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Exercise 9.1 Some properties of von Neumann entropy

The von Neumann entropy of a density operator ρ ∈ S(H) is defined as

H(ρ) = −Tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.
Given a composite system ρABC ∈ S(HA ⊗HB ⊗HC) and ρAB = TrC(ρABC) etc., we often write H(AB)
instead of H(ρAB) to denote the entropy of a subsystem.
The conditional von Neumann entropy may be defined in a composed system HA ⊗HB as

H(A|B) = H(AB)−H(B). (2)

The strong sub-additivity property of the von Neumann entropy proves very useful:

H(ABC) +H(B) ≤ H(AB) +H(BC). (3)

a) Prove the following general properties of the von Neumann entropy:

1. If ρAB is pure, then H(A) = H(B).

This becomes clear when you apply the Schmidt decomposition to the pure state ρAB — the
reduced states of the two subsystems A and B have the same eigenvalues and therefore the same
von Neumann entropy.

2. If two subsystems are independent, ρAB = ρA ⊗ ρB, then H(AB) = H(A) +H(B).

We denote by {λi}i and {γj}j the eigenvalues of ρA and ρB respectively. Hence {λiγj}i,j are the
eigenvalues of ρAB and we can write:

H(AB) = −
∑
i,j

λiγj log(λiγj)

= −
(∑

i

λi

)
︸ ︷︷ ︸

=1

·
(∑

j

γj log γj

)
−
(∑

j

γj

)
︸ ︷︷ ︸

=1

·
(∑

i

λi log λi

)

= H(A) +H(B).

b) Consider a bipartite system that is classical on a subsystem Z, namely ρZA =
∑

z pz|z〉〈z|Z ⊗ ρzA for
some basis {|z〉Z}z of HZ . Show that:

1. The entropy of the global state is given by

H(AZ) = H(Z) +
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(ρzA).
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First, note that the eigenvalues of
∑

z pz|z〉〈z| ⊗ ρzA are given by {pzλzk}z,k, where {λzk}k are the
eigenvalues of ρzA ≡ ρA|Z=z. We may now write:

H(AZ) = −
∑
z,k

pzλ
z
k log(pzλ

z
k)

= −
∑
z

pz

(∑
k

λzk

)
︸ ︷︷ ︸

=1

log pz −
∑
z

pz

(∑
k

λzk log λzk

)

= H(Z) +
∑
z

pzH(A|Z = z).

2. Systems A and Z do not share entanglement, i.e.,∑
z

pzH(A|Z=z) ≤ H(A). (5)

First note that from strong sub-additivity follows sub-additivity, H(AC) ≤ H(A) +H(C), if HB

is empty. Applying this to a system classical in HZ , we get

H(AZ) = H(Z) +
∑
z

pz H(A|Z = z) ≤ H(A) +H(Z) (6)

from which the inequality follows immediately.

3. Even if one has access to subsystem A the classical variable is not fully known,

H(Z|A) ≥ 0. (7)

Let us introduce a copy of the classical subsystem Z, Y , as follows:

ρAZY =
∑
z

pz|z〉〈z|Z ⊗ |z〉〈z|Y ⊗ ρzA.

Note that, for this state, H(AZ) = H(AY ) = H(AZY ).

We may now appply the strong sub-additivity,

H(AZY ) +H(A) ≤ H(AZ) + H(AY )︸ ︷︷ ︸
=H(AZY )

⇔ 0 ≤ H(AZ)−H(A)

⇔ 0 ≤ H(Z|A)

Remark: Eq (7) holds in general only for classical Z. Consider, e.g., the Bell-States as an
immediate counterexample in the fully quantum case.

Exercise 9.2 Upper bound on von Neumann entropy

Given a state ρ ∈ S(H), show that
H(ρ) ≤ log |H|. (8)

Consider the state ρ̄ =
∫
UρU†dU , where the integral is over all unitaries U ∈ U(H) and dU is the Haar

measure. Find ρ̄ and use concavity (5) to show (8).
Hint: The Haar measure satisfies d(UV ) = d(V U) = dU , where V ∈ U(H) is any unitary.
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We use the properties of the Haar measure to verify that ρ̄ commutes with all unitaries V on H:

V ρ̄V † =

∫
(V U)ρ(V U)† dU =

∫
Ũρ Ũ† d(V †Ũ) =

∫
Ũρ Ũ† dŨ = ρ̄.

The only density operator on H that has this property is the completely mixed state, so ρ̄ = 1/|H|, . The
concavity property of the von Neumann entropy (Eq. 5) naturally extends to integrals and we get

log |H| = H

(
1

|H|

)
= H(ρ̄) ≥

∫
H(UρU†) dU =

∫
H(ρ) dU (∗) = H(ρ)

∫
dU = H(ρ),

where (∗) stands because the entropy is independent of the basis.

Exercise 9.3 Data Processing Inequality

Random variables X, Y , Z form a Markov chain X → Y → Z if the conditional distribution of Z depends
only on Y : p(z|x, y) = p(z|y). The goal in this exercise is to prove the data processing inequality, I(X :
Y ) ≥ I(X : Z) for X → Y → Z.

1. First show the chain rule for mutual information: I(X : Y Z) = I(X : Z) + I(X : Y |Z), which holds
for arbitrary X,Y, Z. The conditional mutual information is defined as

I(X : Y |Z) =
∑
z

p(z)I(X : Y |Z = z) =
∑
z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.

First observe that p(x,y|z)
p(y|z) = p(x,y,z)

p(y,z) = p(x|y, z), which means I(X:Y |Z) = H(X|Z)−H(X|Y Z). Then

I(X:Y Z) = H(X)−H(X|Y Z) = H(X) + I(X:Y |Z)−H(X|Z) = I(X:Z) + I(X:Y |Z).

2. Next show that in a Markov chain X → Y → Z, X and Z are conditionally independent given Y ; that
is, p(x, z|y) = p(x|y)p(z|y).

p(x, z|y) =
p(x, y, z)

p(y)
=
p(x, y)p(z|x, y)

p(y)
=
p(x|y)p(y)p(z|y)

p(y)
= p(x|y)p(z|y).

3. By expanding the mutual information I(X : Y Z) in two different ways, prove the data processing in
equality.

There are only two ways to expand this expression:

I(X:Y Z) = I(X:Z) + I(X:Y |Z) = I(X:Y ) + I(X:Z|Y ).

Since X and Z are conditionally independent given Y , I(X:Z|Y ) = 0. Meanwhile, I(X:Y |Z) ≥ 0,
since it is a mixture (over Z) of positive quantities I(X:Y |Z = z). Therefore I(X:Y ) ≥ I(X:Z).
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