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Exercise 1.1 Statistical Polarization

a) The general master equation is

Ṅν(t) = −Nν(t)
∑
ν′ 6=ν

Γνν′ +
∑
ν′ 6=ν

Γν′νNν′(t). (1)

As we only allow hopping to neighboring directions (at rate Γ), only Γν,ν±1 are non-
vanishing (and equal to Γ), and the master equation reduces to

Ṅν(t) = Γ (Nν+1(t) +Nν−1(t)− 2Nν(t)) , (2)

where the indices are taken modulo z. The entropy function of the system is simply

H(t) = −
∑
ν

Nν(t)

N
log

Nν(t)

N
. (3)

At equilibrium we have Ḣ = 0, which implies detailed balance, i.e., Nν = Nν′ for all ν, ν ′.
One finds Nν/N = 1/z for all directions ν.

b) The initial distribution corresponds to

Nν =

{
2N/z 0 ≤ ν < z/2
0 else

(4)

Therefore, the initial entropy is

Hinitial = −
∑
ν

Nν

N
log

Nν

N
= log

z

2
. (5)

Since the equilibrium corresponds to Nν = N/z for all ν, the (equilibrium) entropy is
simply Hfinal = log z and we find for the difference

Hfinal −Hinitial = log(2) = log
Vfinal

Vinitial
(6)

where we denote by V... the number of directions (i.e., the discrete phase space volume)
occupied in the initial and final distribution. If we identify V with the volume of an ideal
gas, then this corresponds directly to the ideal gas, where ∆S = NkB log(Vfinal/Vinitial).

c) To find the time evolution of the system, we first need to solve the master equation (2)
which can easiest be done in Fourier space, where

Nν(t) =

z/2−1∑
k=−z/2

Ñk(t)e
−i 2π

z
kν and Ñk(t) =

1

z

z−1∑
ν=0

Nν(t) ei
2π
z
kν . (7)

Using this in (2), we find

˙̃Nk(t) = −2Γ
(

1− cos
2πk

z

)
Ñk(t) (8)
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with the solution

Ñk(t) = e−t/τkÑk(0), τ−1
k = 2Γ

(
1− cos

2πk

z

)
. (9)

We thus see that for every k 6= 0, the corresponding distortion away from the equilibrium
Ñ0 has its own decay time τk. Note that τi > τj for |i| < |j| (i, j ∈ {−z/2, . . . , z/2 − 1}),
i.e., the slowest decaying modes are k = ±1 with characteristic timescale τ1 = τ−1.

If we now start with the initial state as given on the exercise sheet, we see that Ñk(0) = N/z
for all k. Hence, the time evolution of the polarization is

P (t) =
1

N

∑
ν

Nν(t) cos
2πν

z
(10)

=
1

N

∑
ν

∑
k

Ñk(t) e
i 2π
z
kν cos

2πν

z
(11)

=
z

2N

(
Ñ1(t) + Ñ−1(t)

)
= e−t/τ1 , (12)

where we used that
z−1∑
ν=0

ei
2πν
z
k = z

∞∑
m=−∞

δk,mz ∀k ∈ Z.

In our situation where k ∈ {−z/2, ..., z/2 − 1} the right hand side of the above equa-
tion simplifies to zδk,0. The result in (12) shows that the polarization decays with the
characteristic timescale τ1.

Looking at the entropy function for times t� z2/Γ, only the constant and slowest decaying
modes (k = 0,±1) need to be taken into account and we can approximate Nν by

Nν(t) ≈ N

z
+

2N

z
cos

2πν

z
e−t/τ1 =

N

z
(1 + δν(t)), (13)

where the error term δν(t) := 2 cos 2πν
z e−t/τ1 was introduced. Therefore, we find

H(t) = −
∑
ν

Nν(t)

N
log

Nν(t)

N

≈ −
∑
ν

1

z

[
1 + δν(t)

]
log

{
1

z
[1 + δν(t)]

}
≈ −

∑
ν

1

z

[
1 + δν(t)

][
− log(z) + δν(t)

]
(14)

= log(z)− 1

z

∑
ν

δν(t)2, (15)

since
∑

ν δν(t) = 0. Hence, the entropy relaxes to its equilibrium value Hfinal = log(z)
as Hfinal − H(t) ∝ e−2t/τ1 . As was also seen in the script for the two level system, the
H-function approaches its equilibrium value twice as fast as the polarization.

d) Using the same initial distribution and the results of c), the occupation of direction ν is

Nν(t) =
N

z

z/2−1∑
k=−z/2

e−i
2π
z
kν e2Γt(cos 2πk

z
−1). (16)
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We now use the Jacobi–Anger expansion as given on the exercise sheet to substitute

e2Γt cos 2πk
z =

∞∑
n=−∞

In(2Γt) ein
2πk
z . (17)

Using the relation

1

z

z/2−1∑
k=−z/2

e−i
2πk
z

(ν−n) =
∞∑

m=−∞
δn,ν+mz, (18)

we find

Nν(t) = Ne−2Γt
∞∑

m=−∞
Iν+mz(2Γt) (19)

z→∞−→ Ne−2ΓtIν(2Γt). (20)

e) We can go to a continuum description by letting a go to zero and z to infinity while keeping
L = za constant. The master equation in Nν(t) = N(xν , t) is

Ṅ(xν , t) = Γa2

[
N(xν+1, t)−N(xν , t)

]
−
[
N(xν , t)−N(xν−1, t)

]
a2

=⇒ ρ̇(x, t) = D∂2
xρ(x, t) (21)

where ρ(x, t) = N(x, t)/a is the density and D = Γa2 is the diffusion constant. Note that
this implies that Γ ∝ 1

a2
in the continuum limit.

In the limit L → ∞ our ring loses its periodic boundary, i.e. we can assume that x ∈ R.
We can solve the above equation in Fourier space, which yields

ρ̃(k, t) = e−Dk
2tρ̃(k, 0). (22)

The initial condition corresponding to c) is ρ(x, 0) = Nδ(x) and thus, ρ̃(k, 0) = N for all
k. With this, we find for the density in real space

ρ(x, t) = N

∫
dk

2π
e−Dk

2t eikx =
N e−

x2

4Dt

√
4πDt

, (23)

which is a Gaussian wave packet spreading in time. We can now calculate the time-
dependent H-function:

H(t) = −
∫

dx
ρ(x, t)

N
log

ρ(x, t)

N
(24)

=

∫
dx

e−
x2

4Dt

√
4πDt

(
x2

4Dt
+ log

√
4πDt

)
(25)

=
1

2

[
1 + log(4πDt)

]
. (26)

This function diverges, implying that the system never reaches equilibrium. We can again
interpret the result with respect to the ideal gas. In b), we have seen that the entropy
grows logarithmically with the volume the gas occupies. Here, we can define the volume
by
√
〈x2〉 (note that 〈x〉 vanishes because of symmetry):

〈x2〉 =

∫
dxx2 N e−

x2

4Dt

√
4πDt

= 2NDt ∝ t. (27)

Thus we could have expected that the entropy diverges proportionally to log(t).

3



Exercise 1.2 Particle Current and Entropy Production

a) The master equation for this system is

Ṅν(t) = Γ[Nν+1(t) +Nν−1(t)− 2Nν(t)] (28)

for ν = 1, . . . , z − 1, and the stationary state is reached when Ṅν = 0 for all ν. From this
we can find recursively

N2 = 2N1 −NL
...

Nz = NR = zN1 − (z − 1)NL

 =⇒ N1 = NL +
NR −NL

z
. (29)

and thus
Nν = NL +

ν

z
(NR −NL) . (30)

In the steady state, all occuption numbers are constant. Therefore the currents across all
bonds in the interior of the chain are equal, and using the boundary we find that

J1 = . . . = Jz =
Γ

z
(NL −NR) , (31)

since Ṅ0 = J0 + Γ (N1 −N0) = J0 − J1.

b) Since Nν as given by (30) is a stationary state, Ṅν = 0, the H-function for the chain does
not change with time.

On the other hand,

dH(t)

dt
=

1

2

∑
ν,ν′

Γνν′
(

ln
Nν

N
− ln

Nν′

N

)(Nν

N
− Nν′

N

)
(32)

=
Γ

N

z−1∑
ν=0

(
ln

Nν

Nν+1

)
(Nν −Nν+1) (33)

=
Γ

Nz
(NL −NR)

z−1∑
ν=0

ln
Nν

Nν+1
(34)

=
Γ

Nz
(NL −NR) ln

NL

NR
. (35)

shows that the entropy production is manifestly positive

dS(t)

dt
= NkB

dH(t)

dt
=

ΓkB
z

(NL −NR) ln
NL

NR
. (36)

There is no contradiction, because the master equation used to derive (32) is the one where

Ṅ0 = Γ(N1 −N0), Ṅz = Γ(Nz−1 −Nz), (37)

which are non-zero in the stationary state.

The entropy increase can be understood as follows: even though the occupation number
for each Nν is a constant over time in the steady state, we still have a flow of “particles”
from the higher reservoir to the lower one, i.e. we do not have detailed balance between two
neighbouring micro-states ν and ν + 1. This system does not reach thermal equilibrium.
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c) Using the formula (31) for the current and the assumption that NL−NR = ε, we find that

J =
Γ

z
(NL −NR) =

Γ

z
ε ∝ ε. (38)

On the other hand, the entropy production can be approximated by

Ṡ(t) =
ΓkB
z

ε ln
NR + ε

NR
(39)

≈ ΓkB
zNR

ε2 ∝ ε2. (40)

This has a very important consequence: The fact that the response (here a current) is still
proportional while the entropy only grows with ε2 means, that even though we are strictly
speaking not in the equilibrium, it’s still a good starting point to calculate the response
as if we were in the equilibrium.
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