Discussion date: 10 December 2014

The last two exercise sheets will cover the BCS theory.

Exercise 1: BCS: Momentum distribution.

Here you derive in detail some results that were already stated in the lecture.

The momentum distribution of electrons in the BCS ground state is given by

$$N(k) = \sum_{k,\sigma} \langle c_{k,\sigma}^{\dagger} c_{k,\sigma} \rangle.$$
(1)

- (a) Express N(k)
 - (i) at T > 0 and at T = 0 through v_k and u_k ,
 - (ii) and at T = 0 through ξ_k and Δ .
- (b) Calculate the relative fluctuations of the particle number in the BCS ground state

$$\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle^2},\tag{2}$$

by again expressing all the quantities first through v_k and u_k and then through ξ_k , Δ and ϵ_F .

Comment: You can set $\phi_k = 0 \pmod{2\pi}$, or neglect it, respectively. Why?

Exercise 3: BCS: Specific Heat at low Temperatures.

The specific heat is a very important quantity. Here we derive it in the BCS formalism.

Determine the specific heat C_s of the BCS superconductor as a function of T for $T \ll T_c$.