Exercise 2.1 Classical Ideal Paramagnet

a) We define the magnetization $M=n m H$, with $n=n_{+}-n_{-}$and $N=n_{+}+n_{-}$, such that $n_{ \pm}=\frac{N \pm n}{2}$. The (discrete) phase space area is the number of combinations of moments that give the same magnetization, so $\Omega(n)=\frac{N!}{n_{+}!n_{-}!}$. We then use the Stirling's approximation $\ln (N!)=N \ln N-N+\mathcal{O}(\ln N)$ and ignore terms of order $\log N$.

$$
\begin{aligned}
\log \Omega(n) & =\log (N!)-\log \left(n_{+}!\right)-\log \left(n_{-}!\right) \\
& \approx N(\log N-1)-\frac{N+n}{2}\left(\log \left(\frac{N+n}{2}\right)-1\right)-\frac{N-n}{2}\left(\log \left(\frac{N-n}{2}\right)-1\right)
\end{aligned}
$$

where we neglected the term $\frac{1}{2} \log \left(\pi^{2}\left(N^{2}-n^{2}\right)\right)$. The entropy then reads:

$$
\begin{equation*}
S=k_{B} \log \Omega(n)=N k_{B} \log (2)-\frac{N k_{B}}{2}\left(\left(1+\frac{n}{N}\right) \log \left(1+\frac{n}{N}\right)+\left(1-\frac{n}{N}\right) \log \left(1-\frac{n}{N}\right)\right) \tag{1}
\end{equation*}
$$

From the differential $d S=(1 / T) d U+(M / T) d H$ we can obtain the temperature as follows. We insert $n=-\frac{E}{H m}$ to get $S(E, H)$ and differentiate keeping n explicitly:

$$
\begin{aligned}
\frac{1}{T} & =\left(\frac{\partial S}{\partial E}\right)_{H}=\left(\frac{\partial n}{\partial E}\right)_{H} \frac{\partial S}{\partial n}=-\frac{1}{H m} \frac{\partial S}{\partial n} \\
& =\frac{N k_{B}}{2 H m}\left(\frac{1}{N} \log \left(1+\frac{n}{N}\right)-\frac{1}{N} \log \left(1-\frac{n}{N}\right)+\frac{1}{N}-\frac{1}{N}\right)=\frac{k_{B}}{2 H m} \log \left(\frac{N+n}{N-n}\right) \\
& =-\frac{k_{B}}{2 H m} \log \left(\frac{N H m+E}{N H m-E}\right)
\end{aligned}
$$

Inverting the above equation yields $E=-N H m \tanh (\beta m H)$, with $\beta=1 /\left(k_{B} T\right)$. In order to obtain the magnetization we first calculate the partial derivative

$$
\left(\frac{\partial S}{\partial H}\right)_{E}=\left(\frac{\partial n}{\partial H}\right)_{E} \frac{\partial S}{\partial n}=-\frac{E}{H^{2} m} \frac{\partial S}{\partial n}=\frac{E k_{B}}{2 H^{2} m} \log \left(\frac{N H m+E}{N H m-E}\right)
$$

and then

$$
\begin{equation*}
M=T\left(\frac{\partial S}{\partial H}\right)_{E}=-\frac{E}{H}=N m \tanh (\beta m H) \tag{2}
\end{equation*}
$$

The susceptibility reads:

$$
\begin{equation*}
\chi_{H}=\left(\frac{\partial M}{\partial H}\right)=\frac{N m^{2} \beta}{\cosh ^{2}(\beta m H)} \tag{3}
\end{equation*}
$$

It is useful to study the magnetization and the susceptibility in the two regimes $\beta m H \gg$, $\ll 1$ (see Fig. 1). When $\beta m H \ll 1$ (small field and/or large temperature limit) $\tanh x \approx$ $x-\mathcal{O}\left(x^{3}\right)$ and $\cosh x \approx 1+\mathcal{O}\left(x^{2}\right)$ such that the magnetization grows linearly in the field, i.e., according to the Curie law of independent moments

$$
\begin{equation*}
M \approx N m^{2} \beta H=\chi H \quad \text { with } \quad \chi_{H} \approx N m^{2} \beta=\chi \tag{4}
\end{equation*}
$$

Abbildung 1: Magnetization (2) as a function of magnetic field strength H scaled to $k_{B} T$. The dashed (solid) line is the asymptote at small (large) field ($m=1$).

When $\beta m H \gg 1$ (large field and/or small temperature limit) $\tanh x \approx 1-e^{-2 x}$ and the magnetization tends to saturate, i.e.,

$$
\begin{equation*}
M \approx m N\left(1-2 e^{-2 \beta m H}\right) . \tag{5}
\end{equation*}
$$

It is also interesting to consider the heat capacity for constant external field H. From $d U=\left(\frac{\partial U}{\partial T}\right)_{H} d T+\left(\frac{\partial U}{\partial H}\right)_{T} d H$ and $d M=\left(\frac{\partial M}{\partial T}\right)_{H} d T+\left(\frac{\partial M}{\partial H}\right)_{T} d H$ such that
$\delta Q=d U-\delta W=d U-H d M=\left[\left(\frac{\partial U}{\partial T}\right)_{H}-H\left(\frac{\partial M}{\partial T}\right)_{H}\right] d T+\left[\left(\frac{\partial U}{\partial H}\right)_{T}-H\left(\frac{\partial M}{\partial T}\right)_{T}\right] d H$.

The heat capacity at fixed H is then given by:

$$
\begin{equation*}
C_{H}=\left(\frac{\partial U}{\partial T}\right)_{H}-H\left(\frac{\partial M}{\partial T}\right)_{H}=2 \frac{N k_{B}(\beta H m)^{2}}{\cosh ^{2}(\beta m H)}, \tag{7}
\end{equation*}
$$

where we used $\partial_{T} f(\beta)=-k_{B} \beta^{2} \partial_{\beta} f(\beta)$. Note that both the susceptibility and the heat capacity are exponentially suppressed at low temperature $\sim T^{-\alpha} e^{-2 H m / k_{B} T}$ with $\alpha=1,2$, which is indicating a freezing of the degrees of freedom.
b) In order to determine the thermodynamics of the ideal paramagnet in the canonical ensemble, we calculate the partition function:

$$
\begin{equation*}
Z=\prod_{i=1}^{N}\left[\sum_{\sigma= \pm} e^{-\beta H m \sigma}\right]=[2 \cosh (\beta m H)]^{N}=Z_{m}^{N} \tag{8}
\end{equation*}
$$

We can now easily calculate all the thermodynamic functions, e.g, the free energy:

$$
\begin{equation*}
F(T, H, N)=-\frac{1}{\beta} \ln Z=-k_{B} T N \ln Z_{m} \tag{9}
\end{equation*}
$$

and the internal energy

$$
\begin{equation*}
U(T, H, N)=-\partial_{\beta} \ln Z=-N m H \tanh (\beta m H) . \tag{10}
\end{equation*}
$$

From the free energy (9) we obtain the magnetization and the susceptibility, which are equal to the ones obtained in the micro-canonical case (2), (3).

Exercise 2.2 Classical Ideal Lattice Gas

Micro-canonical case: We need to calculate the number of microscopic realizations that yields the same energy

$$
\begin{equation*}
E=N_{A} E_{A}+N_{B} E_{B} \tag{11}
\end{equation*}
$$

with $N_{A(B)}$ the number of particles on the sites with energy $E_{A(B)}$. Note, that $N_{A} \leq N_{1}$, and

$$
\begin{equation*}
N_{1}=N_{A}+N_{B} . \tag{12}
\end{equation*}
$$

At zero temperature, as $N_{1}<N_{2}$ we expect that when $E_{A}<E_{B}, N_{A}=N_{1}$ with zero entropy, as there is only one configuration possible (all atoms sitting on the N_{A} sites). On the other hand, when $E_{A}>E_{B}$, it will be favourable for the system to occupy the B sites, i.e., $N_{A}=0$ and since $N_{2}>N_{1}$ the number of allowed configurations will be larger than 1 and the residual entropy non zero. More quantitatively,

$$
\begin{equation*}
\Omega=\Omega_{A} \Omega_{B}=\frac{N_{1}!}{\left(N_{1}-N_{A}\right)!N_{A}!} \frac{N_{2}!}{\left(N_{2}-N_{B}\right)!N_{B}!}=\frac{N_{1}!}{\left(N_{1}-N_{A}\right)!N_{A}!} \frac{\left(N-N_{1}\right)!}{\left(N+N_{A}-2 N_{1}\right)!\left(N_{1}-N_{A}\right)!}, \tag{13}
\end{equation*}
$$

where we used $N=N_{1}+N_{2}$ and $N_{1}=N_{A}+N_{B}$. We immediately see that when $N_{A}=N_{1}$, $N_{B}=0$ and $\Omega=1$, while when $N_{A}=0 \Omega=\Omega_{B}>1$. The entropy reads $S=k_{B} \ln \Omega$, with

$$
\begin{align*}
\ln \Omega & =\left[N_{1} \ln N_{1}+2 N_{1}-2\left(N_{1}-N_{A}\right) \ln \left(N_{1}-N_{A}\right)-N_{A} \ln N_{A}+\left(N-N_{1}\right) \ln \left(N-N_{1}\right)-\right. \tag{14}\\
& \left.-\left(N+N_{A}-2 N_{1}\right) \ln \left(N+N_{A}-2 N_{1}\right)\right] .
\end{align*}
$$

In order to obtain the temperature, we write

$$
\begin{equation*}
\frac{1}{T}=\frac{\partial S}{\partial E}=\frac{\partial N_{A}}{\partial E} \frac{\partial S}{\partial N_{A}}=\frac{1}{E_{A}-E_{B}} \frac{\partial S}{\partial N_{A}} \tag{15}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{1}{T}=\frac{k_{B}}{E_{A}-E_{B}}\left[2 \ln \left(N_{1}-N_{A}\right)-\ln \left(N+N_{A}-2 N_{1}\right)-\ln N_{A}\right] \tag{16}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\left(N_{1}-N_{A}\right)^{2}}{N_{A}\left(N+N_{A}-2 N_{1}\right)}=e^{-\beta\left(E_{B}-E_{A}\right)} . \tag{17}
\end{equation*}
$$

At zero T, when $E_{A}<E_{B}$ the R. H. S. of the equation above is zero and this can only be satisfied when $N_{1}=N_{A}$. On the other hand, when $E_{A}>E_{B}$ the R. H. S. diverges, implying $N_{A}=0$, as $N+N_{A}-2 N_{1}=0$ yields $N_{B}=N_{2}$ which is not possible. Therefore, the distribution $N_{A}\left(E_{A}\right)$ goes from N_{1} when $E_{A}<E_{B}$ to zero when $E_{A}>E_{B}$ in a step-like fashion at zero temperature. For larger T, the step is smeared out over an energy interval $\sim k_{B} T$.
Grand-canonical case: It is straightforward to write the partition function in the following way:

$$
\begin{equation*}
Z=\left(1+e^{-\beta\left(E_{A}-\mu\right)}\right)^{N_{1}}\left(1+e^{-\beta\left(E_{B}-\mu\right)}\right)^{N_{2}} \tag{18}
\end{equation*}
$$

as each one among the $N_{1,2}$ sites can be either occupied or empty. The quantity μ fixes the particle number and results from the shifting of the Hamiltonian $H=H_{A}+H_{B} \rightarrow H=$ $H_{A}+H_{B}-\mu\left(N_{A}+N_{B}\right)=\tilde{H}_{A}+\tilde{H}_{B}$. Therefore, the internal energy reads:

$$
\begin{equation*}
U=-\partial_{\beta} \ln Z=N_{1} \tilde{E}_{A} \frac{e^{-\beta \tilde{E}_{A}}}{1+e^{-\beta \tilde{E}_{A}}}+N_{2} \tilde{E}_{B} \frac{e^{-\beta \tilde{E}_{B}}}{1+e^{-\beta \tilde{E}_{B}}} \stackrel{!}{=} N_{A} \tilde{E}_{A}+N_{B} \tilde{E}_{B} \tag{19}
\end{equation*}
$$

where $\tilde{E}_{A}=E_{A}-\mu$ and $\tilde{E}_{B}=E_{B}-\mu$ are the shifted energies according to the shifted Hamiltonian. From the last equivalence, we obtain

$$
\begin{equation*}
N_{A}=\left(N_{1}-N_{A}\right) e^{-\beta \tilde{E}_{A}} \quad \text { and } \quad N_{B}=\left(N_{2}-N_{B}\right) e^{-\beta \tilde{E}_{B}} \tag{20}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{N_{B}\left(N_{1}-N_{A}\right)}{N_{A}\left(N_{2}-N_{B}\right)}=\frac{\left(N_{1}-N_{A}\right)^{2}}{N_{A}\left(N+N_{A}-2 N_{1}\right)}=e^{-\beta\left(\tilde{E}_{B}-\tilde{E}_{A}\right)}=e^{-\beta\left(E_{B}-E_{A}\right)} \tag{21}
\end{equation*}
$$

as in the micro-canonical case discussed above. Alternatively, one could obtain the Boltzmann factors (20) by maximizing the phase space count (13) with respect to N_{A} with the energy (11) and particle number (12) constraints imposed through Lagrange multipliers. The multiplier β fixing the total energy can be shown to be equal to the inverse temperature via the thermodynamic relation

$$
\begin{equation*}
\frac{1}{T}=\frac{d S}{d E}=\frac{\partial S}{\partial N_{A}} \frac{\partial N_{A}}{\partial E}+\frac{\partial S}{\partial N_{B}} \frac{\partial N_{B}}{\partial E}=k_{B} \beta \tag{22}
\end{equation*}
$$

Exercise 2.3 Classical Ideal Gas in a Harmonic Trap

a) In the micro-canonical ensemble, the connection to thermodynamics is provided through the phase space volume

$$
\begin{equation*}
\Phi(E)=\Lambda_{N} \int_{H(p, q) \leq E} d p d q \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
H(p, q)=\sum_{i=1}^{N}\left[\frac{\vec{p}_{i}^{2}}{2 m}+a \vec{q}_{i}^{2}\right] \tag{24}
\end{equation*}
$$

We perform the rescaling, $P_{i}=p_{i} / \sqrt{2 m}$ and $Q_{i}=q_{i} \sqrt{a}$, such that the Hamiltonian is simplified

$$
\begin{equation*}
H(P, Q)=\sum_{i=1}^{N}\left[\vec{P}_{i}^{2}+\vec{Q}_{i}^{2}\right] \tag{25}
\end{equation*}
$$

as well as the phase space integral

$$
\begin{equation*}
\Phi(E)=\Lambda_{N}\left(\frac{2 m}{a}\right)^{3 N / 2} \int_{H(P, Q) \leq E} d P d Q \tag{26}
\end{equation*}
$$

since $d p=\prod_{i=1}^{N} d^{3} p_{i}$ and $d q=\prod_{i=1}^{N} d^{3} q_{i}$. We then need to calculate, as already explained in the lecture, the volume of a sphere in $6 N$ dimensional space, i.e.,

$$
\begin{equation*}
\Phi(E)=\Lambda_{N}\left(\frac{2 m}{a}\right)^{3 N / 2} C_{6 N} E^{3 N} \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{n}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} \tag{28}
\end{equation*}
$$

In order to obtain the thermodynamics, we can then refer to the lecture, with the substitutions $2 m \rightarrow 2 m / a$ and $E^{3 N / 2} \rightarrow E^{3 N}$, i.e., the entropy

$$
\begin{equation*}
S(E, N)=N k_{B} \ln \left[\frac{1}{N}\left(\sqrt{\frac{2 m}{a}} \frac{\pi E}{3 N h}\right)^{3}\right]+4 N k_{B} \tag{29}
\end{equation*}
$$

Inverting the above relation we find:

$$
\begin{equation*}
U(S, N)=E=\frac{3 N^{4 / 3} h}{\pi} \sqrt{\frac{a}{2 m}} \exp \left[\frac{S}{3 N k_{B}}-4 / 3\right] \tag{30}
\end{equation*}
$$

such that the equation of state can be obtained as follows,

$$
\begin{equation*}
T=\left(\frac{\partial U}{\partial S}\right)_{N}=\frac{U}{3 N k_{B}} \quad \rightarrow \quad U=3 N k_{B} T \tag{31}
\end{equation*}
$$

which expresses the equipartition law.
b) Within the canonical ensemble, we need again to calculate the partition function. It reads:

$$
\begin{align*}
Z & =\Lambda_{N} \int d p d q e^{-\beta H(p, q)}=\Lambda_{N}\left[\prod_{i=1}^{N} \int d^{3} p_{i} e^{-\beta \boldsymbol{p}_{i}^{2} / 2 m}\right]\left[\prod_{i=1}^{N} \int d^{3} q_{i} e^{-\beta a \vec{q}_{i}^{2}}\right]= \\
& =\Lambda_{N}\left[\int d x d y d z e^{-\beta\left(x^{2}+y^{2}+z^{2}\right) / 2 m}\right]^{N}\left[\int d x d y d z e^{-a \beta\left(x^{2}+y^{2}+z^{2}\right)}\right]^{N}= \tag{32}\\
& =\Lambda_{N}\left(\frac{2 m}{a}\right)^{3 N / 2}\left[\pi k_{B} T\right]^{3 N} .
\end{align*}
$$

We can then obtain all thermodynamic functions, as in Ex. 1, e.g., the free energy:

$$
\begin{equation*}
F(T, N)=-\frac{1}{\beta} \ln Z=-N k_{B} T \ln \left[\frac{1}{N}\left(\sqrt{\frac{2 m}{a}} \frac{\pi k_{B} T}{h}\right)^{3}\right]-N k_{B} T \tag{33}
\end{equation*}
$$

and the caloric equation of state,

$$
\begin{equation*}
U(T, N)=-\partial_{\beta} \ln Z=3 N k_{B} T . \tag{34}
\end{equation*}
$$

c) In the grand-canonical ensemble, the thermodynamics for fixed chemical potential μ and varying particle number N is given through the grand partition function,

$$
\begin{equation*}
\mathcal{Z}=\sum_{N=0}^{\infty} z^{N} Z_{N} \tag{35}
\end{equation*}
$$

with the fugacity $z=\exp (\beta \mu)$, while Z_{N} is the partition function of the corresponding canonical ensemble (32), i.e., with given N. We then obtain:

$$
\begin{align*}
& \mathcal{Z}=\sum_{N=0}^{\infty} \frac{1}{N!} e^{\beta \mu N}\left[\sqrt{\frac{2 m}{a}} \frac{\pi k_{B} T}{h}\right]^{3 N}=\sum_{N=0}^{\infty} \frac{1}{N!}\left[e^{\beta \mu}\left(\sqrt{\frac{2 m}{a}} \frac{\pi k_{B} T}{h}\right)^{3}\right]^{N}= \tag{36}\\
& =\exp \left[e^{\beta \mu}\left(\sqrt{\frac{2 m}{a}} \frac{\pi k_{B} T}{h}\right)^{3}\right]
\end{align*}
$$

We are then able to calculate all thermodynamic functions, i.e., the grand potential

$$
\begin{equation*}
\Omega(T, V, \mu)=-p V=-\frac{1}{\beta} \ln \mathcal{Z}=-e^{\beta \mu}\left(\sqrt{\frac{2 m}{a}} \frac{\pi}{h}\right)^{3}\left(k_{B} T\right)^{4} \tag{37}
\end{equation*}
$$

In order to define compressibility, we exploit the Gibbs-Duhem relation

$$
\begin{equation*}
G(T, p, N)=\mu N \quad \rightarrow \quad S d T-V d p+N d \mu=0 \tag{38}
\end{equation*}
$$

where G is the Gibbs free energy. We can then write:

$$
\begin{equation*}
d \mu=v d p-\frac{S}{N} d T \quad \rightarrow \quad\left(\frac{\partial \mu}{\partial v}\right)_{T}=v\left(\frac{\partial p}{\partial v}\right)_{T} \tag{39}
\end{equation*}
$$

where $v=V / N$. One then obtains

$$
\begin{equation*}
\left(\frac{\partial \mu}{\partial v}\right)_{T}=\left(\frac{\partial N}{\partial v} \frac{\partial \mu}{\partial N}\right)_{T}=-\frac{N^{2}}{V}\left(\frac{\partial \mu}{\partial N}\right)_{T} \tag{40}
\end{equation*}
$$

while for the R.H.S. of (39)

$$
\begin{equation*}
\left(\frac{\partial p}{\partial v}\right)_{T}=\left(\frac{\partial V}{\partial v} \frac{\partial p}{\partial V}\right)_{T}=N\left(\frac{\partial p}{\partial V}\right)_{T} \tag{41}
\end{equation*}
$$

such that one can conclude:

$$
\begin{equation*}
-\frac{N^{2}}{V}\left(\frac{\partial \mu}{\partial N}\right)_{T}=N\left(\frac{\partial p}{\partial V}\right)_{T} \rightarrow N\left(\frac{\partial \mu}{\partial N}\right)_{T}=-v V\left(\frac{\partial p}{\partial V}\right)_{T} . \tag{42}
\end{equation*}
$$

According to the definition of isothermal compressibility,

$$
\begin{equation*}
\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \tag{43}
\end{equation*}
$$

that quantifies the normalized reduction in volume when changing the pressure at fixed temperature, we obtain:

$$
\begin{equation*}
\kappa_{T}=\frac{v}{N}\left(\frac{\partial N}{\partial \mu}\right)_{T} . \tag{44}
\end{equation*}
$$

In the grand-canonical ensemble, we replace N with $\langle N\rangle$, which can be calculated as follows:

$$
\begin{equation*}
\langle N\rangle=z \partial_{z} \ln \mathcal{Z}=\ln \mathcal{Z}=-\Omega \beta \tag{45}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\kappa_{T}=\frac{v}{\langle N\rangle}\left(\frac{\partial z}{\partial \mu} \frac{\partial\langle N\rangle}{\partial z}\right)_{T}=\frac{v}{z} \frac{\partial z}{\partial \mu}=v \beta . \tag{46}
\end{equation*}
$$

