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Exercise 7.1 Entropy properties

The von-Neumann entropy is defined as:

H(p) = —tr[plog p] = —Z)\k log \s,
k

Show the following properties of this quantity:

1.

otk N

H(p) =0 iff p is pure
H(UpU*) = H(p) for unitary U
H(p) < log |supp p|

(
(
H( prpr) = 3 PrH (pr)
H(Y, PxpPy) > H(p) for any complete set of projectors Py

Exercise 7.2 Geometry of Measurements

Let F = {Fy, F5} and G = {G1, G2} be two POVMs. We define an element-wise convex combination of
F and G as aF + (1 — a)G :={aF1 + (1 — a)G1,aF2 + (1 — a)Ga}, with 0 < a < 1.

a)

Consider a POVM with two outcomes and respective measurement operators E and 1 — E. Suppose
that E has an eigenvalue A such that 0 < A < 1. Show that the POVM is not extremal by expressing
it as a nontrivial conver combination of two POV Ms.

We expand F in its eigenbasis and write

B = 0 [0)(0] + 37 A i)l

i#0
=0 [0)(0] + (1= Xo) D Ai [i) (il + Ao Y Ai [i)(i]
i#0 i#0
=20 (J0)(0] + > X [i) () +(1 = Xo) D A i)l
i#£0 i#0
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Hence we can write the POVM {E,1 — E} as a convex combination of the POVMs {E;,1 — E;}
and {E27 1- EQ}

Suppose that E is an orthogonal projector. Show that the POVM cannot be expressed as a nontrivial
convex combination of POV Ms.

Let E be an orthogonal projector on some subspace V € H and let 1)) € VT. If we assume that F
can be written as the convex combination of two positive operators then

0= (Y|E[Y)
= My|E1[y) + (1 = A) (| Eal).

However, both terms on the right hand side are non-negative, thus they must vanish identically.
Since |¢) was arbitrary we conclude that E; = Fs = E.

What is the operational interpretation of an element-wise convex combination of POVMs?

The element-wise convex combination of elements an be interpreted as using two different measure-
ment devices with probability a and 1 — a;, but not knowing which measurement device was used.
In contrast to that, a simple convex concatenation of sets would be interpreted as using two differ-
ent measurement devices with probability o and 1 — «, but keeping track of which measurement
device was used. This is because by definition of a POVM, each POVM element corresponds to a
specific measurement outcome. If the two POVMs are concatenated, we can still uniquely relate
the measurement outcome to the corresponding measurement device.

The tips have more details and examples.



Exercise 7.3 Distance between channels
Consider two TPCPMs that define two channels,

E.F:Har Hp. (1)
Let us call the naive distance between channels the following quantity:

d(gaf) = Igixa(g(pA)v-F(pA))v (2)

where §(p, o) is the trace distance between states. The stabilized distance between channels is defined as

d°(&,F) =max6(E @ Z(par), F @ L(par)), (3)

PAR

where I is the identity map for operators that act on the reference system Hpg.

a) Consider the fully depolarising channel on one qubit, E,(p) = p% +(1—p)p, that can be expressed in
the operator-sum representation (E(p) =Y, EwpEy") with the operators /1 — ??Tp]l and gai, i=
x,Y, 2.

Compute and compare d(E,,T) and d°(E,,T).

There was a typo in the original version of the exercise: the channel acts as &,(p) =
p% + (1 —p)p, and not as E,(p) = pl + (1 —p)p.

The distance d(&p,7) is given by

d(€,7) = max4(£(p), Z(p))

which, if p = «]0)(0] + (1 — a)|1)(1] in its eigenbasis, is

1 1
d(E,I)maproz +'1+a>, 0<a<l1
p 2 \|2 2
=maxp|- —«af, 0<a<l1
p 2
_Pp
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because ‘% - a| is maximised for pure states.

As for the diamond distance, we have

d®(€,7) = maxd(E @ Z(par), L @ L(par))

PAR

= r;lAa;((S ((Ml ® ]l) PAR (Ml ® ]l> +zi: [ <\ffn ® ]1) PAR (\gﬁdi ® 1) }»PAR>

= max 9 ((1 — 3:f> PAR + g 21: [(ai @ 1)par(o; ® ]l)}apAR>

PAR
—max— (12 +BZ[(U-®1) (o—@n)]—
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PAR
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For now, instead of maximizing that quantity over all states we will apply it to the fully entangled
state |U) = f|00> + [11),

°(€.2) > £ |3 (008 DIW)(¥lar(oi © 1] = 310)(¥]ar

-1 0 0 -2
ol 0 10 0 || 3
8|l oo o1 0o [|T2
-2 0 0 -1
Recall that the non-stabilized distance was only d(£,Z) = £ — it is possible to observe a gap
between the stabilized and the non-stabilize distances. It can be shown that in fact d°(€,7) = 2p ,

i.e. the distance is optimized by a maximally entangled state.
b) Show that in general d(€,F) < d°(&,F).
We observe that, for any quantity X evaluated on states of H4 ® Hg,

1r
max X (pagr) > maXX <pA ® |R|>

PAR

as product states of the form p A®% are a subset of all quantum states of composed space HoAQHR.

Now we see that if we only consider these states, the two distances are equivalent, because

1gr 1 1r 1r
I(ERI(pa® |R|) JTFRZ(pa® \R|)) = §Tr (5(p,4)®|R —f(pA)®|R|>

=31 (o) - Foal e )

= ST (E(pa) ~ Flpa),

where *) stands because A ® C + B ® C = [A+ B] ® C and **) because Tr(A ® 1) = |R| Tr(A
Putting everything together, we have
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= max (5®I(p,4® R

pAES(Ha) |R|

- 5(E(pa), F
e (E(pa), Fpa))

= d(&, F).



