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Exercise 9.1 Some properties of von Neumann entropy

The von Neumann entropy of a density operator p € S(H) is defined as

H(p) = —Tr(plog p) = ZA log A, (1)

where {\;},; are the eigenvalues of p.

Given a composite system papc € S(Ha @ Hp @ He) and pap = Tre(pasc) ete., we often write H(AB)
instead of H(pap) to denote the entropy of a subsystem.

The conditional von Neumann entropy may be defined in a composed system Ha @ Hp as

H(A|B) = H(AB) — H(B). (2)
The strong sub-additivity property of the von Neumann entropy proves very useful:
H(ABC)+ H(B) < H(AB) + H(BC). (3)
a) Prove the following general properties of the von Neumann entropy:

1. If pap is pure, then H(A) = H(B).
This becomes clear when you apply the Schmidt decomposition to the pure state pap — the

reduced states of the two subsystems A and B have the same eigenvalues and therefore the same
von Neumann entropy.

2. If two subsystems are independent, pap = pa ® pp, then H(AB) = H(A) + H(B).

We denote by {\;}, and {~; }j the eigenvalues of p4 and pp respectively. Hence {\;7;}, ; are the
eigenvalues of p4p and we can write:

H(AB) = Z Aivj log(Niyy)
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= H(A) + H(B).

b) Consider a bipartite system that is classical on a subsystem Z, namely pza =), p.|2){z|z @ p3 for
some basis {|z)Z}, of Hz. Show that:

1. The entropy of the global state is given by
H(AZ) = +sz (A|Z = 2), (4)

where H(A|Z = z) = H(p%).



First, note that the eigenvalues of 3 p.[2)(z| ® p% are given by {p:Aj}, ;, where {Aj}, are the
eigenvalues of p3 = pq|z—.. We may now write:

(AZ szAk log(pzAk)
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+sz (A|Z = 2).

2. Systems A and Z do not share entanglement, i.e.,

Db H(AIZ=2) < H(A) (5)

First note that from strong sub-additivity follows sub-additivity, H(AC) < H(A)+ H(C), if Hp
is empty. Applying this to a system classical in Hz, we get

H(AZ)=H(Z)+ Z p. H(A|Z = 2) < H(A) + H(Z) (6)

from which the inequality follows immediately.

3. FEwven if one has access to subsystem A the classical variable is not fully known,

H(Z|A) > 0. (7)

Let us introduce a copy of the classical subsystem Z, Y, as follows:

pAZY—sz 2|z @ 12)(zly @ pi.

Note that, for this state, H(AZ) = H(AY) = H(AZY).
We may now appply the strong sub-additivity,
H(AZY)+ H(A) < H(AZ)+ H(AY)
——
=H(AZY)
<0< H(AZ)—-H(A)
<0< H(Z|A)

Remark: Eq (7) holds in general only for classical Z. Consider, e.g., the Bell-States as an
immediate counterezample in the fully quantum case.

Exercise 9.2 Upper bound on von Neumann entropy

Given a state p € S(H), show that
H(p) <log|H]|. (8)

Consider the state p = fUpUTdU, where the integral is over all unitaries U € U(H) and dU is the Haar
measure. Find p and use concavity (5) to show (8).
Hint: The Haar measure satisfies d(UV) = d(VU) = dU, where V € U(H) is any unitary.



We use the properties of the Haar measure to verify that p commutes with all unitaries V' on H:
Vvt = /(VU)p(VU)T dU = /UpUT d(ViU) = /UpUT dU = p

The only density operator on H that has this property is the completely mixed state, so p = 1/|H|, . The
concavity property of the von Neumann entropy (Eq. 5) naturally extends to integrals and we get

g 1) = 1 (3 ) = H(0) > [ H@WovY) av = [ 1) a0 = 1) [ v = sr(p)

where (*) stands because the entropy is independent of the basis.

Exercise 9.3 Data Processing Inequality

Random variables X, Y, Z form a Markov chain X — 'Y — Z if the conditional distribution of Z depends
only on Y: p(z|z,y) = p(z|y). The goal in this exercise is to prove the data processing inequality, I(X :
YNW>I(X:2Z) for X =Y — Z.

1. First show the chain rule for mutual information: 1(X : YZ) = (X : Z)+ I(X : Y|Z), which holds
for arbitrary X,Y, Z. The conditional mutual information is defined as
O Y12) = SO0 ¥17 =) = 3006 3 pa vl o Eavs
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First observe that 2412) = P&4:2) — p(aly 2), which means I(X:Y|Z) = H(X|Z)~ H(X|Y Z). Then

I(X:YZ)=H(X)- HX|YZ) = HX) + I(X:Y|Z) — H(X|Z) = [(X:2) + [(X:Y|Z).

2. Next show that in a Markov chain X —Y — Z, X and Z are conditionally independent given Y ; that
is, p(, zy) = p(z|y)p(z]y).

p(@,y,2) _ pa,ypGlr.y) _ plly)p@)p(zly) _
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p(z, zly) = p(x|y)p(zly).

3. By expanding the mutual information I(X : YZ) in two different ways, prove the data processing in
equality.

There are only two ways to expand this expression:
I(X:YZ)=1(X:Z2)+ 1(X:Y|Z)=I(X:Y)+ I[(X:Z]Y).

Since X and Z are conditionally independent given Y, I(X:Z|Y) = 0. Meanwhile, I(X:Y|Z) > 0
since it is a mixture (over Z) of positive quantities I(X:Y|Z = z). Therefore I(X:Y) > I(X:Z).



