## Exercise 7.1 Entropy properties

The von-Neumann entropy is defined as:

$$
H(\rho)=-\operatorname{tr}[\rho \log \rho]=-\sum_{k} \lambda_{k} \log \lambda_{k}
$$

Show the following properties of this quantity:

1. $H(\rho)=0$ iff $\rho$ is pure
2. $H\left(U \rho U^{*}\right)=H(\rho)$ for unitary U
3. $H(\rho) \leq \log \mid$ supp $\rho \mid$
4. $H\left(\sum_{k} p_{k} \rho_{k}\right) \geq \sum_{k} p_{k} H\left(\rho_{k}\right)$
5. $H\left(\sum_{k} P_{k} \rho P_{k}\right) \geq H(\rho)$ for any complete set of projectors $P_{k}$

## Exercise 7.2 Geometry of Measurements

Let $F=\left\{F_{1}, F_{2}\right\}$ and $G=\left\{G_{1}, G_{2}\right\}$ be two POVMs. We define an element-wise convex combination of $F$ and $G$ as $\alpha F+(1-\alpha) G:=\left\{\alpha F_{1}+(1-\alpha) G_{1}, \alpha F_{2}+(1-\alpha) G_{2}\right\}$, with $0 \leq \alpha \leq 1$.
a) Consider a POVM with two outcomes and respective measurement operators $E$ and $\mathbb{1}-E$. Suppose that $E$ has an eigenvalue $\lambda$ such that $0<\lambda<1$. Show that the POVM is not extremal by expressing it as a nontrivial convex combination of two POVMs.
We expand $E$ in its eigenbasis and write

$$
\begin{aligned}
E & =\lambda_{0}|0\rangle\langle 0|+\sum_{i \neq 0} \lambda_{i}|i\rangle\langle i| \\
& =\lambda_{0}|0\rangle\langle 0|+\left(1-\lambda_{0}\right) \sum_{i \neq 0} \lambda_{i}|i\rangle\langle i|+\lambda_{0} \sum_{i \neq 0} \lambda_{i}|i\rangle\langle i| \\
& =\lambda_{0} \underbrace{\left(|0\rangle\langle 0|+\sum_{i \neq 0} \lambda_{i}|i\rangle\langle i|\right)}_{E_{1}}+\left(1-\lambda_{0}\right) \underbrace{\sum_{i \neq 0} \lambda_{i}|i\rangle\langle i|}_{E_{2}} .
\end{aligned}
$$

Hence we can write the $\operatorname{POVM}\{E, \mathbb{1}-E\}$ as a convex combination of the POVMs $\left\{E_{1}, \mathbb{1}-E_{1}\right\}$ and $\left\{E_{2}, \mathbb{1}-E_{2}\right\}$.
b) Suppose that $E$ is an orthogonal projector. Show that the POVM cannot be expressed as a nontrivial convex combination of POVMs.
Let $E$ be an orthogonal projector on some subspace $V \in \mathcal{H}$ and let $|\psi\rangle \in V^{T}$. If we assume that $E$ can be written as the convex combination of two positive operators then

$$
\begin{aligned}
0 & =\langle\psi| E|\psi\rangle \\
& =\lambda\langle\psi| E_{1}|\psi\rangle+(1-\lambda)\langle\psi| E_{2}|\psi\rangle
\end{aligned}
$$

However, both terms on the right hand side are non-negative, thus they must vanish identically. Since $|\psi\rangle$ was arbitrary we conclude that $E_{1}=E_{2}=E$.
c) What is the operational interpretation of an element-wise convex combination of POVMs?

The element-wise convex combination of elements an be interpreted as using two different measurement devices with probability $\alpha$ and $1-\alpha$, but not knowing which measurement device was used. In contrast to that, a simple convex concatenation of sets would be interpreted as using two different measurement devices with probability $\alpha$ and $1-\alpha$, but keeping track of which measurement device was used. This is because by definition of a POVM, each POVM element corresponds to a specific measurement outcome. If the two POVMs are concatenated, we can still uniquely relate the measurement outcome to the corresponding measurement device.
The tips have more details and examples.

## Exercise 7.3 Distance between channels

Consider two TPCPMs that define two channels,

$$
\begin{equation*}
\mathcal{E}, \mathcal{F}: \mathcal{H}_{A} \mapsto \mathcal{H}_{B} \tag{1}
\end{equation*}
$$

Let us call the naive distance between channels the following quantity:

$$
\begin{equation*}
d(\mathcal{E}, \mathcal{F})=\max _{\rho_{A}} \delta\left(\mathcal{E}\left(\rho_{A}\right), \mathcal{F}\left(\rho_{A}\right)\right) \tag{2}
\end{equation*}
$$

where $\delta(\rho, \sigma)$ is the trace distance between states. The stabilized distance between channels is defined as

$$
\begin{equation*}
d^{\diamond}(\mathcal{E}, \mathcal{F})=\max _{\rho_{A R}} \delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A R}\right), \mathcal{F} \otimes \mathcal{I}\left(\rho_{A R}\right)\right) \tag{3}
\end{equation*}
$$

where $\mathcal{I}$ is the identity map for operators that act on the reference system $\mathcal{H}_{R}$.
a) Consider the fully depolarising channel on one qubit, $\mathcal{E}_{p}(\rho)=p \frac{\mathbb{1}}{2}+(1-p) \rho$, that can be expressed in the operator-sum representation $\left(\mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}\right)$ with the operators $\sqrt{1-\frac{3 p}{4}} \mathbb{1}$ and $\frac{\sqrt{p}}{2} \sigma_{i}, \quad i=$ $x, y, z$.
Compute and compare $d\left(\mathcal{E}_{p}, \mathcal{I}\right)$ and $d^{\diamond}\left(\mathcal{E}_{p}, \mathcal{I}\right)$.
There was a typo in the original version of the exercise: the channel acts as $\mathcal{E}_{p}(\rho)=$ $p \frac{\mathbb{1}}{2}+(1-p) \rho$, and not as $\mathcal{E}_{p}(\rho)=p \mathbb{1}+(1-p) \rho$.
The distance $d\left(\mathcal{E}_{p}, \mathcal{I}\right)$ is given by

$$
\begin{aligned}
d(\mathcal{E}, \mathcal{I}) & =\max _{\rho} \delta(\mathcal{E}(\rho), \mathcal{I}(\rho)) \\
& =\max _{\rho} \frac{1}{2}\left|p \frac{\mathbb{1}}{2}+(1-p) \rho-\rho\right| \\
& =\max _{\rho} \frac{p}{2}\left|\frac{\mathbb{1}}{2}-\rho\right|
\end{aligned}
$$

which, if $\rho=\alpha|0\rangle\langle 0|+(1-\alpha)|1\rangle\langle 1|$ in its eigenbasis, is

$$
\begin{aligned}
d(\mathcal{E}, \mathcal{I}) & =\max _{\rho} \frac{p}{2}\left(\left|\frac{1}{2}-\alpha\right|+\left|\frac{1}{2}-1+\alpha\right|\right), \quad 0 \leq \alpha \leq 1 \\
& =\max _{\rho} p\left|\frac{1}{2}-\alpha\right|, \quad 0 \leq \alpha \leq 1 \\
& =\frac{p}{2}
\end{aligned}
$$

because $\left|\frac{1}{2}-\alpha\right|$ is maximised for pure states.
As for the diamond distance, we have

$$
\begin{aligned}
d^{\diamond}(\mathcal{E}, \mathcal{I}) & =\max _{\rho_{A R}} \delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A R}\right), \mathcal{I} \otimes \mathcal{I}\left(\rho_{A R}\right)\right) \\
& =\max _{\rho_{A R}} \delta\left(\left(\sqrt{1-\frac{3 p}{4}} \mathbb{1} \otimes \mathbb{1}\right) \rho_{A R}\left(\sqrt{1-\frac{3 p}{4}} \mathbb{1} \otimes \mathbb{1}\right)+\sum_{i}\left[\left(\frac{\sqrt{p}}{2} \sigma_{i} \otimes \mathbb{1}\right) \rho_{A R}\left(\frac{\sqrt{p}}{2} \sigma_{i} \otimes \mathbb{1}\right)\right], \rho_{A R}\right) \\
& =\max _{\rho_{A R}} \delta\left(\left(1-\frac{3 p}{4}\right) \rho_{A R}+\frac{p}{4} \sum_{i}\left[\left(\sigma_{i} \otimes \mathbb{1}\right) \rho_{A R}\left(\sigma_{i} \otimes \mathbb{1}\right)\right], \rho_{A R}\right) \\
& =\max _{\rho_{A R}} \frac{1}{2}\left|\left(1-\frac{3 p}{4}\right) \rho_{A R}+\frac{p}{4} \sum_{i}\left[\left(\sigma_{i} \otimes \mathbb{1}\right) \rho_{A R}\left(\sigma_{i} \otimes \mathbb{1}\right)\right]-\rho_{A R}\right| \\
& =\max _{\rho_{A R}} \frac{p}{8}\left|\sum_{i}\left[\left(\sigma_{i} \otimes \mathbb{1}\right) \rho_{A R}\left(\sigma_{i} \otimes \mathbb{1}\right)\right]-3 \rho_{A R}\right|
\end{aligned}
$$

For now, instead of maximizing that quantity over all states we will apply it to the fully entangled state $|\Psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+|11\rangle$,

$$
\begin{aligned}
d^{\diamond}(\mathcal{E}, \mathcal{I}) & \geq \frac{p}{8}\left|\sum _ { i } \left[\left(\sigma_{i} \otimes \mathbb{1}\right)|\Psi\rangle\left\langle\left.\Psi\right|_{A R}\left(\sigma_{i} \otimes \mathbb{1}\right)\right]-3|\Psi\rangle\left\langle\left.\Psi\right|_{A R}\right|\right.\right. \\
& =\frac{p}{8}\left|\left(\begin{array}{cccc}
-1 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 & 0 & 0 & -1
\end{array}\right)\right|=\frac{3 p}{2} .
\end{aligned}
$$

Recall that the non-stabilized distance was only $d(\mathcal{E}, \mathcal{I})=\frac{p}{2}$ - it is possible to observe a gap between the stabilized and the non-stabilize distances. It can be shown that in fact $d^{\diamond}(\mathcal{E}, \mathcal{I})=\frac{3 p}{2}$, i.e. the distance is optimized by a maximally entangled state.
b) Show that in general $d(\mathcal{E}, \mathcal{F}) \leq d^{\diamond}(\mathcal{E}, \mathcal{F})$.

We observe that, for any quantity $X$ evaluated on states of $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$,

$$
\max _{\rho_{A R}} X\left(\rho_{A R}\right) \geq \max _{\rho_{A}} X\left(\rho_{A} \otimes \frac{\mathbb{1}_{R}}{|R|}\right),
$$

as product states of the form $\rho_{A} \otimes \frac{\mathbb{1}_{R}}{|R|}$ are a subset of all quantum states of composed space $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$. Now we see that if we only consider these states, the two distances are equivalent, because

$$
\begin{align*}
\delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A} \otimes \frac{\mathbb{1}_{R}}{|R|}\right), \mathcal{F} \otimes \mathcal{I}\left(\rho_{A} \otimes \frac{\mathbb{1}_{R}}{|R|}\right)\right) & =\frac{1}{2} \operatorname{Tr}\left(\mathcal{E}\left(\rho_{A}\right) \otimes \frac{\mathbb{1}_{R}}{|R|}-\mathcal{F}\left(\rho_{A}\right) \otimes \frac{\mathbb{1}_{R}}{|R|}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\left[\mathcal{E}\left(\rho_{A}\right)-\mathcal{F}\left(\rho_{A}\right)\right] \otimes \frac{\mathbb{1}_{R}}{|R|}\right)  \tag{*}\\
& =\frac{1}{2} \operatorname{Tr}\left(\mathcal{E}\left(\rho_{A}\right)-\mathcal{F}\left(\rho_{A}\right)\right),
\end{align*}
$$

where ${ }^{(*)}$ stands because $A \otimes C+B \otimes C=[A+B] \otimes C$ and ${ }^{(* *)}$ because $\operatorname{Tr}\left(A \otimes \mathbb{1}_{R}\right)=|R| \operatorname{Tr}(A)$. Putting everything together, we have

$$
\begin{aligned}
d^{\diamond}(\mathcal{E}, \mathcal{F}) & =\max _{\rho_{A R} \in \mathcal{S}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{R}\right)} \delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A R}\right), \mathcal{F} \otimes \mathcal{I}\left(\rho_{A R}\right)\right) \\
& \geq \max _{\rho_{A R} \in \mathcal{W} \subset \mathcal{S}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{R}\right)} \delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A R}\right), \mathcal{F} \otimes \mathcal{I}\left(\rho_{A R}\right)\right) \\
& =\max _{\rho_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)} \delta\left(\mathcal{E} \otimes \mathcal{I}\left(\rho_{A} \otimes \frac{\mathbb{1}_{R}}{|R|}\right), \mathcal{F} \otimes \mathcal{I}\left(\rho_{A} \otimes \frac{\left.\mathbb{1}_{R}\right)}{|R|}\right)\right. \\
& =\max _{\rho_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)} \delta\left(\mathcal{E}\left(\rho_{A}\right), \mathcal{F}\left(\rho_{A}\right)\right) \\
& =d(\mathcal{E}, \mathcal{F}) .
\end{aligned}
$$

