensive quantity by normalization
with N .

Solution. Using the result of d) we find

∞∑
j=−∞

〈σ0σj〉 =

∞∑
j=−∞

(tanhβJ)|j| =
1 + tanhβJ

1− tanhβJ
= exp(2βJ). (S.47)

For the magnetic susceptibility at zero field we therefore find

χ(T ) = N
e2J/kBT

kBT
(S.48)

which in the ferromagnetic case (J > 0) diverges for T → 0 indicating that at low temperatures only an

infinitesimal field is needed to produce saturation magnetization.
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Figure 3: Inverse susceptibility (continuous line) with high-temperature extrapolation for the Weiss temperature

(dashed line) for ferromagnetic coupling, J > 0 (blue), and antiferromagnetic coupling, J < 0 (red).

(f*) Approximate 1/χ(T ) up to first order in 2βJ in the high-temperature limit (β → 0). Use
this result to calculate the Weiss temperature ΘW, which is defined by 1/χ(ΘW) = 0.
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Solution. Using the result from part (e), we write

1

χ(T )
=
kBT

N
e−2βJ (S.49)

=
kBT

N

[
1− 2βJ +O

(
(2βJ)2)] (S.50)

≈ kB

N

(
T − 2J

kB︸︷︷︸
=ΘW

)
. (S.51)

The Weiss temperature ΘW = 2J/kB can be found by extrapolating the inverse susceptibility to low

temperatures and finding the intersection with the temperature axis. It provides a possibility to determine

the sign and the magnitude of the coupling J between neighboring spins. Refer to section 4.1.3 in the

lecture notes for further details.

The full solution as well as the linear high-temperature approximation with an extrapolation for the Weiss

temperature are shown in figure 3.
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