Exercise 9.1 Some properties of von Neumann entropy

The von Neumann entropy of a density operator $\rho \in \mathcal{S}(\mathcal{H})$ is defined as

$$
\begin{equation*}
H(\rho)=-\operatorname{Tr}(\rho \log \rho)=-\sum_{i} \lambda_{i} \log \lambda_{i} \tag{1}
\end{equation*}
$$

where $\left\{\lambda_{i}\right\}_{i}$ are the eigenvalues of ρ.
Given a composite system $\rho_{A B C} \in \mathcal{S}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}\right)$ and $\rho_{A B}=\operatorname{Tr}_{C}\left(\rho_{A B C}\right)$ etc., we often write $H(A B)$ instead of $H\left(\rho_{A B}\right)$ to denote the entropy of a subsystem.
The conditional von Neumann entropy may be defined in a composed system $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ as

$$
\begin{equation*}
H(A \mid B)=H(A B)-H(B) \tag{2}
\end{equation*}
$$

The strong sub-additivity property of the von Neumann entropy proves very useful:

$$
\begin{equation*}
H(A B C)+H(B) \leq H(A B)+H(B C) \tag{3}
\end{equation*}
$$

a) Prove the following general properties of the von Neumann entropy:

1. If $\rho_{A B}$ is pure, then $H(A)=H(B)$.

This becomes clear when you apply the Schmidt decomposition to the pure state $\rho_{A B}$ - the reduced states of the two subsystems A and B have the same eigenvalues and therefore the same von Neumann entropy.
2. If two subsystems are independent, $\rho_{A B}=\rho_{A} \otimes \rho_{B}$, then $H(A B)=H(A)+H(B)$.

We denote by $\left\{\lambda_{i}\right\}_{i}$ and $\left\{\gamma_{j}\right\}_{j}$ the eigenvalues of ρ_{A} and ρ_{B} respectively. Hence $\left\{\lambda_{i} \gamma_{j}\right\}_{i, j}$ are the eigenvalues of $\rho_{A B}$ and we can write:

$$
\begin{aligned}
H(A B) & =-\sum_{i, j} \lambda_{i} \gamma_{j} \log \left(\lambda_{i} \gamma_{j}\right) \\
& =-\underbrace{\left(\sum_{i} \lambda_{i}\right)}_{=1} \cdot\left(\sum_{j} \gamma_{j} \log \gamma_{j}\right)-\underbrace{\left(\sum_{j} \gamma_{j}\right)}_{=1} \cdot\left(\sum_{i} \lambda_{i} \log \lambda_{i}\right) \\
& =H(A)+H(B)
\end{aligned}
$$

b) Consider a bipartite system that is classical on a subsystem Z, namely $\rho_{Z A}=\sum_{z} p_{z}|z\rangle\left\langle\left. z\right|_{Z} \otimes \rho_{A}^{z}\right.$ for some basis $\{|z\rangle Z\}_{z}$ of \mathcal{H}_{Z}. Show that:

1. The entropy of the global state is given by

$$
\begin{equation*}
H(A Z)=H(Z)+\sum_{z} p_{z} H(A \mid Z=z) \tag{4}
\end{equation*}
$$

where $H(A \mid Z=z)=H\left(\rho_{A}^{z}\right)$.

First, note that the eigenvalues of $\sum_{z} p_{z}|z\rangle\langle z| \otimes \rho_{A}^{z}$ are given by $\left\{p_{z} \lambda_{k}^{z}\right\}_{z, k}$, where $\left\{\lambda_{k}^{z}\right\}_{k}$ are the eigenvalues of $\rho_{A}^{z} \equiv \rho_{A \mid Z=z}$. We may now write:

$$
\begin{aligned}
H(A Z) & =-\sum_{z, k} p_{z} \lambda_{k}^{z} \log \left(p_{z} \lambda_{k}^{z}\right) \\
& =-\sum_{z} p_{z} \underbrace{\left(\sum_{k} \lambda_{k}^{z}\right)}_{=1} \log p_{z}-\sum_{z} p_{z}\left(\sum_{k} \lambda_{k}^{z} \log \lambda_{k}^{z}\right) \\
& =H(Z)+\sum_{z} p_{z} H(A \mid Z=z) .
\end{aligned}
$$

2. Systems A and Z do not share entanglement, i.e.,

$$
\begin{equation*}
\sum_{z} p_{z} H(A \mid Z=z) \leq H(A) \tag{5}
\end{equation*}
$$

First note that from strong sub-additivity follows sub-additivity, $H(A C) \leq H(A)+H(C)$, if \mathcal{H}_{B} is empty. Applying this to a system classical in \mathcal{H}_{Z}, we get

$$
\begin{equation*}
H(A Z)=H(Z)+\sum_{z} p_{z} H(A \mid Z=z) \leq H(A)+H(Z) \tag{6}
\end{equation*}
$$

from which the inequality follows immediately.
3. Even if one has access to subsystem A the classical variable is not fully known,

$$
\begin{equation*}
H(Z \mid A) \geq 0 \tag{7}
\end{equation*}
$$

Let us introduce a copy of the classical subsystem Z, Y, as follows:

$$
\rho_{A Z Y}=\sum_{z} p_{z}|z\rangle\left\langle\left. z\right|_{Z} \otimes \mid z\right\rangle\left\langle\left. z\right|_{Y} \otimes \rho_{A}^{z}\right.
$$

Note that, for this state, $H(A Z)=H(A Y)=H(A Z Y)$.
We may now appply the strong sub-additivity,

$$
\begin{aligned}
& H(A Z Y)+H(A) \leq H(A Z)+\underbrace{H(A Y)}_{=H(A Z Y)} \\
\Leftrightarrow & 0 \leq H(A Z)-H(A) \\
\Leftrightarrow & 0 \leq H(Z \mid A)
\end{aligned}
$$

Remark: Eq (7) holds in general only for classical Z. Consider, e.g., the Bell-States as an immediate counterexample in the fully quantum case.

Exercise 9.2 Upper bound on von Neumann entropy

Given a state $\rho \in \mathcal{S}(\mathcal{H})$, show that

$$
\begin{equation*}
H(\rho) \leq \log |\mathcal{H}| \tag{8}
\end{equation*}
$$

Consider the state $\bar{\rho}=\int U \rho U^{\dagger} d U$, where the integral is over all unitaries $U \in \mathcal{U}(\mathcal{H})$ and $d U$ is the Haar measure. Find $\bar{\rho}$ and use concavity (5) to show (8).
Hint: The Haar measure satisfies $d(U V)=d(V U)=d U$, where $V \in \mathcal{U}(\mathcal{H})$ is any unitary.

We use the properties of the Haar measure to verify that $\bar{\rho}$ commutes with all unitaries V on \mathcal{H} :

$$
V \bar{\rho} V^{\dagger}=\int(V U) \rho(V U)^{\dagger} d U=\int \tilde{U} \rho \tilde{U}^{\dagger} d\left(V^{\dagger} \tilde{U}\right)=\int \tilde{U} \rho \tilde{U}^{\dagger} d \tilde{U}=\bar{\rho}
$$

The only density operator on \mathcal{H} that has this property is the completely mixed state, so $\bar{\rho}=\mathbb{1} /|\mathcal{H}|$, . The concavity property of the von Neumann entropy (Eq. 5) naturally extends to integrals and we get

$$
\log |\mathcal{H}|=H\left(\frac{\mathbb{1}}{|\mathcal{H}|}\right)=H(\bar{\rho}) \geq \int H\left(U \rho U^{\dagger}\right) d U=\int H(\rho) d U^{(*)}=H(\rho) \int d U=H(\rho)
$$

where ${ }^{(*)}$ stands because the entropy is independent of the basis.

Exercise 9.3 Data Processing Inequality

Random variables X, Y, Z form a Markov chain $X \rightarrow Y \rightarrow Z$ if the conditional distribution of Z depends only on $Y: p(z \mid x, y)=p(z \mid y)$. The goal in this exercise is to prove the data processing inequality, $I(X$: $Y) \geq I(X: Z)$ for $X \rightarrow Y \rightarrow Z$.

1. First show the chain rule for mutual information: $I(X: Y Z)=I(X: Z)+I(X: Y \mid Z)$, which holds for arbitrary X, Y, Z. The conditional mutual information is defined as

$$
I(X: Y \mid Z)=\sum_{z} p(z) I(X: Y \mid Z=z)=\sum_{z} p(z) \sum_{x, y} p(x, y \mid z) \log \frac{p(x, y \mid z)}{p(x \mid z) p(y \mid z)}
$$

First observe that $\frac{p(x, y \mid z)}{p(y \mid z)}=\frac{p(x, y, z)}{p(y, z)}=p(x \mid y, z)$, which means $I(X: Y \mid Z)=H(X \mid Z)-H(X \mid Y Z)$. Then

$$
I(X: Y Z)=H(X)-H(X \mid Y Z)=H(X)+I(X: Y \mid Z)-H(X \mid Z)=I(X: Z)+I(X: Y \mid Z)
$$

2. Next show that in a Markov chain $X \rightarrow Y \rightarrow Z, X$ and Z are conditionally independent given Y; that is, $p(x, z \mid y)=p(x \mid y) p(z \mid y)$.

$$
p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(x, y) p(z \mid x, y)}{p(y)}=\frac{p(x \mid y) p(y) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y)
$$

3. By expanding the mutual information $I(X: Y Z)$ in two different ways, prove the data processing in equality.
There are only two ways to expand this expression:

$$
I(X: Y Z)=I(X: Z)+I(X: Y \mid Z)=I(X: Y)+I(X: Z \mid Y)
$$

Since X and Z are conditionally independent given $Y, I(X: Z \mid Y)=0$. Meanwhile, $I(X: Y \mid Z) \geq 0$, since it is a mixture (over Z) of positive quantities $I(X: Y \mid Z=z)$. Therefore $I(X: Y) \geq I(X: Z)$.

