Exercise 10.1 Fidelity and Uhlmann's Theorem

Given two states ρ and σ on \mathcal{H}_A with fixed basis $\{|A\rangle_i\}_i$ and a reference Hilbert space \mathcal{H}_B with fixed basis $\{|B\rangle_i\}_i$, which is a copy of \mathcal{H}_A , Uhlmann's theorem claims that the fidelity can be written as

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|, \qquad (1)$$

where the maximum is over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ on $\mathcal{H}_A \otimes \mathcal{H}_B$. Let us introduce a state $|\psi\rangle$ as:

$$|\psi\rangle = (\sqrt{\rho} \otimes U_B) |\gamma\rangle, \qquad |\gamma\rangle = \sum_i |A\rangle_i \otimes |B\rangle_i,$$
(2)

where U_B is any unitary on \mathcal{H}_B .

a) Show that $|\psi\rangle$ is a purification of ρ .

We need to show that $|\psi\rangle$ is normalized and that it reduces to ρ when we trace out \mathcal{H}_B . The latter holds since

$$\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|) = \operatorname{Tr}_{B}\left(\sum_{i,j}\sqrt{\rho}|i\rangle\langle j|_{A}\sqrt{\rho}\otimes U_{B}|i\rangle\langle j|_{B}U_{B}^{\dagger}\right)$$
$$= \sum_{m}\sqrt{\rho}|m\rangle\langle m|_{A}\sqrt{\rho}$$
$$= \rho.$$

Normalization follows from $\text{Tr}|\psi\rangle\langle\psi| = \text{Tr}\rho = 1$.

b) Argue why every purification of ρ can be written in this form.

We have seen previously that all purifications are equivalent up to a unitary transformation on \mathcal{H}_B . The proposition directly follows from this, since U_B can be chosen arbitrarily.

c) Use the construction presented in the proof of Uhlmann's theorem to calculate the fidelity between $\sigma' = \mathbb{1}_2/2$ and $\rho' = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1|$ in the 2-dimensional Hilbert space with computational basis.

It is sufficient to maximize over one set of purifications. We set

$$\begin{aligned} |\psi\rangle &= (\sqrt{\rho'} \otimes V_B) |\gamma\rangle \\ |\phi\rangle &= \frac{1}{\sqrt{2}} (\mathbb{1}_A \otimes \mathbb{1}_B) |\gamma\rangle \quad = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle). \end{aligned}$$

It follows that

$$\begin{aligned} |\langle \psi | \phi \rangle| &= \frac{1}{\sqrt{2}} \left| \langle \gamma | \sqrt{\rho'} \otimes V_B | \gamma \rangle \right| \\ &= \frac{1}{\sqrt{2}} \left| \operatorname{Tr} \left(\sqrt{\rho'} \cdot V_B^T \right) \right| \\ &\leq \frac{1}{\sqrt{2}} \operatorname{Tr} \left(\left| \sqrt{\rho'} \right| \right) \\ &= \frac{1}{\sqrt{2}} \left(\sqrt{p} + \sqrt{1-p} \right). \end{aligned}$$

We used Lemma 9.5 and the result of Exercise 9.16 from Nielson/Chuang (pages 410-411) to derive this result.

This maximum can be achieved when V_B^T produces the polar decomposition of $\sqrt{\rho'}$ — which in this case is trivially $V_B = \mathbb{1}_B$. We obtain $F(\rho', \sigma') = (\sqrt{p} + \sqrt{1-p})/\sqrt{2}$.

d) Give an expression for the fidelity between any pure state and the completely mixed state l_n/n in the n-dimensional Hilbert space.

The general case follows immediately from the original definition:

$$F(\rho, \sigma) = \operatorname{Tr}\left(\sqrt{\sqrt{\sigma'}\rho'\sqrt{\sigma'}}\right)$$
$$= \frac{1}{\sqrt{n}}\operatorname{Tr}\left(\sqrt{\rho'}\right)$$
$$= \frac{1}{\sqrt{n}}.$$

The last equality follows from the fact that $\sqrt{\rho'} = \rho'$ for pure states.

Exercise 10.2 Resource inequalities

By assumption, messages to be sent are chosen uniformly at random and we have a perfect super dense coding. Hence I(X : X') = 2n, where X is classical input, and X' classical guess. Now by Holevo bound we know that mutual information between input X and Bob's quantum guess is greater than that between the classical input and a guess, hence: $I(X : B) \ge I(X : X')$ and $I(X : B) = H(B) - H(B|X) \le H(B) \le n(\alpha + \beta)$ Hence we have that $2n \le n(\alpha + \beta)$, hence $\alpha + \beta \ge 2$.