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Exercise 1. Playing around with wave functions in second quantization.

In the formalism of second quantization, a general state of N particles at positions ~r1, ~r2, ... is
given by

|~r1, ~r2, ..., ~rN 〉 =
1√
N !

Ψ̂† (rN ) · · · Ψ̂† (r1) |0〉 , (1)

where |0〉 is the vacuum state and the field operators Ψ̂ (~r) are defined as

Ψ̂ (~r) =
∑
k

φk (~r) âk , (2)

with âk the annihilator of mode k and φk (~r) the one-particle wave function of mode k.

Consider a state |ψ〉 of three particles in modes k1, k2, and k3. Consider its wave function

ψ (~r1, ~r2, ~r3) = 〈~r1, ~r2, ~r3 |ψ〉 = 〈~r1, ~r2, ~r3 |â†k3 â
†
k2
â†k1 |0〉 . (3)

(a) First calculate the vacuum expectation value

〈0|â`1 â`2 â`3 â
†
k3
â†k2 â

†
k1
|0〉 , (4)

for bosons and for fermions.

Solution. Let’s calculate using the usual (anti-)commutation relations (write for short â3 = âk3 , â2 = âk2 ,

â1 = âk1):

âlâmânâ
†
3â
†
2â
†
1 = âlâm

[
δnk3 ± â

†
3ân
]
â†2â
†
1 = âl

[
âmδnk3 ±

(
δmk3 ± â

†
3âm

)
ân
]
â†2â
†
1

= [âlâmδnk3 ± âlδmk3 ân + δlk3 âmân] â†2â
†
1 + â†(. . .)

= [(âlδmk2 ± δlk2 âm) δnk3 ± δmk3 (âlδnk2 ± δlk2 ân) + δlk3 (âmδnk2 ± δmk2 ân)] â†1 + â†(. . .)

= δlk1δmk2δnk3 ± δlk2δmk1δnk3 ± δlk1δmk3δnk2 + δlk2δmk3δnk1 + δlk3δmk1δnk2 ± δlk3δmk2δnk1 + â†(. . .)

=
∑
ijk

fijkδlkiδmkj δnkk + â†(. . .) , (S.1)

where the sum ranges over all sets of indices ijk which are all different, and where fijk = εijk is the

fully antisymmetric tensor (Levi-Civita) for fermions and fijk = 1 for bosons. We do not care about the

terms which start by a creation operator (all symbolized above by â†(. . .)), because they will vanish once

sandwiched between vacuum states. The vacuum expectation value is then

〈0|âlâmânâ†3â
†
2â
†
1 |0〉 =

∑
ijk

fijkδlkiδmkj δnkk . (S.2)

For N particles, by similar procedure the expression generalizes to

〈0|â`1 . . . â`N â
†
kN

. . . â†k1 |0〉 =
∑
i1...iN

fi1...iN δ`1ki1 . . . δ`NkiN . (S.3)

(b) Determine ψ(~r1, ~r2, ~r3) for bosons and for fermions. What symmetries does the wave
function possess?
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Solution. The wave function is

ψ (~r1, ~r2, ~r3) =
1√
N !
〈0|Ψ̂1Ψ̂2Ψ̂3â

†
3â
†
2â
†
1 |0〉 =

1√
N !

∑
lmn

φ∗l (~r1)φ∗m(~r2)φ∗n(~r3) 〈0|âlâmânâ†3â
†
2â
†
1 |0〉

=
1√
N !

∑
fijk δlkiδmkj δnkkφ

∗
l (~r1)φ∗m(~r2)φ∗n(~r3) =

1√
N !

∑
fijk φ

∗
ki(~r1)φ∗kj (~r2)φ∗kk (~r3) . (S.4)

Thus, the wave function is an explicit symmetrization (antisymmetrization) of φ∗k1(~r1)φ∗k2(~r2)φ∗k3(~r3) for

bosons (fermions).

(c) Determine the normalization of the wave function for fermions and for bosons. First
consider the case where k1, k2 and k3 are all different, and then study the case where two
or more modes are the same. What do you observe?

Solution. Recall the wave function is given by

ψ(~r1, ~r2, ~r3) =
1√
3!

∑
ijk

fijk φ
∗
ki(~r1)φ∗kj (~r2)φ∗kk (~r3) , (S.5)

and thus its normalization is∫
d3~r1d

3~r2d
3~r3 ψ

∗(~r1, ~r2, ~r3)ψ(~r1, ~r2, ~r3)

=
1

3!

∑
fijkfi′j′k′

∫
d3~r1d

3~r2d
3~r3 φ

∗
ki(~r1)φki′ (~r1) φ∗kj (~r2)φkj′ (~r2) φ∗kk (~r3)φkk′ (~r3)

=
1

3!

∑
fijkfi′j′k′

∫
d3~r1 φ

∗
ki(~r1)φki′ (~r1)

∫
d3~r2 φ

∗
kj (~r2)φkj′ (~r2)

∫
d3~r3 φ

∗
kk (~r3)φkk′ (~r3)

=
1

3!

∑
fijkfi′j′k′ δkiki′ δkjkj′ δkkkk′ . (S.6)

This expression obviously generalizes to N particles as

〈ψ |ψ〉 =
1

N !

∑
i1...iN ,

i′1...i
′
N

fi1...iN fi′1...i′N δki1ki′1
· · · δkiN ki′

N
. (S.7)

Assuming that k1, k2, k3 are all different in (S.6), then all terms in the sum that don’t satisfy i = i′, j =

j′, k = k′ vanish because of the orthgonality of the single-particle states, and thus

〈ψ |ψ〉 =
1

3!

∑
f2
ijk δkiki′ δkjkj′ δkkkk′ =

1

3!

∑
f2
ijk = 1 . (S.8)

Additionally, if two or more modes are equal (e.g., k1 = k2), then all possible permutations of matching

modes must be included (e.g., if k1 = k2, then the term i = j′, j = i′, k = k′ also needs to be counted in

the above), multiplying the result by an additional factor Nn! for each repeated mode n (Nn then being

the number of particles in mode n):

〈ψ |ψ〉 = N1! · · · =
∏

modes

Nn! (S.9)

Of course, for fermions Nn is either zero or one, such that these factors do not contribute. However they

must be included for bosons.

Note: for the lazy, it is also possible to do the whole exercise with two particles only. For the motivated,

calculate it for N particles.
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Exercise 2. Correlation functions in 1D

Consider particles of mass m in 1 dimension that sit on a ring of (very large) length L (this is
a system with periodic boundary conditions).

(a) Calculate the pair correlation function for fermions in the cases T = 0 and in the limit of
high temperature. How do the resulting functions differ from the 3 dimensional case? Try
to give a physical interpretation and explanation for what you find.

Solution. Similarly to what is done in the lectures, we have for fermions for equal spin that

(
n

2
)2g2(r − r′) = (1/L)2

∑
k,k′,q,q′

e−i(k−k
′)re−i(q−q

′)r′〈a†ka
†
qaq′ak′ 〉 (S.10)

= (1/L)2
∑

k,k′,q,q′

〈nk 〉〈nq 〉(1− e−i(k−q)(r−r
′)) (S.11)

=
(n

2

)2
(1− g1(r − r′)2). (S.12)

Now we calculate g1 for the T = 0 as

n

2
g1(r − r′) = (1/L)

∫ kF

−kF

L

2π
e−ik(r−r

′) (S.13)

=
1

π
sin(kF (r − r′))/(r − r′) (S.14)

=
n

2kF
sin(kF (r − r′))/(r − r′), (S.15)

and thus

g2(r − r′) =

(
1− 1

k2F

sin2(kF (r − r′))
(r − r′)2

)
. (S.16)
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Figure 1: 1D pair correlation functions for fermions (blue: T=0, red: T large) and bosons (green: T large).

This, as in the 3 dimensional case, exhibits fluctuations that drop with the distance between the particles.

In 1 D, however, they are much stronger than for 3 dimensions: the particles are much more likely to

localise among the ring with equal spacing (see Figure 1). The reason for this is that in 1D in k-space

there are less available modes for a particular distance dk than in 3 D (for a particular dk the modes are

points on a line instead of densely occupying a shell in 3 D). The impact of occupied modes is hence much

stronger than in 3D.
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For large temperatures, we can take the Maxwell-Boltzmann distribution 〈nk 〉 = n
√
πAe−k

2/A2

with

A2 = 2mkBT
~2 = 4π

λ2

n

2
gs(r − r′) ≈

∫
dk

1

2π
e−ik(r−r

′)〈nk 〉 (S.17)

=
n

2
e−(r−r′)2π/λ2

(S.18)

Hence

g2(r − r′) = (1− e−2(r−r′)2π/λ2

), (S.19)

which is the same result as in 3D.

(b) Do the same for bosons, distinguishing the low temperature case (condensate) and the
high temperature limit. Again, comment on the differences to the corresponding results
in 3D and their relations to the fermionic case.

Solution. The result for T = 0 is exactly the same as in the lecture notes, namely

g2(r − r′) =
N(N − 1)

V 2
. (S.20)

In the high temperature limit, we get

n2g2(r − r′) ≈ n2 +

∣∣∣∣∫ dk
1

2π
e−ik(r−r

′)〈nk 〉
∣∣∣∣2 (S.21)

= n2(1 + e−2π(r−r′)2/λ2

), (S.22)

which is again the same as in 3D.
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