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Exercise 1. Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic
potential and compare it with the classical case (see Exercise Sheet 3). The eigenenergies of the
gas are given by

εa = ~ω(ax + ay + az) , (1)

where a = (ax, ay, az), with ai ∈ {0, 1, 2, ...}, labels the states and the zero point energy ε0 =
3 ~ω/2 was omitted. The occupation number corresponding to state a is given by na.

(a) Consider the high-temperature, low-density limit (z � 1). Derive the grand canonical
partition function Zf of this system and compute the grand potential Ωf . Show that

Ωf ∝ f4(z) , (2)

where the function fs(z) is defined as

fs(z) = −
∞∑
l=1

(−1)l
zl

ls
. (3)

Solution. We begin with the general definition of the grand canonical partition function within the
occupation number formalism (chapter 3 of the lecture notes) and find

Zf =
∏
a

∑
na

(
ze−βεa

)na

=
∏
a

(1 + ze−βεa) . (S.1)

In order to compute the grand potential Ω = −1/β logZ, we use the series expansion

log(1 + x) = −
∞∑
l=1

(−x)l

l
for − 1 < x ≤ 1 . (S.2)

This expansion is applicable to the logarithm of the partition function in (S.1) if ze−βεa ≤ 1 (it is always
positive) in the high-temperature, low density limit z � 1 .

We find

logZf =
∑
a

log(1 + ze−βεa) = −
∑
a

∞∑
l=1

(−1)l
zl

l
e−lβεa = −

∞∑
l=1

(−1)l
zl

l

(
∞∑
a=0

e−lβ~ωa
)3

= −
∞∑
l=1

(−1)l
zl

l

(
1

1− e−lβ~ω

)3

= −

−
∑∞
l=1(−1)l z

l

l
1

(lβ~ω)3 if β → 0

−
∑∞
l=1(−1)l z

l

l
if β →∞

=


1

(β~ω)3 f4(z) if β → 0

f1(z) if β →∞
, (S.3)

and obtained both the high and the low temperature limits (in either case z � 1 must be given).

Alternatively, for the high temperature limit, with the help of the Euler-Maclaurin formula (see, e.g.,
Exercise Sheet 4), we can approximate the sum over the oscillator modes by an integral and find in leading
order

logZf = −
∞∑
l=1

(−1)l
zl

l

(
∞∑
a=0

e−lβ~ωa
)3

(S.4)

≈ −
∞∑
l=1

(−1)l
zl

l

(∫ ∞
0

da e−lβ~ωa
)3

= −
∞∑
l=1

(−1)l
zl

l

(∫ ∞
0

da e−lβ~ωa
)3

= − 1

(β~ω)3

∞∑
l=1

[
(−1)l

zl

l4

]
=

1

(β~ω)3
f4(z) (S.5)
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Either way, the high temperature expansion results in the grand potential

Ωf = − 1

β

1

(β~ω)3
f4(z). (S.6)

(b) Calculate the particle number 〈N〉 and the internal energy U as a function of N . In order
to get U in terms of N (instead of dealing with the chemical potential), introduce the
parameter

ρ ≡

(
~ω〈N〉1/3

kBT

)3

(4)

and relate it to z using the high-temperature, low-density expansion of 〈N〉 (up to O(z2)).
Interpret the condition ρ� 1.

Finally, expand U up to second order in ρ, relating it to N .

Solution. First, we compute the internal energy of the system,

Uf =
∂(β Ωf )

∂β

∣∣∣∣
z

, (S.7)

where the derivative has to be taken at constant fugacity z = eβµ. Starting from (S.6) we find

Uf =
3

β

1

(β~ω)3
f4(z), (S.8)

which shows that the internal energy is proportional to the grand potential, Uf = −3 Ωf .

The average particle number can be computed in a similar way,

〈Nf 〉 = z
∂

∂z
logZf . (S.9)

We have

〈Nf 〉 = z
∂

∂z

1

(β~ω)3
f4(z) =

1

(β~ω)3
f3(z), (S.10)

where we used

z
∂

∂z
f4(z) = f3(z). (S.11)

In order to relate the internal energy to the particle number, we start with the high-temperature, low-
density expansion of the total particle number,

〈Nf 〉 =
1

(β~ω)3
f3(z) ≈ 1

(β~ω)3

(
z − z2

8

)
. (S.12)

Rewriting this equation using the parameter ρ leads to

ρ = z − z2

8
. (S.13)

The condition z � 1 therefore implies ρ � 1. Solving this equation for z, we obtain z = 4 ± 2
√

4− 2ρ.

Choosing the relevant solution and expanding
√

(1 + x) ≈ 1 + x
2
− x2

8
we find

z = ρ+
ρ2

8
. (S.14)

Expanding in ρ allows us to deal with the particle number instead of the chemical potential.

To interpret the condition ρ� 1 we first note that for this system, the Fermi energy follows εF = 3~ωamax,
while the number of occupied states is proportional to a3max. The characteristic energy scale is thus given
by 3~ωN1/3. Therefore, this condition requires that the characteristic energy scale is much smaller than
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the thermal energy kBT (high-temperature limit). This means that we consider temperatures at which the
average occupation of the states is much smaller than one (low-density limit).

We write the internal energy up to second order in ρ as

U =
3

β

1

(β~ω)3
f4(z) =

3

β

1

(β~ω)3

(
z − z2

16

)
=

3

β

1

(β~ω)3

(
ρ+

ρ2

16

)
=

3

β

(
N +N2(β~ω)3

1

16

)
= 3NkBT

(
1 +N

(
~ω
kBT

)3
1

16

)
, (S.15)

where we recover the equipartition law in leading order and the positive first order quantum corrections
∝ N(~ω/kBT )3 � 1 distinguishing the fermions from the classical ideal gas.

(c) Compute the heat capacity C. Which quantity has to be fixed in order to do this?

Solution. Since our system does not have a volume as thermodynamic variable we have to compute the
specific heat CN by fixing the number of particles. Hence, as a starting point we use the expression (S.15)
for the inner energy, where we can keep N fixed:

CN =

(
∂U

∂T

)
N

= 3NkB

(
1− 1

8
N

(
~ω
kBT

)3
)
. (S.16)

(d) Compute the isothermal compressibility κT .

Solution. By definition

κT =
v

N

(
∂N

∂µ

)
T

, (S.17)

where v = V
N

. Therefore,

κT =
v

〈N〉

(
∂z

∂µ

∂N

∂z

)
T

=
v

N
βz

1

(β~ω)3
∂f3(z)

∂z
= vβ

f2(z)

f3(z)
≈ N

V kBT

(
1− 1

8
N

(
~ω
kBT

)3
)
. (S.18)

(e) Interpret your results for U , C, and κT by comparing them with the corresponding results
for the classical Boltzmann gas. How do the quantum corrections influence the fermionic
system?

Solution. In summary we have found up to first order in ρ:

U = 3NkBT

(
1 +N

(
~ω
kBT

)3
1

16

)
, (S.19)

CN = 3NkB

(
1− 1

8
N

(
~ω
kBT

)3
)
, (S.20)

κT =
N

V kBT

(
1− 1

8
N

(
~ω
kBT

)3
)
, (S.21)

These results as a function of temperature are plotted in Fig. 1; each for the classical and the fermionic
case. Note that our expansions up to second order in ρ are stricly speaking only valid for ρ� 1, while the
plots extend to larger values of ρ to emphasize the trends.

We see that
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Figure 1: Thermodynamics of the fermionic gas (dahsed, blue) compared to the classical gas (solid, black). Note
that these quantities are computed within the high-temperature, low-density approximation and are therefore not
exact results. Still, they can be used to observe trends. We set N(~ω)3 = 100.

• In first order in ρ the results for the classical (Boltzmann) gas in a harmonic trap are recovered (cf.
Exercise Sheet 3).

• Due to quantum corrections, the internal energy U for fermions is higher than the classical ideal gas.

This can be understood by taking quantum statistics into account. Fermions are not allowed to
occupy the same state multiply (Pauli). Lowering the temperature, the system tends to occupy
low energy states with growing probability. While the classical system does not care about multiple
occupancies, in the fermionic system the double occupancy is forbidden and occupation of low-energy
states is thus reduced, increasing the inner energy Uf compared to the classical gas.
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Exercise 2. Sommerfeld expansion and density of states

Consider a thermally equilibrated system of non-interacting fermions with single particle states
labeled by the quantum numbers ν and corresponding energies εν .

(a) Work in the grand canonical ensemble and write the particle and energy densities in the
form

n =
1

V

∑
ν

f(εν) =

∫
dε g(ε)f(ε) , (5)

u =
1

V

∑
ν

ενf(εν) =

∫
dε εg(ε)f(ε) , (6)

where f(ε) is the Fermi-Dirac distribution function. What is g(ε)?

Solution. In thermal equilibrium, the occupation probability of a particular state with energy ε is given
by the Fermi-Dirac distribution

f(ε) =
1

e(ε−µ)/kBT + 1
, (S.22)

and we find from the definition of n and u

n =
1

V

∑
ν

f(εν) =

∫
dεf(ε)

1

V

∑
ν

δ(ε− εν) =

∫
dε g(ε)f(ε) , (S.23)

u =
1

V

∑
ν

ενf(εν) =

∫
dε εf(ε)

1

V

∑
ν

δ(ε− εν) =

∫
dε εg(ε)f(ε) , (S.24)

with

g(ε) =
1

V

∑
ν

δ(ε− εν) =
1

V
ω(ε) , (S.25)

and ω(ε) as in the lecture notes.

That is, g(ε) is the density of energy levels divided by the volume.

(b) The above expressions for n and u are of the form∫ ∞
−∞

dεH(ε)f(ε) . (7)

For temperatures T � εF
kB

(which is typically the case for metals), H(ε) is slowly varying

in the region where df
dε 6= 0 significantly and the Sommerfeld expansion1

∫ ∞
−∞

dεH(ε)f(ε) =

∫ µ

−∞
dεH(ε)+

π2

6
(kBT )2H ′(µ)+

7π4

360
(kBT )4H ′′′(µ)+O

(
kBT

µ

)6

(8)

becomes handy. Make use of this expansion up to O
(
kBT
µ

)2
to expand n and u in T .

Hint: Use (in a self-consistent way) that µ− εF ∝ T 2 in leading order in T and expand∫ µ

−∞
dεH(ε) ≈

∫ εF

−∞
dεH(ε) + (µ− εF )H(εF ) . (9)

1For a reference on the Sommerfeld expansion see, e.g., Ashcroft, N. W. and Mermin N. D., Solid State Physics,
Holt, Rinehart and Winston, 1976.
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Solution. From the Sommerfeld expansion we obtain

n =

∫ µ

−∞
dε g(ε) +

π2

6
(kBT )2g′(ε) +O

(
kBT

µ

)4

(S.26)

u =

∫ µ

−∞
dε εg(ε) +

π2

6
(kBT )2[µg′(ε) + g(µ)] +O

(
kBT

µ

)4

. (S.27)

As we know that limT→0 µ = εF , the remaining integrals can be expanded around the chemical potential
(see hint):

n ≈
∫ εF

−∞
dε g(ε) +

[
(µ− εF )g(εF ) +

π2

6
(kBT )2g′(εF )

]
, (S.28)

u ≈
∫ εF

−∞
dε g(ε) + εF

[
(µ− εF )g(εF ) +

π2

6
(kBT )2g′(εF )

]
+
π2

6
(kBT )2g(εF ) . (S.29)

For this to be self-consistent, we need to check that the chemical potential µ = εF + αT 2 +O(T 3), which
we see next.

(c) Find the chemical potential µ and the specific heat cv at constant density n.

Solution. As the density is constant and we have at T = 0 that

n =

∫
dε g(ε)f(ε) =

∫ εF

−∞
dε g(ε) , (S.30)

it follows, from Eq. (S.28), that

µ = εF −
π2

6
(kBT

2)
g′(εF )

g(εF )
. (S.31)

Similiarly,

u = u0 +
π2

6
(kBT )2g(εF ) , (S.32)

and therefore

cv =

(
∂u

∂T

)
n

=
π2

3
k2BTg(εF ) . (S.33)

From this we see the important results that i) the chemical potential varies with respect to temperature in
dependence of g′(ε) and ii) that heat measurments are a tool to access the density of states at the Fermi
energy.

(d) Determine g(ε) for the case of a free Fermi gas and calculate its chemical potential and
specific heat from the previous results. Compare your result for the specific heat with the
one for a classical gas.

Solution. For free fermions, the label ν corresponds to the momentum of the particles k and the energies
ε are given by the dispersion relation

εk =
~2k2

2m
. (S.34)

With the help of the step function Θ, the density of states can be written as (cf. lecture notes)

g(ε) =
1

4π2

(
2m

~2

)3/2

ε1/2Θ(ε) , (S.35)

or alternatively

g(ε) =
3

2

n

εF

(
ε

εF

)1/2

Θ(ε) . (S.36)
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Using this result we obtain (as for the low-temperature, high-density limit in the lecture)

µ = εf

[
1− π2

12

(
kBT

εF

)2]
, (S.37)

cv =
π2

2

(
kBT

εF

)
nkB . (S.38)

For a classical ideal gas (Maxwell-Boltzmann distribution) we find

cv =
3

2
nkB , (S.39)

which means that in the fermionic case the specific heat is surpressed by a factor

π2

2

kBT

εF
. (S.40)

The origin of this surpression lies in the Fermi-Dirac distribution and the Pauli principle. For low tem-
peratures kBT � εF (note that this can easily be several hunderd Kelvin for electrons in metals) only a
fraction of all the fermions, namely the ones around the Fermi energy, get thermally excited and contribute
to the heat capacity, whereas for a classical gas all the particles can contribute.

(e) For the free Fermi gas g′(εF ) > 0. This does not need to be the true in more complex
systems such as solids (cf., e.g., semiconductors). What are the consequences of g′(εF ) ≤ 0?

Solution. The sign of the density of states determines whether the chemical potential increases, decreases
or stays constant with respect to the temperature. A negative sign would lead to an increase in the chemical
potential by increasing temperature.
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