Exercise 1. Playing around with wave functions in second quantization.

In the formalism of second quantization, a general state of N particles at positions $\vec{r}_{1}, \vec{r}_{2}, \ldots$ is given by

$$
\begin{equation*}
\left|\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right\rangle=\frac{1}{\sqrt{N!}} \hat{\Psi}^{\dagger}\left(r_{N}\right) \cdots \hat{\Psi}^{\dagger}\left(r_{1}\right)|0\rangle \tag{1}
\end{equation*}
$$

where $|0\rangle$ is the vacuum state and the field operators $\hat{\Psi}(\vec{r})$ are defined as

$$
\begin{equation*}
\hat{\Psi}(\vec{r})=\sum_{k} \phi_{k}(\vec{r}) \hat{a}_{k}, \tag{2}
\end{equation*}
$$

with \hat{a}_{k} the annihilator of mode k and $\phi_{k}(\vec{r})$ the one-particle wave function of mode k.
Consider a state $|\psi\rangle$ of three particles in modes k_{1}, k_{2}, and k_{3}. Consider its wave function

$$
\begin{equation*}
\psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\left\langle\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \mid \psi\right\rangle=\left\langle\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right| \hat{a}_{k_{3}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{1}}^{\dagger}|0\rangle . \tag{3}
\end{equation*}
$$

(a) First calculate the vacuum expectation value

$$
\begin{equation*}
\langle 0| \hat{a}_{\ell_{1}} \hat{a}_{\ell_{2}} \hat{a}_{\ell_{3}} \hat{a}_{k_{3}}^{\dagger} \hat{a}_{k_{2}}^{\dagger} \hat{a}_{k_{1}}^{\dagger}|0\rangle, \tag{4}
\end{equation*}
$$

for bosons and for fermions.

Solution. Let's calculate using the usual (anti-)commutation relations (write for short $\hat{a}_{3}=\hat{a}_{k_{3}}, \hat{a}_{2}=\hat{a}_{k_{2}}$, $\hat{a}_{1}=\hat{a}_{k_{1}}$):

$$
\begin{align*}
& \hat{a}_{l} \hat{a}_{m} \hat{a}_{n} a_{3}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger}=\hat{a}_{l} \hat{a}_{m}\left[\delta_{n k_{3}} \pm \hat{a}_{3}^{\dagger} \hat{a}_{n}\right] \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger}=\hat{a}_{l}\left[\hat{a}_{m} \delta_{n k_{3}} \pm\left(\delta_{m k_{3}} \pm \hat{a}_{3}^{\dagger} \hat{a}_{m}\right) \hat{a}_{n}\right] \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger} \\
& \quad=\left[\hat{a}_{1} \hat{a}_{m} \delta_{n k_{3}} \pm \hat{a}_{l} \delta_{m k_{3}} \hat{a}_{n}+\delta_{l k_{3}} \hat{a}_{m} \hat{a}_{n}\right] \hat{a}_{2}^{\hat{a}_{1}^{\dagger}}+\hat{a}^{\dagger}(\ldots) \\
& \quad=\left[\left(\hat{a}_{l} \delta_{m k_{2}} \pm \delta_{l k_{2}} \hat{a}_{m}\right) \delta_{n k_{3}} \pm \delta_{m k_{3}}\left(\hat{a}_{l} \delta_{n k_{2}} \pm \delta_{l k_{2}} \hat{a}_{n}\right)+\delta_{l k_{3}}\left(\hat{a}_{m} \delta_{n k_{2}} \pm \delta_{m k_{2}} \hat{a}_{n}\right)\right] \hat{a}_{1}^{\dagger}+\hat{a}^{\dagger}(\ldots) \\
& \quad=\delta_{l k_{1}} \delta_{m k_{2}} \delta_{n k_{3}} \pm \delta_{l k_{2}} \delta_{m k_{1}} \delta_{n k_{3}} \pm \delta_{l k_{1}} \delta_{m k_{3}} \delta_{n k_{2}}+\delta_{l k_{2}} \delta_{m k_{3}} \delta_{n k_{1}}+\delta_{l k_{3}} \delta_{m k_{1}} \delta_{n k_{2}} \pm \delta_{l k_{3}} \delta_{m k_{2}} \delta_{n k_{1}}+\hat{a}^{\dagger}(\ldots) \\
& \quad=\sum_{i j k} f_{i j k} \delta_{l k_{k}} \delta_{m k_{j}} \delta_{n k_{k}}+\hat{a}^{\dagger}(\ldots), \tag{S.1}
\end{align*}
$$

where the sum ranges over all sets of indices $i j k$ which are all different, and where $f_{i j k}=\epsilon_{i j k}$ is the fully antisymmetric tensor (Levi-Civita) for fermions and $f_{i j k}=1$ for bosons. We do not care about the terms which start by a creation operator (all symbolized above by $\hat{a}^{\dagger}(\ldots)$), because they will vanish once sandwiched between vacuum states. The vacuum expectation value is then

$$
\begin{equation*}
\langle 0| \hat{a}_{l} \hat{a}_{m} \hat{a}_{n} \hat{a}_{3}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger}|0\rangle=\sum_{i j k} f_{i j k} \delta_{l k_{i}} \delta_{m k_{j}} \delta_{n k_{k}} . \tag{S.2}
\end{equation*}
$$

For N particles, by similar procedure the expression generalizes to

$$
\begin{equation*}
\langle 0| \hat{a}_{\ell_{1}} \ldots \hat{a}_{\ell_{N}} \hat{a}_{k_{N}}^{\dagger} \ldots \hat{a}_{k_{1}}^{\dagger}|0\rangle=\sum_{i_{1} \ldots i_{N}} f_{i_{1} \ldots i_{N}} \delta \delta_{\ell_{1} k_{i_{1}}} \ldots \delta_{\ell_{N} k_{i_{N}}} . \tag{S.3}
\end{equation*}
$$

(b) Determine $\psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)$ for bosons and for fermions. What symmetries does the wave function possess?

Solution. The wave function is

$$
\begin{gather*}
\psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\frac{1}{\sqrt{N!}}\langle 0| \hat{\Psi}_{1} \hat{\Psi}_{2} \hat{\Psi}_{3} \hat{a}_{3}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger}|0\rangle=\frac{1}{\sqrt{N!}} \sum_{l m n} \phi_{l}^{*}\left(\vec{r}_{1}\right) \phi_{m}^{*}\left(\vec{r}_{2}\right) \phi_{n}^{*}\left(\vec{r}_{3}\right)\langle 0| \hat{a}_{l} \hat{a}_{m} \hat{a}_{n} \hat{a}_{3}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger}|0\rangle \\
=\frac{1}{\sqrt{N!}} \sum f_{i j k} \delta_{l k_{i}} \delta_{m k_{j}} \delta_{n k_{k}} \phi_{l}^{*}\left(\vec{r}_{1}\right) \phi_{m}^{*}\left(\vec{r}_{2}\right) \phi_{n}^{*}\left(\vec{r}_{3}\right)=\frac{1}{\sqrt{N!}} \sum f_{i j k} \phi_{k_{i}}^{*}\left(\vec{r}_{1}\right) \phi_{k_{j}}^{*}\left(\vec{r}_{2}\right) \phi_{k_{k}}^{*}\left(\vec{r}_{3}\right) \tag{S.4}
\end{gather*}
$$

Thus, the wave function is an explicit symmetrization (antisymmetrization) of $\phi_{k_{1}}^{*}\left(\vec{r}_{1}\right) \phi_{k_{2}}^{*}\left(\vec{r}_{2}\right) \phi_{k_{3}}^{*}\left(\vec{r}_{3}\right)$ for bosons (fermions).
(c) Determine the normalization of the wave function for fermions and for bosons. First consider the case where k_{1}, k_{2} and k_{3} are all different, and then study the case where two or more modes are the same. What do you observe?

Solution. Recall the wave function is given by

$$
\begin{equation*}
\psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\frac{1}{\sqrt{3!}} \sum_{i j k} f_{i j k} \phi_{k_{i}}^{*}\left(\vec{r}_{1}\right) \phi_{k_{j}}^{*}\left(\vec{r}_{2}\right) \phi_{k_{k}}^{*}\left(\vec{r}_{3}\right), \tag{S.5}
\end{equation*}
$$

and thus its normalization is

$$
\begin{align*}
& \int d^{3} \vec{r}_{1} d^{3} \vec{r}_{2} d^{3} \vec{r}_{3} \psi^{*}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) \psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) \\
& \quad=\frac{1}{3!} \sum f_{i j k} f_{i^{\prime} j^{\prime} k^{\prime}} \int d^{3} \vec{r}_{1} d^{3} \vec{r}_{2} d^{3} \vec{r}_{3} \phi_{k_{i}}^{*}\left(\vec{r}_{1}\right) \phi_{k_{i^{\prime}}}\left(\vec{r}_{1}\right) \phi_{k_{j}}^{*}\left(\vec{r}_{2}\right) \phi_{k_{j^{\prime}}}\left(\vec{r}_{2}\right) \phi_{k_{k}}^{*}\left(\vec{r}_{3}\right) \phi_{k_{k^{\prime}}}\left(\vec{r}_{3}\right) \\
& \quad=\frac{1}{3!} \sum f_{i j k} f_{i^{\prime} j^{\prime} k^{\prime}} \int d^{3} \vec{r}_{1} \phi_{k_{i}}^{*}\left(\vec{r}_{1}\right) \phi_{k_{i^{\prime}}}\left(\vec{r}_{1}\right) \int d^{3} \vec{r}_{2} \phi_{k_{j}}^{*}\left(\vec{r}_{2}\right) \phi_{k_{j^{\prime}}}\left(\vec{r}_{2}\right) \int d^{3} \vec{r}_{3} \phi_{k_{k}}^{*}\left(\vec{r}_{3}\right) \phi_{k_{k^{\prime}}}\left(\vec{r}_{3}\right) \\
& \quad=\frac{1}{3!} \sum f_{i j k} f_{i^{\prime} j^{\prime} k^{\prime}} \delta_{k_{i} k_{i^{\prime}}} \delta_{k_{j} k_{j^{\prime}}} \delta_{k_{k} k_{k^{\prime}}} . \tag{S.6}
\end{align*}
$$

This expression obviously generalizes to N particles as

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\frac{1}{N!} \sum_{\substack{i_{1} \ldots i_{N} \\ i_{1}^{\prime} \ldots i_{N}^{\prime}}} f_{i_{1} \ldots i_{N}} f_{i_{1}^{\prime} \ldots i_{N}^{\prime}} \delta_{k_{i_{1} k_{i_{1}^{\prime}}^{\prime}}} \cdots \delta_{k_{i_{N}} k_{i_{N}^{\prime}}} \tag{S.7}
\end{equation*}
$$

Assuming that k_{1}, k_{2}, k_{3} are all different in (S.6), then all terms in the sum that don't satisfy $i=i^{\prime}, j=$ $j^{\prime}, k=k^{\prime}$ vanish because of the orthgonality of the single-particle states, and thus

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\frac{1}{3!} \sum f_{i j k}^{2} \delta_{k_{i} k_{i^{\prime}}} \delta_{k_{j} k_{j^{\prime}}} \delta_{k_{k} k_{k^{\prime}}}=\frac{1}{3!} \sum f_{i j k}^{2}=1 \tag{S.8}
\end{equation*}
$$

Additionally, if two or more modes are equal (e.g., $k_{1}=k_{2}$), then all possible permutations of matching modes must be included (e.g., if $k_{1}=k_{2}$, then the term $i=j^{\prime}, j=i^{\prime}, k=k^{\prime}$ also needs to be counted in the above), multiplying the result by an additional factor N_{n} ! for each repeated mode n (N_{n} then being the number of particles in mode n):

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=N_{1}!\cdots=\prod_{\text {modes }} N_{n}! \tag{S.9}
\end{equation*}
$$

Of course, for fermions N_{n} is either zero or one, such that these factors do not contribute. However they must be included for bosons.

Note: for the lazy, it is also possible to do the whole exercise with two particles only. For the motivated, calculate it for N particles.

Exercise 2. Correlation functions in $1 D$

Consider particles of mass m in 1 dimension that sit on a ring of (very large) length L (this is a system with periodic boundary conditions).
(a) Calculate the pair correlation function for fermions in the cases $T=0$ and in the limit of high temperature. How do the resulting functions differ from the 3 dimensional case? Try to give a physical interpretation and explanation for what you find.

Solution. Similarly to what is done in the lectures, we have for fermions for equal spin that

$$
\begin{align*}
\left(\frac{n}{2}\right)^{2} g_{2}\left(r-r^{\prime}\right) & =(1 / L)^{2} \sum_{k, k^{\prime}, q, q^{\prime}} e^{-i\left(k-k^{\prime}\right) r} e^{-i\left(q-q^{\prime}\right) r^{\prime}}\left\langle a_{k}^{\dagger} a_{q}^{\dagger} a_{q^{\prime}} a_{k^{\prime}}\right\rangle \tag{S.10}\\
& =(1 / L)^{2} \sum_{k, k^{\prime}, q, q^{\prime}}\left\langle n_{k}\right\rangle\left\langle n_{q}\right\rangle\left(1-e^{-i(k-q)\left(r-r^{\prime}\right)}\right) \tag{S.11}\\
& =\left(\frac{n}{2}\right)^{2}\left(1-g_{1}\left(r-r^{\prime}\right)^{2}\right) . \tag{S.12}
\end{align*}
$$

Now we calculate g_{1} for the $T=0$ as

$$
\begin{align*}
\frac{n}{2} g_{1}\left(r-r^{\prime}\right) & =(1 / L) \int_{-k_{F}}^{k_{F}} \frac{L}{2 \pi} e^{-i k\left(r-r^{\prime}\right)} \tag{S.13}\\
& =\frac{1}{\pi} \sin \left(k_{F}\left(r-r^{\prime}\right)\right) /\left(r-r^{\prime}\right) \tag{S.14}\\
& =\frac{n}{2 k_{F}} \sin \left(k_{F}\left(r-r^{\prime}\right)\right) /\left(r-r^{\prime}\right), \tag{S.15}
\end{align*}
$$

and thus

$$
\begin{equation*}
g_{2}\left(r-r^{\prime}\right)=\left(1-\frac{1}{k_{F}^{2}} \frac{\sin ^{2}\left(k_{F}\left(r-r^{\prime}\right)\right)}{\left(r-r^{\prime}\right)^{2}}\right) . \tag{S.16}
\end{equation*}
$$

Figure 1: 1D pair correlation functions for fermions (blue: $\mathrm{T}=0$, red: T large) and bosons (green: T large).
This, as in the 3 dimensional case, exhibits fluctuations that drop with the distance between the particles. In 1 D , however, they are much stronger than for 3 dimensions: the particles are much more likely to localise among the ring with equal spacing (see Figure 1). The reason for this is that in 1D in k-space there are less available modes for a particular distance $d k$ than in 3 D (for a particular $d k$ the modes are points on a line instead of densely occupying a shell in 3 D). The impact of occupied modes is hence much stronger than in 3D.

For large temperatures, we can take the Maxwell-Boltzmann distribution $\left\langle n_{k}\right\rangle=n \sqrt{\pi A} e^{-k^{2} / A^{2}}$ with $A^{2}=\frac{2 m k_{B} T}{\hbar^{2}}=\frac{4 \pi}{\lambda^{2}}$

$$
\begin{align*}
\frac{n}{2} g_{s}\left(r-r^{\prime}\right) & \approx \int d k \frac{1}{2 \pi} e^{-i k\left(r-r^{\prime}\right)}\left\langle n_{k}\right\rangle \tag{S.17}\\
& =\frac{n}{2} e^{-\left(r-r^{\prime}\right)^{2} \pi / \lambda^{2}} \tag{S.18}
\end{align*}
$$

Hence

$$
\begin{equation*}
g_{2}\left(r-r^{\prime}\right)=\left(1-e^{-2\left(r-r^{\prime}\right)^{2} \pi / \lambda^{2}}\right) \tag{S.19}
\end{equation*}
$$

which is the same result as in 3 D .
(b) Do the same for bosons, distinguishing the low temperature case (condensate) and the high temperature limit. Again, comment on the differences to the corresponding results in $3 D$ and their relations to the fermionic case.

Solution. The result for $T=0$ is exactly the same as in the lecture notes, namely

$$
\begin{equation*}
g_{2}\left(r-r^{\prime}\right)=\frac{N(N-1)}{V^{2}} \tag{S.20}
\end{equation*}
$$

In the high temperature limit, we get

$$
\begin{align*}
n^{2} g_{2}\left(r-r^{\prime}\right) & \approx n^{2}+\left|\int d k \frac{1}{2 \pi} e^{-i k\left(r-r^{\prime}\right)}\left\langle n_{k}\right\rangle\right|^{2} \tag{S.21}\\
& =n^{2}\left(1+e^{-2 \pi\left(r-r^{\prime}\right)^{2} / \lambda^{2}}\right) \tag{S.22}
\end{align*}
$$

which is again the same as in 3D.

