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Exercise 1.1 Statistical Polarization

a)

The general master equation is

Nu(t) = _Nu(t) Z Ly + Z FV/VNV/(t)‘ (1)
v'#v v'#v

As we only allow hopping to neighboring directions (at rate I'), only I',,4+1 are non-
vanishing (and equal to I'), and the master equation reduces to

N, (t) =T (Nyga(t) + Nyo1(t) — 2N, (1)) (2)

where the indices are taken modulo z. The entropy function of the system is simply

H(t)=— Z N]V\;t) log N]V\;t). (3)

v

At equilibrium we have H= 0, which implies detailed balance, i.e., N, = N, for all v, /.
One finds N, /N = 1/z for all directions v.

The initial distribution corresponds to

2N/z 0<v<z/2
N, =
0 else

Therefore, the initial entropy is

N, N, z
Hinitial = — Z WV log WV =log 5. (5)

Since the equilibrium corresponds to N, = N/z for all v, the (equilibrium) entropy is
simply Hgnal = log z and we find for the difference

Viinal
Hﬁnal - Hinitial = 10g(2) = IOg . | (6)
initia
where we denote by V. the number of directions (i.e., the discrete phase space volume)
occupied in the initial and final distribution. If we identify V with the volume of an ideal
gas, then this corresponds directly to the ideal gas, where AS = Nkplog(Vanal/Vinitial)-

To find the time evolution of the system, we first need to solve the master equation (2)
which can easiest be done in Fourier space, where

z/2—1 2—1
- om ~ 1 om
Nty = Y Ne(t)e TR and Nk(t):;ZNy(t)eZ%k”. (7)

k=—z/2 v=0

Using this in (2), we find



with the solution

. 2rk
Ne(t) = e /N (0), 1t = 2F(1 — cos i) 9)
z

We thus see that for every k # 0, the corresponding distortion away from the equilibrium
Ny has its own decay time 7. Note that 7, > 7; for |i| < |j| (i, € {—2/2,...,2/2 —1}),
i.e., the slowest decaying modes are k = +1 with characteristic timescale 7 = 7_;.

If we now start with the initial state as given on the exercise sheet, we see that Ni(0) = N/z
for all k. Hence, the time evolution of the polarization is

Pt) = %ZN,,@)COS%TV (10)

= %ZZNk(t)eﬂzk”cos%Ty (11)
vk

= %(Nl(t)—i—N_l(t)) = etm, (12)

where we used that

z—1 5 o]
Ze’zk:z Z Okmz Vk € Z.
v=0

m=—00

In our situation where k € {—2/2,...,2/2 — 1} the right hand side of the above equa-
tion simplifies to 20y 0. The result in (12) shows that the polarization decays with the
characteristic timescale 4.

Looking at the entropy function for times ¢ > 22 /T", only the constant and slowest decaying
modes (k= 0,+£1) need to be taken into account and we can approximate N, by

N 2N 2 N
N,(t) = ~ + — - cos % et = ;(1 +du(1)), (13)

2mv —t/T1

where the error term 4, (t) := 2 cos =Z* was introduced. Therefore, we find

H(t) = - Z Ny (1) log Ny (1)
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=3 [+ 80)] | - loa(2) + 6,(1)] (14)
= log(z) — % Z 5y(t)2, (15)

since ), 0,(t) = 0. Hence, the entropy relaxes to its equilibrium value Hgpa = log(z)
as Hena — H(t) e 2t/ As was also seen in the script for the two level system, the
H-function approaches its equilibrium value twice as fast as the polarization.

d) Using the same initial distribution and the results of ¢), the occupation of direction v is

N z/2—1
- 27 27k
Ny(t) _ Z efzjku €2Ft(cos 771)‘ (16)
k=—2z/2

2



We now use the Jacobi—-Anger expansion as given on the exercise sheet to substitute

o
PTtes®t = N g, (art) e (17)
n=-—oo
Using the relation
1 2/271 o0
2k (),
; Z ot (v—n) _ Z 5n7y+mz’ (18)
k=—2z/2 m=—00
we find
o
Ny(t) = Ne ™™ N~ I,z (201) (19)
m=—o00
% Ne2Ttr,(2rt). (20)

We can go to a continuum description by letting a go to zero and z to infinity while keeping
L = za constant. The master equation in N, (t) = N(x,,t) is

[N(zy41,t) — N(zy,t)] — [N(20,t) — N(zp_1,1)]

N(z,,t) = Ta? 5

—  pla.1) = DOp(a, 1) (21)

where p(z,t) = N(z,t)/a is the density and D = I'a? is the diffusion constant. Note that
this implies that T" a% in the continuum limit.

In the limit L — oo our ring loses its periodic boundary, i.e. we can assume that x € R.
We can solve the above equation in Fourier space, which yields

Ak, t) = e~ K1 p(k, 0). (22)

The initial condition corresponding to c) is p(z,0) = Né(x) and thus, p(k,0) = N for all
k. With this, we find for the density in real space

12
dk N e~ 1Dt
1, t N/ —Dth ’Lk‘:c — ZW4DD; ’ (23)

which is a Gaussian wave packet spreading in time. We can now calculate the time-
dependent H-function:

H(t) = — / da p("f\}t) log p(f\;t) (24)

2
= % <4Dt +log VArD ) (25)

= 3 [1 + log(4wDt)]. (26)

This function diverges, implying that the system never reaches equilibrium. We can again
interpret the result with respect to the ideal gas. In b), we have seen that the entropy
grows logarithmically with the volume the gas occupies. Here, we can define the volume
by /{(x?) (note that (x) vanishes because of symmetry):

z2

N e~ 1Dt

= [ dza? ——— = 2NDt x t. (27)
VAar Dt

Thus we could have expected that the entropy diverges proportionally to log(t).



Exercise 1.2 Particle Current and Entropy Production

a)

The master equation for this system is
Ny (t) = T[Nus1 () + Ny (1) = 2N, (1)) (28)

for v =1,...,z — 1, and the stationary state is reached when N, =0 for all v. From this
we can find recursively

Ny = 2N; — Np, N N
. R — IVL

— N1 =N+ (29)

Nz:NR = le—(z—l)NL

and thus y
N, = Np + ;(NR—NL)- (30)

In the steady state, all occuption numbers are constant. Therefore the currents across all
bonds in the interior of the chain are equal, and using the boundary we find that

T
Ji=.=Jo =~ (Ny— Ng), (31)
since N0:J0+F(N1—N0) =Jy— J1.

Since N, as given by (30) is a stationary state, N, = 0, the H-function for the chain does
not change with time.

On the other hand,

dH(t) 1 N, N, /N, Ny
R 1 = N
dt 2; "N NI\ TN (82)
N,
= > () - N,
¥ (3 1) (33)
z—1
r N,
= (e~ Ng) > In -~ (34)
v=0
r Ny,
= — (N — Ng)In —.
7, (N — Nr)In Nr (35)
shows that the entropy production is manifestly positive
dS(t) dH(t) Tkp Ny,
dt B o (Vo= Ne)ln (36)

There is no contradiction, because the master equation used to derive (32) is the one where
No=T(Ny — Ng), N. =T (N, — \.), (37)

which are non-zero in the stationary state.

The entropy increase can be understood as follows: even though the occupation number
for each N, is a constant over time in the steady state, we still have a flow of “particles”
from the higher reservoir to the lower one, i.e. we do not have detailed balance between two
neighbouring micro-states v and v 4 1. This system does not reach thermal equilibrium.



c¢) Using the formula (31) for the current and the assumption that N; — Ng = €, we find that

r r
J:;(NL—NR):EEOCG. (38)

On the other hand, the entropy production can be approximated by

Tkp Nr+e€
€ 1n

Si) = el N (39)
~ N, € o e”. (40)

This has a very important consequence: The fact that the response (here a current) is still
proportional while the entropy only grows with €2 means, that even though we are strictly
speaking not in the equilibrium, it’s still a good starting point to calculate the response
as if we were in the equilibrium.



