Exercise 4.1 Non-uniqueness of the Kraus operators

Given is a density operator on C^{2} as $\rho=\frac{1}{2}(1+\vec{\sigma} \cdot \vec{r})$. Let A_{1} and A_{2} denote projection operators onto the first and second elements of the natural basis of \boldsymbol{C}^{2}, respectively. Show that

$$
\begin{equation*}
\sum_{j} A_{j}^{*} \rho A_{j}=\frac{1}{2}\left(1+r_{z} \sigma_{z}\right) \tag{1}
\end{equation*}
$$

Now let $B_{1}=\frac{1}{\sqrt{2}} 1$ and $B_{2}=\frac{1}{\sqrt{2}} \sigma_{z}$. Show that

$$
\begin{equation*}
\sum_{j} B_{j}^{*} \rho B_{j}=\frac{1}{2}\left(1+r_{z} \sigma_{z}\right) \tag{2}
\end{equation*}
$$

Hence deduce that the Kraus operators are not uniquely determined by a POVM.
This exercise is a straightforward application of the properties of Pauli matrices and linear algebra. Remember the conclusion: there can be different Kraus operators leading to the same superoperator.

Exercise 4.2 Generalized Measurement by Direct (Tensor) Product

Consider an apparatus whose purpose is to make an indirect measurement on a two-level system, A, by first coupling it to a three-level system, B, and then making a projective measurement on the latter. B is initially prepared in the state $|0\rangle$ and the two systems interact via the unitary $U_{A B}$ as follows:

$$
\begin{aligned}
|0\rangle_{A}|0\rangle_{B} & \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{B}+|0\rangle_{A}|2\rangle_{B}\right) \\
|1\rangle_{A}|0\rangle_{B} & \rightarrow \frac{1}{\sqrt{6}}\left(2|1\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|1\rangle_{B}-|0\rangle_{A}|2\rangle_{B}\right)
\end{aligned}
$$

1. Calculate the measurement operators acting on A corresponding to a measurement on B in the canonical basis $|0\rangle,|1\rangle,|2\rangle$.

Name the output states $\left|\phi_{00}\right\rangle_{A B}$ and $\left|\phi_{01}\right\rangle_{A B}$, respectively. Although the specification of U is not complete, we have the pieces we need, and we can write $U_{A B}=\sum_{j k}\left|\phi_{j k}\right\rangle\langle j k|$ for some states $\left|\phi_{10}\right\rangle$ and $\left|\phi_{11}\right\rangle$. The measurement operators A_{k} are defined implicitly by

$$
U_{A B}|\psi\rangle_{A}|0\rangle_{B}=\sum_{k}\left(A_{k}\right)_{A}|\psi\rangle_{A}|k\rangle_{B}
$$

Thus $A_{k}={ }_{B}\langle k| U_{A B}|0\rangle_{B}=\sum_{j B}\left\langle k \mid \phi_{j 0}\right\rangle_{A B}\left\langle\left. j\right|_{A}\right.$, which is an operator on system A, even though it might not look like it at first glance. We then find

$$
A_{0}=\frac{2}{\sqrt{6}}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad A_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}
\sqrt{3} & 1 \\
0 & 0
\end{array}\right), \quad A_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
0 & 0
\end{array}\right) .
$$

2. Calculate the corresponding POVM elements. What is their rank? Onto which states do they project?

The corresponding POVM elements are given by $E_{j}=A_{j}^{\dagger} A_{j}$:

$$
E_{0}=\frac{2}{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad E_{1}=\frac{1}{6}\left(\begin{array}{cc}
3 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right), \quad E_{2}=\frac{1}{6}\left(\begin{array}{cc}
3 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right) .
$$

They are each rank one (which can be verified by calculating the determinant). The POVM elements project onto trine states $|1\rangle,(\sqrt{3}|0\rangle \pm|1\rangle) / 2$.
3. Suppose A is in the state $|\psi\rangle_{A}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}+|1\rangle_{A}\right)$. What is the state after a measurement, averaging over the measurement result?
The averaged post-measurement state is given by $\rho^{\prime}=\sum_{j} A_{j} \rho A_{j}^{\dagger}$. In this case we have $\rho^{\prime}=\operatorname{diag}(2 / 3,1 / 3)$.

Exercise 4.3 Unambiguous State Discrimination

Suppose that Bob has a state ρ that can either be ρ_{1} and ρ_{2}, but he does not know which one. Bob wants to guess which state he has, and he wants to never guess wrong. He can achieve that, if he is allowed to not make a guess at all based on result of his measurement.

1. Bob's measurement surely has outcomes E_{1} and E_{2} corresponding to ρ_{1} and ρ_{2}, respectively. Assuming the two states ρ_{j} are pure, $\rho_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ for some $\left|\phi_{j}\right\rangle$, what is the general form of E_{j} such that $\operatorname{Pr}\left(E_{j} \mid \rho_{k}\right)=0$ for $j \neq k$?
Since the two signal states are pure, they span a two-dimensional subspace and without loss of generality we can restrict the support of the POVM elements to this subspace - an effective qubit. Suppose E_{j} are rank-one operators $E_{j}=\alpha_{k}\left|\xi_{j}\right\rangle\left\langle\xi_{j}\right|$ (if they aren't, decompose them into a set of rank-one operators). Then we want to fulfill $0=\operatorname{Pr}\left(E_{j} \mid \rho_{k}\right)=\alpha_{k}\left|\left\langle\xi_{j} \mid \phi_{k}\right\rangle\right|^{2}$, which can only work if $\left|\xi_{j}\right\rangle=\left|\phi_{k}^{\perp}\right\rangle$. That is, $\left|\xi_{0}\right\rangle$ is the state orthogonal to $\left|\phi_{1}\right\rangle$ and vice versa; the unambiguous measurement works by rejecting rather than confirming one of the two hypotheses. Thus $E_{j}=\alpha_{j}\left|\phi_{k}^{\perp}\right\rangle\left\langle\phi_{k}^{\perp}\right|$ for $j \neq k$ and some $0 \leq \alpha_{k} \leq 1$.
2. Can these two elements alone make up a POVM? Is there generally an inconclusive result $E_{\text {? }}$?

Since $\left\langle\phi_{1} \mid \phi_{2}\right\rangle \neq 0$ in general, $\sum_{j=1}^{2} E_{j} \neq \mathbb{1}$, and therefore a third measurement element is needed. This outcome tells Bob nothing about which signal was sent, so it is an inconclusive result $E_{\text {? }}$.
3. Assuming ρ_{1} and ρ_{2} are sent with equal probability, what is the optimal unambiguous measurement, i.e. the unambigous measurement with the smallest probability of an inconclusive result?

We know that a general unambiguous discrimination POVM has the form

$$
E_{0}=\alpha_{0}\left|\phi_{1}^{\perp}\right\rangle\left\langle\phi_{1}^{\perp}\right|, \quad E_{1}=\alpha_{1}\left|\phi_{0}^{\perp}\right\rangle\left\langle\phi_{0}^{\perp}\right|, \quad E_{?}=\mathbb{1}-E_{0}-E_{1} .
$$

The sum-to-unity constraint is enforced by the form of $E_{\text {? }}$ and $E_{0 / 1}$ are positive by construction, so the only outstanding constraint is that $E_{\text {? }}$ be positive. Symmetry between the signal states implies that $\alpha_{0}=\alpha_{1}$, leaving

$$
\mathbb{1}-\alpha\left(\left|\phi_{0}^{\perp}\right\rangle\left\langle\phi_{0}^{\perp}\right|+\left|\phi_{1}^{\perp}\right\rangle\left\langle\phi_{1}^{\perp}\right|\right) \geq 0 .
$$

Thus we should choose the largest value of α consistent with this constraint. We can find a closed-form expression in terms of Bloch-sphere quantities. Let $\left|\phi_{j}\right\rangle$ have Bloch vector \hat{n}_{j}, meaning $\left|\phi_{j}^{\perp}\right\rangle$ has Bloch vector $-\hat{n}_{j}$. Then the constraint becomes

$$
\mathbb{1}-\frac{1}{2} \alpha\left(\mathbb{1}-\hat{n}_{1} \cdot \vec{\sigma}+\mathbb{1}-\hat{n}_{0} \cdot \vec{\sigma}\right)=(1-\alpha) \mathbb{1}+\alpha\left(\hat{n}_{0}+\hat{n}_{1}\right) \cdot \vec{\sigma} \geq 0
$$

We know the eigenvalues of a general expression in terms of the Pauli operators and identity from the lecture on qubits, namely $\lambda_{ \pm}=(1-\alpha) \pm \alpha\left|\hat{n}_{0}+\hat{n}_{1}\right|$. Thus, the largest possible α is

$$
\alpha=\frac{1}{1+\left|\hat{n}_{0}+\hat{n}_{1}\right|} .
$$

When the $\left|\phi_{j}\right\rangle$ are orthogonal, $\hat{n}_{0}+\hat{n}_{1}=0$ and the unambiguous measurement goes over into the usual projection measurement.

Exercise 4.4 Broken Measurement

Alice and Bob share a state $|\Psi\rangle_{A B}$, and Bob would like to perform a measurement described by projectors P_{j} on his part of the system, but unfortunately his measurement apparatus is broken. He can still perform arbitrary unitary operations, however. Meanwhile, Alice's measurement apparatus is in good working order. Show that there exist projectors P_{j}^{\prime} and unitaries U_{j} and V_{j} so that

$$
\left|\Psi_{j}\right\rangle=\left(\mathbb{1} \otimes P_{j}\right)|\Psi\rangle=\left(U_{j} \otimes V_{j}\right)\left(P_{j}^{\prime} \otimes \mathbb{1}\right)|\Psi\rangle .
$$

(Note that the state is unnormalized, so that it implicitly encodes the probability of outcome j.) Thus Alice can assist Bob by performing a related measurement herself, after which they can locally correct the state. Hint: Work in the Schmidt basis of $|\Psi\rangle$.

Start with the Schmidt decomposition of $|\Psi\rangle_{A B}$:

$$
|\Psi\rangle_{A B}=\sum_{k} \sqrt{p_{k}}\left|\alpha_{k}\right\rangle\left|\beta_{k}\right\rangle .
$$

Bob's measurement projectors P_{j} can be expanded in his Schmidt basis as $P_{j}=\sum_{k \ell} c_{k \ell}^{j}\left|\beta_{k}\right\rangle\left\langle\beta_{\ell}\right|$. In order for Alice's measurement to replicate Bob's, the probabilities of the various outcomes must be identical, which is to say

$$
\langle\Psi|\left(P_{j}\right)_{B}|\Psi\rangle_{A B}=\langle\Psi|\left(P_{j}^{\prime}\right)_{A}|\Psi\rangle_{A B} \quad \Rightarrow \quad \sum_{k} p_{k}\left\langle\alpha_{k}\right| P_{j}^{\prime}\left|\alpha_{k}\right\rangle=\sum_{k} p_{k}\left\langle\beta_{k}\right| P_{j}\left|\beta_{k}\right\rangle
$$

Thus Alice should choose $P_{j}^{\prime}=\sum_{k \ell} c_{k \ell}^{j}\left|\alpha_{k}\right\rangle\left\langle\alpha_{\ell}\right|$. The post-measurement states when Alice or Bob measures are given by

$$
\left|\Psi_{j}^{\prime}\right\rangle=\sum_{k \ell} \sqrt{p_{k}} c_{k \ell}^{j}\left|\alpha_{\ell}\right\rangle\left|\beta_{k}\right\rangle \quad \text { and } \quad\left|\Psi_{j}\right\rangle=\sum_{k \ell} \sqrt{p_{k}} c_{k \ell}^{j}\left|\alpha_{k}\right\rangle\left|\beta_{\ell}\right\rangle
$$

respectively. Neither is in Schmidt form, but note that they are related by a simple swap operation $\left|\alpha_{j}\right\rangle_{A}\left|\beta_{k}\right\rangle_{B} \leftrightarrow\left|\alpha_{k}\right\rangle_{A}\left|\beta_{j}\right\rangle_{B}$, which is unitary; call it $W_{A B}$ so that $\left|\Psi_{j}^{\prime}\right\rangle=W\left|\Psi_{j}\right\rangle$. Now let $U_{j}^{\prime} \otimes V_{j}^{\prime}$ be unitary operators which transform $\left|\Psi_{j}\right\rangle$ to Schmidt form in the $\left|\alpha_{j}\right\rangle\left|\beta_{k}\right\rangle$ basis. That is, $\left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left|\Psi_{j}\right\rangle=\sum_{k} \sqrt{p_{k}^{j}}\left|\alpha_{k}\right\rangle\left|\beta_{k}\right\rangle$, and it follows that $W\left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left|\Psi_{j}\right\rangle=\left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left|\Psi_{j}\right\rangle$. Therefore $V_{j}^{\prime} \otimes U_{j}^{\prime}$ takes $\left|\Psi_{j}^{\prime}\right\rangle$ to Schmidt form:

$$
\left(V_{j}^{\prime} \otimes U_{j}^{\prime}\right)\left|\Psi_{j}^{\prime}\right\rangle=W W^{\dagger}\left(V_{j}^{\prime} \otimes U_{j}^{\prime}\right) W\left|\Psi_{j}\right\rangle=W\left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left|\Psi_{j}\right\rangle=\sum_{k} \sqrt{p_{k}^{j}}\left|\alpha_{k}\right\rangle\left|\beta_{k}\right\rangle
$$

and thus

$$
\begin{aligned}
& \left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left|\Psi_{j}\right\rangle=\left(V_{j}^{\prime} \otimes U_{j}^{\prime}\right)\left|\Psi_{j}^{\prime}\right\rangle \\
\Rightarrow & \left(U_{j}^{\prime} \otimes V_{j}^{\prime}\right)\left(\mathbb{1} \otimes P_{j}\right)|\Psi\rangle=\left(V_{j}^{\prime} \otimes U_{j}^{\prime}\right)\left(P_{j}^{\prime} \otimes \mathbb{1}\right)|\Psi\rangle \\
\Rightarrow & \left(\mathbb{1} \otimes P_{j}\right)|\Psi\rangle=\left(U_{j}^{\prime \dagger} V_{j}^{\prime} \otimes V_{j}^{\prime \dagger} U_{j}^{\prime}\right)\left(P_{j}^{\prime} \otimes \mathbb{1}\right)|\Psi\rangle
\end{aligned}
$$

