Exercise 1. Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic potential and compare it with the classical case (see Exercise Sheet 3). The eigenenergies of the gas are given by

$$\varepsilon_{\mathbf{a}} = \hbar\omega(a_x + a_y + a_z)\,,\tag{1}$$

where $\mathbf{a} = (a_x, a_y, a_z)$, with $a_i \in \{0, 1, 2, ...\}$, labels the states and the zero point energy $\varepsilon_0 = 3 \hbar \omega/2$ was omitted. The occupation number corresponding to state \mathbf{a} is given by $n_{\mathbf{a}}$.

(a) Consider the high-temperature, low-density limit ($z \ll 1$). Derive the grand canonical partition function \mathcal{Z}_f of this system and compute the grand potential Ω_f . Show that

$$\Omega_f \propto f_4(z) , \qquad (2)$$

where the function $f_s(z)$ is defined as

$$f_s(z) = -\sum_{l=1}^{\infty} (-1)^l \frac{z^l}{l^s} .$$
(3)

(b) Calculate the particle number $\langle N \rangle$ and the internal energy U as a function of N. In order to get U in terms of N (instead of dealing with the chemical potential), introduce the parameter

$$\rho \equiv \left(\frac{\hbar\omega \langle N \rangle^{1/3}}{k_B T}\right)^3 \tag{4}$$

and relate it to z using the high-temperature, low-density expansion of $\langle N \rangle$ (up to $\mathcal{O}(z^2)$). Interpret the condition $\rho \ll 1$.

Finally, expand U up to second order in ρ , relating it to N.

- (c) Compute the heat capacity C. Which quantity has to be fixed in order to do this?
- (d) Compute the isothermal compressibility κ_T .
- (e) Interpret your results for U, C, and κ_T by comparing them with the corresponding results for the classical Boltzmann gas. How do the quantum corrections influence the fermionic system?

Exercise 2. Sommerfeld expansion and density of states

Consider a thermally equilibrated system of non-interacting fermions with single particle states labeled by the quantum numbers ν and corresponding energies ε_{ν} .

(a) Work in the grand canonical ensemble and write the particle and energy densities in the form

$$n = \frac{1}{V} \sum_{\nu} f(\varepsilon_{\nu}) = \int d\varepsilon \, g(\varepsilon) f(\varepsilon) \,, \tag{5}$$

$$u = \frac{1}{V} \sum_{\nu} \varepsilon_{\nu} f(\varepsilon_{\nu}) = \int d\varepsilon \, \varepsilon g(\varepsilon) f(\varepsilon) \,, \tag{6}$$

where $f(\varepsilon)$ is the Fermi-Dirac distribution function. What is $g(\varepsilon)$?

(b) The above expressions for n and u are of the form

$$\int_{-\infty}^{\infty} d\varepsilon \, H(\varepsilon) f(\varepsilon) \,. \tag{7}$$

For temperatures $T \ll \frac{\varepsilon_F}{k_B}$ (which is typically the case for metals), $H(\varepsilon)$ is slowly varying in the region where $\frac{df}{d\varepsilon} \neq 0$ significantly and the Sommerfeld expansion¹

$$\int_{-\infty}^{\infty} d\varepsilon \, H(\varepsilon) f(\varepsilon) = \int_{-\infty}^{\mu} d\varepsilon \, H(\varepsilon) + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 H'''(\mu) + \mathcal{O}\left(\frac{k_B T}{\mu}\right)^6 \tag{8}$$

becomes handy. Make use of this expansion up to $\mathcal{O}\left(\frac{k_B T}{\mu}\right)^2$ to expand n and u in T. Hint: Use (in a self-consistent way) that $\mu - \varepsilon_F \propto T^2$ in leading order in T and expand

$$\int_{-\infty}^{\mu} d\varepsilon \, H(\varepsilon) \approx \int_{-\infty}^{\varepsilon_F} d\varepsilon \, H(\varepsilon) + (\mu - \varepsilon_F) H(\varepsilon_F) \,. \tag{9}$$

- (c) Find the chemical potential μ and the specific heat c_v at constant density n.
- (d) Determine $g(\varepsilon)$ for the case of a free Fermi gas and calculate its chemical potential and specific heat from the previous results. Compare your result for the specific heat with the one for a classical gas.
- (e) For the free Fermi gas $g'(\varepsilon_F) > 0$. This does not need to be the true in more complex systems such as solids (cf., e.g., semiconductors). What are the consequences of $g'(\varepsilon_F) \leq 0$?

Office Hours: Monday, October 27, 8-10 AM (Roman Süsstrunk, HIT K 23.7).

¹For a reference on the Sommerfeld expansion see, e.g., Ashcroft, N. W. and Mermin N. D., *Solid State Physics*, Holt, Rinehart and Winston, 1976.