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Exercise 7.1 Entropy properties

The von-Neumann entropy is defined as:

H(ρ) = −tr[ρ log ρ] = −
∑
k

λk log λk

Show the following properties of this quantity:

1. H(ρ) = 0 iff ρ is pure

2. H(UρU∗) = H(ρ) for unitary U

3. H(ρ) ≤ log |supp ρ|

4. H(
∑
k pkρk) ≥

∑
k pkH(ρk)

5. H(
∑
k PkρPk) ≥ H(ρ) for any complete set of projectors Pk

Exercise 7.2 Geometry of Measurements

Let F = {F1, F2} and G = {G1, G2} be two POVMs. We define an element-wise convex combination of
F and G as αF + (1− α)G := {αF1 + (1− α)G1, αF2 + (1− α)G2}, with 0 ≤ α ≤ 1.

a) Consider a POVM with two outcomes and respective measurement operators E and 1−E. Suppose
that E has an eigenvalue λ such that 0 < λ < 1. Show that the POVM is not extremal by expressing
it as a nontrivial convex combination of two POVMs.

We expand E in its eigenbasis and write

E = λ0 |0〉〈0|+
∑
i 6=0

λi |i〉〈i|

= λ0 |0〉〈0|+ (1− λ0)
∑
i 6=0

λi |i〉〈i|+ λ0
∑
i 6=0

λi |i〉〈i|

= λ0 (|0〉〈0|+
∑
i 6=0

λi |i〉〈i|)︸ ︷︷ ︸
E1

+(1− λ0)
∑
i 6=0

λi |i〉〈i|︸ ︷︷ ︸
E2

.

Hence we can write the POVM {E,1− E} as a convex combination of the POVMs {E1,1− E1}
and {E2,1− E2}.

b) Suppose that E is an orthogonal projector. Show that the POVM cannot be expressed as a nontrivial
convex combination of POVMs.

Let E be an orthogonal projector on some subspace V ∈ H and let |ψ〉 ∈ V T . If we assume that E
can be written as the convex combination of two positive operators then

0 = 〈ψ|E|ψ〉
= λ〈ψ|E1|ψ〉+ (1− λ)〈ψ|E2|ψ〉.

However, both terms on the right hand side are non-negative, thus they must vanish identically.
Since |ψ〉 was arbitrary we conclude that E1 = E2 = E.

c) What is the operational interpretation of an element-wise convex combination of POVMs?

The element-wise convex combination of elements an be interpreted as using two different measure-
ment devices with probability α and 1− α, but not knowing which measurement device was used.
In contrast to that, a simple convex concatenation of sets would be interpreted as using two differ-
ent measurement devices with probability α and 1 − α, but keeping track of which measurement
device was used. This is because by definition of a POVM, each POVM element corresponds to a
specific measurement outcome. If the two POVMs are concatenated, we can still uniquely relate
the measurement outcome to the corresponding measurement device.

The tips have more details and examples.
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Exercise 7.3 Distance between channels

Consider two TPCPMs that define two channels,

E ,F : HA 7→ HB . (1)

Let us call the naive distance between channels the following quantity:

d(E ,F) = max
ρA

δ(E(ρA),F(ρA)), (2)

where δ(ρ, σ) is the trace distance between states. The stabilized distance between channels is defined as

d3(E ,F) = max
ρAR

δ(E ⊗ I(ρAR),F ⊗ I(ρAR)), (3)

where I is the identity map for operators that act on the reference system HR.

a) Consider the fully depolarising channel on one qubit, Ep(ρ) = p12 +(1−p)ρ, that can be expressed in

the operator-sum representation (E(ρ) =
∑
k EkρEk

†) with the operators
√

1− 3p
4 1 and

√
p

2 σi, i =
x, y, z.

Compute and compare d(Ep, I) and d3(Ep, I).

There was a typo in the original version of the exercise: the channel acts as Ep(ρ) =
p12 + (1− p)ρ, and not as Ep(ρ) = p1 + (1− p)ρ.
The distance d(Ep, I) is given by

d(E , I) = max
ρ

δ(E(ρ), I(ρ))

= max
ρ

1

2

∣∣∣∣p12 + (1− p)ρ− ρ
∣∣∣∣

= max
ρ

p

2

∣∣∣∣12 − ρ
∣∣∣∣ ,

which, if ρ = α|0〉〈0|+ (1− α)|1〉〈1| in its eigenbasis, is

d(E , I) = max
ρ

p

2

(∣∣∣∣12 − α
∣∣∣∣+

∣∣∣∣12 − 1 + α

∣∣∣∣) , 0 ≤ α ≤ 1

= max
ρ

p

∣∣∣∣12 − α
∣∣∣∣ , 0 ≤ α ≤ 1

=
p

2
,

because
∣∣ 1
2 − α

∣∣ is maximised for pure states.

As for the diamond distance, we have

d3(E , I) = max
ρAR

δ(E ⊗ I(ρAR), I ⊗ I(ρAR))

= max
ρAR

δ

((√
1− 3p

4
1⊗ 1

)
ρAR

(√
1− 3p

4
1⊗ 1

)
+
∑
i

[(√p
2
σi ⊗ 1

)
ρAR

(√
p

2
σi ⊗ 1

)]
, ρAR

)

= max
ρAR

δ

((
1− 3p

4

)
ρAR +

p

4

∑
i

[
(σi ⊗ 1)ρAR(σi ⊗ 1)

]
, ρAR

)

= max
ρAR

1

2

∣∣∣∣∣
(

1− 3p

4

)
ρAR +

p

4

∑
i

[
(σi ⊗ 1)ρAR(σi ⊗ 1)

]
− ρAR

∣∣∣∣∣
= max

ρAR

p

8

∣∣∣∣∣∑
i

[
(σi ⊗ 1)ρAR(σi ⊗ 1)

]
− 3ρAR

∣∣∣∣∣ .
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For now, instead of maximizing that quantity over all states we will apply it to the fully entangled
state |Ψ〉 = 1√

2
|00〉+ |11〉,

d3(E , I) ≥ p

8

∣∣∣∣∣∑
i

[
(σi ⊗ 1)|Ψ〉〈Ψ|AR(σi ⊗ 1)

]
− 3|Ψ〉〈Ψ|AR

∣∣∣∣∣
=
p

8

∣∣∣∣∣∣∣∣

−1 0 0 −2
0 1 0 0
0 0 1 0
−2 0 0 −1


∣∣∣∣∣∣∣∣ =

3p

2
.

Recall that the non-stabilized distance was only d(E , I) = p
2 — it is possible to observe a gap

between the stabilized and the non-stabilize distances. It can be shown that in fact d3(E , I) = 3p
2 ,

i.e. the distance is optimized by a maximally entangled state.

b) Show that in general d(E ,F) ≤ d3(E ,F).

We observe that, for any quantity X evaluated on states of HA ⊗HR,

max
ρAR

X(ρAR) ≥ max
ρA

X

(
ρA ⊗

1R

|R|

)
,

as product states of the form ρA⊗ 1R

|R| are a subset of all quantum states of composed spaceHA⊗HR.

Now we see that if we only consider these states, the two distances are equivalent, because

δ(E ⊗ I(ρA ⊗
1R

|R|
),F ⊗ I(ρA ⊗

1R

|R|
)) =

1

2
Tr

(
E(ρA)⊗ 1R

|R|
− F(ρA)⊗ 1R

|R|

)
=

1

2
Tr

(
[E(ρA)−F(ρA)]⊗ 1R

|R|

)
(∗)

=
1

2
Tr (E(ρA)−F(ρA)) , (∗∗)

where (∗) stands because A⊗C +B ⊗C = [A+B]⊗C and (∗∗) because Tr(A⊗ 1R) = |R| Tr(A).
Putting everything together, we have

d3(E ,F) = max
ρAR∈S(HA⊗HR)

δ(E ⊗ I(ρAR),F ⊗ I(ρAR))

≥ max
ρAR∈W⊂S(HA⊗HR)

δ(E ⊗ I(ρAR),F ⊗ I(ρAR))

= max
ρA∈S(HA)

δ(E ⊗ I(ρA ⊗
1R

|R|
),F ⊗ I(ρA ⊗

1R

|R|
))

= max
ρA∈S(HA)

δ(E(ρA),F(ρA))

= d(E ,F).
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