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Exercise 3.1 Reduced density matrix - partial trace

Partial trace is an important concept in the quantum mechanical treatment of multi-partite
systems, and is the natural generalisation of the concept of marginal distributions in classical
probability theory.
Assume two Hilbert spaces HA and HB with orthonormal bases {ξj : j = 1, ...,m} and {ηk :
k = 1, ..., n}, respectively, and vector |Ψ〉AB ∈ HA ⊗HB given by

|Ψ〉AB =
∑
j,k

Cj,k|ξj〉|ηk〉

Reduced density matrix of a system A is defined via a partial trace on the whole system:

ρA = TrB(ρAB) =
n∑
k=1

〈ηk|ρAB|ηk〉 (1)

a) Show that the reduced state on a system A can be written as:

ρA =
∑
j,k,r

CjkCrk|ξj〉〈ξr|

and deduce that the matrix of ρA with respect to the basis {ξj} can be written as CC†,
where C is the m × n matrix with entries Cjk, and C† its transpose. Also show that the
matrix of ρB is C†C. Deduce that ρA and ρB must have same non-negative eigenvalues.

b) Show that ρA is a valid density operator by proving it is:

1) Hermitian: ρA = ρ†A.

2) Positive: ρA ≥ 0.

3) Normalised: Tr(ρA) = 1.

1) Hermitian: ρA = ρ†A.

Remember that ρAB can always be written as

ρAB =
∑
i,j,k,l

cij;kl |i〉〈k|A ⊗ |j〉〈l|B,

where cij;kl = c†kl;ij is hermitian.

The reduced density operator ρA is then given by

ρA = TrB(ρAB) =
∑
i,k

∑
m

cim;km|i〉〈k|A

as can easily be verified. Hermiticity of ρA follows from

ρ†A =
∑
i,k

∑
m

c†im;km (|i〉〈k|A)† =
∑
i,k

∑
m

ckm;im|k〉〈i|A = ρA.
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2) Positive: ρA ≥ 0.

Since ρAB ≥ 0 is positive, its scalar product with any pure state is positive. Let
|Ψm〉AB = |ψ〉A ⊗ |m〉B be a state in HA ⊗HB and |ψ〉A an arbitrary pure state in
HA:

0 ≤
∑
m

〈Ψm|ρAB|Ψm〉

=
∑
m

〈ψ|A ⊗ 〈m|BρAB|ψ〉A ⊗ |m〉B

=
∑
m

∑
i,j,k,l

cij;kl〈ψ|i〉〈k|ψ〉A〈m|j〉〈l|m〉B

=
∑
i,k

∑
m

cim;km〈ψ|i〉〈k|ψ〉A

= 〈ψ|ρA|ψ〉

Because this is true for any |ψ〉, it follows that ρA is positive.

3) Normalised: Tr(ρA) = 1.

Tr(ρA) =
∑
i,j

∑
m,n

cim;km〈n|i〉〈k|n〉

=
∑
m,n

cnm;nm = Tr(ρAB) = 1.

c) Find ρA and ρB in the case when HA and HB have orthonormal bases {v0, v1, v2} and
{ω1, ω2}, respectively (hence m = 3, n = 2), and the (unnormalised) state ψ is given by

|Ψ〉AB = |v0〉(|ω1〉 − |ω2〉) + |v1〉|ω1〉+ |v2〉|ω2〉

Show that ρA and ρB have the same non-zero eigenvalues.

d) Calculate the reduced density matrix of the system A in the Bell state

|Ψ〉AB =
1√
2

(|00〉+ |11〉) .

The reduced state is mixed, even though |Ψ〉 is pure:

ρAB = |Ψ〉〈Ψ| = 1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
TrB(ρAB) =

1

2

(
|0〉〈0|+ |1〉〈1|

)
=

1

2
1A.

e) Consider a classical probability distribution PXY with marginals PX and PY .

1) Calculate the marginal distribution PX for

PXY (x, y) =


0.5 for (x, y) = (0, 0),

0.5 for (x, y) = (1, 1),

0 else,

(2)
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with alphabets X ,Y = {0, 1}.
Using PX(x) =

∑
y PXY (x, y), we obtain

PX(0) = 0.5, PX(1) = 0.5.

2) How can we represent PXY in form of a quantum state?

A probability distribution PZ = {PZ(z)}z may be represented by a state

ρZ =
∑
z

PZ(z)|z〉〈z|, (3)

for a basis {|z〉}z of a Hilbert space HZ . In this case we can create a two-qubit
system with composed Hilbert space HXHY in state

ρXY =
1

2

(
|00〉〈00|+ |11〉〈11|

)
.

3) Calculate the partial trace of PXY in its quantum representation.

The reduces state of qubit X is

ρX =
1

2

(
|0〉〈0|+ |1〉〈1|

)
.

Notice that the reduced states of this classical state and the Bell state are the same,
the state of the global state is very different — in particular, the latter is a pure
state that can be very useful in quantum communication and cryptography.

f) Can you think of an experiment to distinguish the bipartite states of parts b) and c)?

One could for instance measure the two states in the Bell basis,

|ψ1〉 =
|00〉+ |11〉√

2
, |ψ2〉 =

|00〉 − |11〉√
2

,

|ψ3〉 =
|01〉+ |10〉√

2
, |ψ4〉 =

|01〉 − |10〉√
2

.

The Bell state we analised corresponds to the first state of this basis, |Ψ〉 = |ψ1〉, and
a measurement in the Bell basis would always have the same outcome. For the classical
state, however, ρXY = 1

2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), so with probability 1
2 a measurement in this

basis will output |ψ2〉, and we will know we had the classical state.

Exercise 3.2 State Distinguishability

One way to understand the cryptographic abilities of quantum mechanics is from the fact that
non-orthogonal states cannot be perfectly distinguished.

a) In the course of a quantum key distribution protocol, suppose that Alice randomly chooses
one of the following two states and transmits it to Bob:

|φ0〉 = 1√
2
(|0〉+ |1〉), or |φ1〉 = 1√

2
(|0〉+ i|1〉). (4)

Eve intercepts the qubit and performs a measurement to identify the state. The measure-
ment consists of the orthogonal states |ψ0〉 and |ψ1〉, and Eve guesses the transmitted state
was |φ0〉 when she obtains the outcome |ψ0〉, and so forth. What is the probability that
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Eve correctly guesses the state, averaged over Alice’s choice of the state for a given mea-
surement? What is the optimal measurement Eve should make, and what is the resulting
optimal guessing probability?

The probability of correctly guessing, averaged over Alice’s choice of the state is

pguess = 1
2(|〈ψ0||φ0〉|2 + |〈ψ1||φ1〉|2) (5)

To optimize the choice of measurement, suppose |ψ0〉 = α|0〉 + β|1〉 for some α, β ∈ C
such that |α|2 + |β|2 = 1. Then |ψ1〉 = −β∗|0〉 + α∗|1〉 is orthogonal as intended. Using
this in (5) gives

pguess =
1

2

(∣∣∣∣α∗ + β∗√
2

∣∣∣∣2 +

∣∣∣∣ iα− β√
2

∣∣∣∣2
)

(6)

= 1
2(1 + 2Re

[(
1−i
2

)
αβ∗

]
). (7)

If we express α and β as α = aeiθ and β = beiη for real a, b, θ, η, then we get

pguess = 1
2(1 + 2abRe

[(
1−i
2

)
ei(θ−η)

]
). (8)

To maximize, we ought to choose a = b = 1√
2
, and we may also set η = 0 since only the

difference θ − η is relevant. Now we have

pguess = 1
2(1 + Re

[(
1−i
2

)
eiθ
]
) (9)

= 1
2(1 + 1√

2
Re
[
e−iπ/4eiθ

]
), (10)

from which it is clear that the best thing to do is to set θ = π/4 to get pguess = 1
2(1+ 1√

2
) ≈

85.4%. The basis states making up the measurement are |ψ0〉 = 1√
2
(eiπ/4|0〉 + |1〉) and

|ψ1〉 = 1√
2
(−|0〉+ e−iπ/4|1〉).

b) Now suppose Alice randomly chooses between two states separated by an angle θ on the
Bloch sphere. What is the measurement which optimizes the guessing probability? What
is the resulting probability of correctly identifying the state?

The point of this exercise is to show that thinking in terms of the Bloch sphere is a lot
more intuitive than just taking a brute force approach as we did in the solution of the
previous exercise. Let n̂0 and n̂1 be the Bloch vectors of the two states. Call m̂ the Bloch
vector associated with one of the two basis vectors of the measurement, specifically the
one which indicates that the state is |φ0〉 (the other is associated with −m̂). The guessing
probability takes the form

pguess = 1
2(|〈ψ0||φ0〉|2 + |〈ψ1||φ1〉|2) (11)

= 1
2

(
1
2(1 + n̂0 · m̂) + 1

2(1− n̂1 · m̂)
)

(12)

= 1
4 (2 + m̂ · (n̂0 − n̂1)) (13)

The optimal m̂ lies along n̂0 − n̂1 and has unit length, i.e.

m̂ =
n̂0 − n̂1√

(n̂0 − n̂1) · (n̂0 − n̂1)
(14)

=
n̂0 − n̂1√
2− 2 cos θ

. (15)
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Therefore,

pguess = 1
4

(
2 +
√

2− 2 cos θ
)

(16)

= 1
2

(
1 +

√
1− cos θ

2

)
(17)

= 1
2

(
1 + sin θ

2

)
. (18)

Finally, we should check that this gives sensible results. When θ = 0, pguess = 1
2 , as

it should. On the other hand, the states |φk〉 are orthogonal for θ = π, and indeed
pguess = 1 in this case. In the previous exercise we investigated the case θ = π

2 and here
we immediately find pguess = 1

2(1 + 1√
2
), as before.

Exercise 3.3 One-qubit POVM

Consider a single qubit and unit vectors ~nk, k ∈ {1, ..., n} such that∑
k

λk ~nk = 0

for λk ∈ (0, 1) and
∑

k λk = 1. Show that a measurement on a qubit defined by

Fk = 2λk| ↑ ~nk
〉〈↑ ~nk

|

is a POVM. Explain cases N = 2 and N = 3, and connect them to the Bloch sphere represen-
tation. For the case N = 3 think of suitable vectors ~nk and extend above POVM measurement
on a qubit to the orthogonal measurement on a qutrit in a suitable basis (Neumark’s theorem is
a generalisation of this fact).
One can trivially see that each Fk is positive, as λk’s are positive and | ↑ ~nk

〉〈↑ ~nk
| defines a

projective measurement. As | ↑ ~nk
〉〈↑ ~nk

| defines a density matrix of a projective measurement
in the direction of ~nk on the Bloch sphere, it can be written as

| ↑ ~nk
〉〈↑ ~nk

| = 1

2
(1 + ~nk · ~σ)

Then ∑
k

Fk =
∑
k

λk(1 + ~nk · σ) =
∑
k

λk + (
∑
k

λk ~nk) · ~σk = 1

Hence Fk’s indeed define a POVM. In the case N = 2 we have ~n2 = − ~n1, and the POVM is an
orthogonal measurement along the ~n1 axis. In the case N = 3, if we restrict to the symmetric
case, we have ~n1 + ~n2 + ~n3 = 0 and λ1 = λ2 = λ3, hence

Fk =
1

3
(1 + ~nk · σ) =

2

3
| ↑ ~nk
〉〈↑ ~nk

|

By Neumark’s theorem, we can extend this POVM measurement on a qubit, to an orthogonal
measurement on a qutrit. It is left as an exercise to show that if one chooses ~n1 = (0, 0, 1), ~n2 =
(
√

3/2, 0,−1/2), ~n3 = (−
√

3/2, 0,−1/2) appropriate orthogonal measurement on a qutrit would
be in the basis:

|u1〉, |u2〉, |u3〉 =


√

2/3
0√
1/3

 ,


√

1/6√
1/2

−
√

1/3

 ,

−
√

1/6√
1/2√
1/3


If we would perform orthogonal measurement on a qutrit in this basis, an observer only having
access to the two-dim subspace, would conclude that we have performed a POVM given by
F1, F2, F3.
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