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Isolated Josephson junction

• Two classical variables: 

• Particle number 

•  Phase 

• Capacity: 

Description of a superconducting junction

A Josephson junction (JJ) is realized with two pieces of superconducting metal
separated by a few nanometer wide insulating barrier through which Cooper pairs
tunnel. When the system is isolated, we can define the number of Cooper pairs na,nb
and the quantum phases !a, !b of the Cooper pair wave functions on the two sides of
the JJ. The charge and phase differences  na-nb and != !b-!a are the essential
parameters describing the properties of the JJ. B.Josephson has shown in 1962
that a current IJ=I0sin! circulates across the JJ without applied voltage if ! is
constant and that an ac current of frequency "= 2eV/h oscillates between the two
sides if a voltage V is imposed on the JJ. These fundamental results can be derived
either from the heuristic Ginsburg-Landau model of superconductivity, or from the
more fundamental Bardeen Cooper Shrieffer (BCS) theory. They can also be
understood by a simple model describing the ensemble of Cooper pairs as a gas of
composite bosons tunneling between two potential wells separated by a barrier
(similar Josephson effects have been recently demonstrated in Bose-Einstein
condensates made of cold atoms).

IJ

na ,!a nb ,!b

! =!b "!a

2p = nb � na

� = �b � �a

• Josephsons equations: 
• DC Josephsons effect 

• AC Josephsons effect 

• Looks like a pendulum! 
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Josephson Hamiltonian
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• Convince yourself by obtaining 
the equations of motion: 

•     and      are canonically 
conjugate variable! 
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Linearized version is a “lump circuit” 

       … capacitive energy 
       … inductive energy 

Hl = ECp
2 + EJ
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The open circuit JJ Hamiltonian
Expressing the 2 Josephson relations as canonical eqs deriving from an Hamiltonian H, we get:
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H rules the dynamics of a non-linear oscillator whose ‘momentum’ and ‘position’ are p and !.
The combined dc and ac Josephson effects induce an oscillation: a phase difference ! induces
a current (dc effect). This current produces a charge imbalance which creates, by capacitive
effect, a potential across the JJ. This voltage induces in turn, via the ac Josephson effect, a
variation of !. This produces a coupled oscillation of the phase and the charge. For small !
values, such that cos! ~1-!2/2, the oscillator behaves linearly, its ‘’linearized’’ Hamiltonian Hl
being (within an irrelevant constant):
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This is the Hamiltonian of a classical ‘’lump circuit’’ of capacitance C and inductance L0
=h/2eI0, with charge Q=2ep and current Ijl=I0!. The electric and magnetic energies of this
system play the roles of the kinetic and potential energies of a mechanical oscillator. Making a
notation change to introduce the magnetic flux #jl across the inductance, we can rewrite Hl
under a symmetrical form, where Q and #jl, proportional to p and !, are also conjugate
variables:
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The frequency of this linearized oscillator is:
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Quantizing the Josephson Hamiltonian

•  Since   and    are canonically 
conjugate we can postulate the 
commutator: 

• Quantized energy levels (not 
harmonic!) 

p �

[p, �] = i

The quantized JJ realizes a qubit
When the conjugate variables Q and # are quantized, they become non-commuting operators.
The product Q# has the dimension of an action (energy x time), with the commutation rule:

which becomes equivalently for the dimentionless conjugate p and ! variables:

p,![ ] = iI

 Q,!Jl[ ] = i!I

The linear L0C quantum oscillator has a ladder of equidistant levels separated by the energy
h$. This equidistance is broken in the JJ system, due to the departure of the actual
«potential» cos! from the !2 parabolic law: the open-circuit JJ is a non-linear oscillator.
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Potential of the  ‘’particle’’
representing the JJ in
open circuit, with its
eigenstates. The two
lowest states 0 and 1

define a qubit.

0

Due to the breaking of the transitions degeneracy, it is
possible to manipulate with a microwave the two lowest states
without exciting upper levels. We thus define a qubit whose
frequency $01, close to  $Jl, falls in the radiofrequency
(several GHz) domain (make an order of magnitude estimate
of $ with the values of e, I0 and C given above).

In fact, this open circuit qubit is not practical because it is
not controlable. We will see that by coupling it through wires
or inductances to external circuits, one can turn it into a
manipulable device. Before describing practical circuits, we
will estimate the p and ! fluctuations in this very simple
system.

• Particle Number (  ) and phase 
(  ) cannot be measured exactly 
at the same time! 

• Uncertainty relationship: 

                              ,      

• Two limiting cases: 

                …phase well defined 
 -> phase qubit 

…charge well defined 
    -> charge qubit 
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Realising a superconducting Qubit

Prerequisites: 
• controlled manipulation of qubit 

without disturbing adjacent 
elements 

• controlled inter-qubit coupling 
• detection of qubit state 
• limited influence of external 

environment 
• sufficiently long dephasing and 

decoherence times

Josephson Qubits: 
• Qubit Hamiltonian adjustable by 

bias current and flux 
• State preparation via rf-Pulses 
• inter-qubit coupling achieved by 

capacitive or inductive coupling



Phase Qubit controlled by current
Josephson junction driven by constant 
current: 

modified Hamiltonian: 

washboard potential: 

I = I0 sin � +
dQ
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Josephson junction driven by constant
current

I I

This equation describes the acceleration of ! produced by the sum of two «forces»:
The first, proportional to I0sin!, is the non-linear restoring force of the Josephson
resonator. The other, proportional to I, is an applied force imposed by the source
of current. The sum of these forces derives from a potential proportional to
- I0cos! - I !. Comparing with the Hamiltonian of the open circuit JJ, we
immediately get the current-driven Hamiltonian:

which rules the dynamics of a quantum effective particle
with conjugate coordinates ! and p in!a washboard potential.

U !( )

!

When the JJ is fed by a dc current I produced by an external source, the current
conservation in the circuit can be written by expressing the dc and ac Josephson
laws: :
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State detection: 
• Increase I until the tunnel barrier 

is too low for state 1. 
• If state 1 -> critical value of     

exceeded -> normal metal 
state ->  voltage drop 

The Josephson phase qubit
For I < I0, U(!)  has minima (around which it is quasi-harmonic)
and maxima. Let us focus on the system’s dynamics around a
minimum. The ground state and the first excited state in the
potential well associated to this minimum are separated by
frequency $01 (typically a few GHz).  The second excited state
is linked to the first by a transition with frequency $12 ��$01
due to the potential anharmonicity. We can thus selectively
excite the 0'1 transition and realize an effective two-level
system.

State selective detection by tunnel effect across barrier:
By increasing I, we lower the barrier between two wells until we
reach a configuration where state 1 has an energy just below
the potential maximum. If the qubit is in state 1, the effective
particle escapes by tunneling through the barrier and !
undergoes an accelerated motion down the washboard. When
d!/dt exceeds a critical value, the junction transits to the
normal phase and a voltage appears between its ports, which
gives a detection signal selectively detecting the qubit in state
1. The state 0 remains stable in the well and undetected by this
effect. In order to selectively detect 0, we can transfer the
system from 0 to 1 by a resonant microwave pulse (see below)
and then detect state 1.
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The Josephson phase qubit
For I < I0, U(!)  has minima (around which it is quasi-harmonic)
and maxima. Let us focus on the system’s dynamics around a
minimum. The ground state and the first excited state in the
potential well associated to this minimum are separated by
frequency $01 (typically a few GHz).  The second excited state
is linked to the first by a transition with frequency $12 ��$01
due to the potential anharmonicity. We can thus selectively
excite the 0'1 transition and realize an effective two-level
system.

State selective detection by tunnel effect across barrier:
By increasing I, we lower the barrier between two wells until we
reach a configuration where state 1 has an energy just below
the potential maximum. If the qubit is in state 1, the effective
particle escapes by tunneling through the barrier and !
undergoes an accelerated motion down the washboard. When
d!/dt exceeds a critical value, the junction transits to the
normal phase and a voltage appears between its ports, which
gives a detection signal selectively detecting the qubit in state
1. The state 0 remains stable in the well and undetected by this
effect. In order to selectively detect 0, we can transfer the
system from 0 to 1 by a resonant microwave pulse (see below)
and then detect state 1.
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current I:
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Phase qubit controlled by flux

� = �e � LI

Controlling the phase qubit by the flux

!e

M
I! Instead of controlling the qubit by a dc

current, one can do it inductively by
sending a magnetic flux #e across the
circuit (fig. a).

a b
L

In practice, #e is produced through a superconducting dc transformer (fig. b) coupling the
qubit circuit to an external one. M  is their mutual inductance and L is the ‘’classical’’ self-
inductance of the qubit circuit (note: do not confuse L with L0 defined above which was the
intrinsic linearized inductance of the JJ). The controlling current I# produces the flux
#e=   M I#  across the circuit qubit. An induced current I appears in L which opposes the
incident flux, producing a total flux:

! =!e " LI (5 " 42)

Applying the phase quantization relation, we get the condition satisfied by the JJ phase:

! = 2" #e $ LI
#0

; #0 =
h
2e

(5 $ 43)

which yields the expression of the magnetic energy of the L inductance versus !:
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and leads, after adding the capacitive and intrinsic inductive contributions, to the hamiltonian
of the qubit controlled by the flux #e:
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Effect of the magnetic flux: 
• Phase jump at junction: 

                                            ; 

• Shielding current I 

Add magnetic energy           to the 
Hamiltonian: 
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Symmetric case                          ,                            
flux qubit: 

Otherwise asymmetric, phase  
qubit: 

�e = (n+
1

2
)�0

-2 2 4 6 8
δ

-0.5

0.5
1.0
1.5
2.0

U(δ)

�e =
�0

2

-2 2 4 6 8
δ

-1.0
-0.5

0.5
1.0
1.5
2.0
2.5

U(δ)

�e =
�0

4



Detecting qubit state
Manipulation of flux       until qubit 
transits from one well to the 
other: 

     changes of order 2    
->       changes of order   

�e
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Flux change detected by 
inductively coupled SQUID: 

Manipulation of qubit state by an 
AC current with frequency close 
to        : 

-> Rabi oscillations -> Rotation of 
qubit state! 

 

Detecting the phase qubit with a SQUID
When the qubit transits from one well to the
other, ! changes by about %, which corresponds
to a change of about I0 of the current in the
qubit circuit and to a flux variation of about LI0
~ #0. This sudden flux jump of about one flux
quantum is detected by a SQUID inductively
coupled to the qubit (a voltage appears between
the ports of the SQUID when the qubit transits
from one well to the other). The flux controlling
circuit (flux bias) is used to finely tune the qubit
frequency and to bring it suddenly to the
threshold of selective detection of its quantum
states at the time of measurement.

qubit

SQUID

Flux change of the
order of #0

1
0

Flux bias control
circuit

I! Sketch of the
phase qubit with

its flux bias
control circuit

and the detecting
SQUID.
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Capacitive coupling of two phase 
qubits

Two identical phase qubits A and B 
coupled by               : Capacitive coupling of two qubits

CxC C

A B

The qubits «!mass!» is slighty renormalized, which modifies their common
frequency, and a coupling term appears, which is proportional to the product of the
canonical momenta. This coupling lifts the qubit degeneracy and produces a
frequency doublet in the spectrum of the coupled systems.

Consider two identical phase qubits A and B.
We couple them by a capacitor whose
capacity CX is very small compared to the
capacity C of the JJ’s. The voltages VA and
VB on the two sides of Cx are 2epa/C and
2epb/C respectively (pa and pb are the the
canonic momenta of the two circuits). Hence,
the coupling energy induced by Cx:

H int =
1
2
CX VA !VB[ ]2 =

2e2CX

C 2 pA ! pB[ ]2 (5 ! 59)

By grouping this term with the two qubit hamiltonians, we write the total
Hamiltonian as:

H = HA + HB + H int = HA
' + HB

' + H int
'

with Hi
' =
2e2 (C +CX )

C 2 pi
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Coupling energy: 
  

Regrouping terms: 

with 

and 
• Achieve tuneable coupling through 

frequency selection with bias current



Coupling of two flux qubits
For flux qubits the coupling can be 
achieved by the magnetic dipole-
dipole interaction

In general, all three low-frequency processes lead to decoherence. 
They do not contribute to relaxation because this process requires an 
exchange of energy with the environment at the energy-level splitting 
frequency of the qubit, which is typically in the gigahertz range. How-
ever, there is strong evidence that charge fluctuations are associated with 
the high-frequency resonators that have been observed, in particular, in 
phase qubits37. Improvements in the quality of the oxide layers that are 
used in the junctions and capacitors have resulted in large reductions in 
the concentration of these high-frequency resonators38.

The strategy of operating a qubit at the optimum point, which was 
first carried out with quantronium but is now applied to all types of 
super conducting qubit (except for phase qubits), has been successful at 
increasing phase-coherence times by large factors. Further substantial 
improvements have resulted from the use of charge- or flux-echo tech-
niques39,40. In NMR, the spin-echo technique removes the inhomogeneous 
broadening that is associated with, for example, variations in magnetic 
field, and hence in the NMR frequency, over the sample. In the case of 
qubits, the variation is in the qubit energy-level splitting frequency from 
measurement to measurement. For some qubits, using a combination 
of echo techniques and optimum point operation has eliminated pure 
dephasing, so decoherence is limited by energy relaxation (T2* = 2T1). In 
general, however, the mechanisms that limit T1 are unknown, although 
resonators that are associated with defects may be responsible36,41. The 
highest reported values of T1, T2* and T2 are listed in Table 1.

Coupled qubits
An exceedingly attractive and unique feature of solid-state qubits in 
general and superconducting qubits in particular is that schemes can 
be implemented that both couple them strongly to each other and 
turn off their interaction in situ by purely electronic means. Because 
the coupling of qubits is central to the architecture of quantum compu-
ters, this subject has attracted much attention, in terms of both theory 
and experiment. In this section, we illustrate the principles of coupled 
qubits in terms of flux qubits and refer to analogous schemes for other 
superconducting qubits.

Because the flux qubit is a magnetic dipole, two neighbouring flux 
qubits are coupled by magnetic dipole–dipole interactions. The coupling 

strength can be increased by having the two qubits use a common line. 
Even stronger coupling can be achieved by including a Josephson junc-
tion in this line to increase the line’s self-inductance (equation (6), Box 1). 
In the case of charge and phase qubits, nearest-neighbour interactions 
are mediated by capacitors rather than inductors. Fixed interaction has 
been implemented for flux, charge and phase qubits42–45. These experi-
ments show the energy levels that are expected for the superposition of 
two pseudospin states: namely, a ground state and three excited states; 
the first and second excited states may be degenerate. The entanglement 
of these states for two phase qubits has been shown explicitly by means of 
quantum-state tomography 46. The most general description (including 
all imperfections) of the qubit state based on the four basis states of the 
coupled qubits is a four-by-four array known as a density matrix. Steffen 
et al.46 carried out a measurement of the density matrix; they prepared a 
system in a particular entangled state and showed that only the correct 
four matrix elements were non-zero — and that their magnitude was in 
good agreement with theory. This experiment is a proof-of-principle 
demonstration of a basic function required for a quantum computer. 
Simple quantum gates have also been demonstrated47,48.

Two flux qubits can be coupled by flux transformers — in essence 
a closed loop of superconductor surrounding the qubits — enabling 
their interaction to be mediated over longer distances. Because the 
superconducting loop conserves magnetic flux, a change in the state 
of one qubit induces a circulating current in the loop and hence a flux 
in the other qubit. Flux transformers that contain Josephson junctions 
enable the interaction of qubits to be turned on and off in situ. One such 
device consists of a d.c. SQUID surrounding two flux qubits49 (Fig. 7a). 
The inductance between the two qubits has two components: that of the 
direct coupling between the qubits, and that of the coupling through 
the SQUID. For certain values of applied bias current (below the critical 
current) and flux, the self-inductance of the SQUID becomes nega-
tive, so the sign of its coupling to the two qubits opposes that of the 
direct coupling. By choosing parameters appropriately, the inductance 
of the coupled qubits can be designed to be zero or even have its sign 
reversed. This scheme has been implemented by establishing the val-
ues of SQUID flux and bias current and then using microwave manip-
ulation and measuring the energy-level splitting of the first and second 
excited states50 (Fig. 7b). A related design — tunable flux–flux coupling 
mediated by an off-resonant qubit — has been demonstrated51, and 
tunable capacitors have been proposed for charge qubits52.

Another approach to variable coupling is to fix the coupling strength 
geometrically and tune it by frequency selection. As an example, we 
consider two magnetically coupled flux qubits biased at their degeneracy 
points. If each qubit is in a superposition of eigenstates, then its magnetic 
flux oscillates and the coupling averages to zero — unless both qubits 
oscillate at the same frequency, in which case the qubits are coupled. This 
phenomenon is analogous to the case of two pendulums coupled by a 
weak spring. Even if the coupling is extremely weak, the pendulums will 
be coupled if they oscillate in antiphase at exactly the same frequency.

Implementing this scheme is particularly straightforward for two 
phase qubits because their frequencies can readily be brought in and 
out of resonance by adjusting the bias currents37. For other types of qubit, 
the frequency at the degeneracy point is set by the as-fabricated param-
eters, so it is inevitable that there will be variability between qubits. As 
a result, if the frequency difference is larger than the coupling strength, 
the qubit–qubit interaction cancels out at the degeneracy point. Several 
pulse sequences have been proposed to overcome this limitation53–55, 
none of which has been convincingly demonstrated as yet. The two-
qubit gate demonstrations were all carried out away from the optimum 
point, where the frequencies can readily be matched.

On the basis of these coupling schemes, several architectures have 
been proposed for scaling up from two qubits to a quantum computer. 
The central idea of most proposals is to couple all qubits to a long central 
coupling element, a ‘quantum bus’56,57 (Fig. 8), and to use frequency selec-
tion to determine which qubits can be coupled56–60. This scheme has been 
experimentally demonstrated. As couplers become longer, they become 
transmission lines that have electromagnetic modes. For example, two 

Figure 7 | Controllably coupled flux qubits. a, Two flux qubits are shown 
surrounded by a d.c. SQUID. The qubit coupling strength is controlled 
by the pulsed bias current Ipb that is applied to the d.c. SQUID before 
measuring the energy-level splitting between the states !1〉 and !2〉. b, The 
filled circles show the measured energy-level splitting of the two coupled 
flux qubits plotted against Ipb. The solid line is the theoretical prediction, 
fitted for Ipb; there are no fitted parameters for the energy-level splitting. 
Error bars, ±1σ. (Panels reproduced, with permission, from ref. 50.) 
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Table 1 | Highest reported values of T1, T2* and T2

Qubit T1 (μs) T2* (μs) T2 (μs) Source

Flux 4.6 1.2 9.6 Y. Nakamura, personal communication

Charge 2.0 2.0 2.0 ref. 77

Phase 0.5 0.3 0.5 J. Martinis, personal communication 

1039

INSIGHT REVIEWNATURE|Vol 453|19 June 2008

• Can be coupled over long distances 
by “flux transformers” 
• Coupling through SQUID can be 

tuned

J.Clarke & F.Wilhelm, Superconducting quantum bits, 
Nature, 453, 1031 (2008)  



Conclusions and Outlook
• charge and phase of Josephson junction are conjugate variables 

• Frequency and detection of qubit achieved by current/flux bias 

• Manipulation of qubit state by rf-pulses 

• Coupled qubits can be used to create entanglement and realise 
quantum gates 

• Decoherence can be modelled by complex impedance 

• Coupling of qubit to rf LC Resonator -> Jaynes-Cummings 
Hamiltonian -> "Circuit QED”



Thank you for your attention.


