Exercise 10.1 Fidelity and Uhlmann's Theorem

Given two states ρ and σ on \mathcal{H}_{A} with fixed basis $\left\{|A\rangle_{i}\right\}_{i}$ and a reference Hilbert space \mathcal{H}_{B} with fixed basis $\left\{|B\rangle_{i}\right\}_{i}$, which is a copy of \mathcal{H}_{A}, Uhlmann's theorem claims that the fidelity can be written as

$$
\begin{equation*}
F(\rho, \sigma)=\max _{|\psi\rangle,|\phi\rangle}|\langle\psi \mid \phi\rangle| \tag{1}
\end{equation*}
$$

where the maximum is over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Let us introduce a state $|\psi\rangle$ as:

$$
\begin{equation*}
|\psi\rangle=\left(\sqrt{\rho} \otimes U_{B}\right)|\gamma\rangle, \quad|\gamma\rangle=\sum_{i}|A\rangle_{i} \otimes|B\rangle_{i} \tag{2}
\end{equation*}
$$

where U_{B} is any unitary on \mathcal{H}_{B}.
a) Show that $|\psi\rangle$ is a purification of ρ.

We need to show that $|\psi\rangle$ is normalized and that it reduces to ρ when we trace out \mathcal{H}_{B}. The latter holds since

$$
\begin{aligned}
\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|) & =\operatorname{Tr}_{B}\left(\sum_{i, j} \sqrt{\rho}|i\rangle\left\langle\left. j\right|_{A} \sqrt{\rho} \otimes U_{B} \mid i\right\rangle\left\langle\left. j\right|_{B} U_{B}^{\dagger}\right)\right. \\
& =\sum_{m} \sqrt{\rho}|m\rangle\left\langle\left. m\right|_{A} \sqrt{\rho}\right. \\
& =\rho
\end{aligned}
$$

Normalization follows from $\operatorname{Tr}|\psi\rangle\langle\psi|=\operatorname{Tr} \rho=1$.
b) Argue why every purification of ρ can be written in this form.

We have seen previously that all purifications are equivalent up to a unitary transformation on \mathcal{H}_{B}. The proposition directly follows from this, since U_{B} can be chosen arbitrarily.
c) Use the construction presented in the proof of Uhlmann's theorem to calculate the fidelity between $\sigma^{\prime}=\mathbb{1}_{2} / 2$ and $\rho^{\prime}=p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|$ in the 2 -dimensional Hilbert space with computational basis.

It is sufficient to maximize over one set of purifications. We set

$$
\begin{aligned}
|\psi\rangle & =\left(\sqrt{\rho^{\prime}} \otimes V_{B}\right)|\gamma\rangle \\
|\phi\rangle & =\frac{1}{\sqrt{2}}\left(\mathbb{1}_{A} \otimes \mathbb{1}_{B}\right)|\gamma\rangle \quad=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|\langle\psi \mid \phi\rangle| & \left.=\frac{1}{\sqrt{2}}\left|\langle\gamma| \sqrt{\rho^{\prime}} \otimes V_{B}\right| \gamma\right\rangle \mid \\
& =\frac{1}{\sqrt{2}}\left|\operatorname{Tr}\left(\sqrt{\rho^{\prime}} \cdot V_{B}^{T}\right)\right| \\
& \leq \frac{1}{\sqrt{2}} \operatorname{Tr}\left(\left|\sqrt{\rho^{\prime}}\right|\right) \\
& =\frac{1}{\sqrt{2}}(\sqrt{p}+\sqrt{1-p}) .
\end{aligned}
$$

We used Lemma 9.5 and the result of Exercise 9.16 from Nielson/Chuang (pages 410-411) to derive this result.
This maximum can be achieved when V_{B}^{T} produces the polar decomposition of $\sqrt{\rho^{\prime}}$ - which in this case is trivially $V_{B}=\mathbb{1}_{B}$. We obtain $F\left(\rho^{\prime}, \sigma^{\prime}\right)=(\sqrt{p}+\sqrt{1-p}) / \sqrt{2}$.
d) Give an expression for the fidelity between any pure state and the completely mixed state $\mathbb{1}_{n} / n$ in the n-dimensional Hilbert space.

The general case follows immediately from the original definition:

$$
\begin{aligned}
F(\rho, \sigma) & =\operatorname{Tr}\left(\sqrt{\sqrt{\sigma^{\prime}} \rho^{\prime} \sqrt{\sigma^{\prime}}}\right) \\
& =\frac{1}{\sqrt{n}} \operatorname{Tr}\left(\sqrt{\rho^{\prime}}\right) \\
& =\frac{1}{\sqrt{n}}
\end{aligned}
$$

The last equality follows from the fact that $\sqrt{\rho^{\prime}}=\rho^{\prime}$ for pure states.

Exercise 10.2 Resource inequalities

By assumption, messages to be sent are chosen uniformly at random and we have a perfect super dense coding. Hence $I\left(X: X^{\prime}\right)=2 n$, where X is classical input, and X^{\prime} classical guess. Now by Holevo bound we know that mutual information between input X and Bob's quantum guess is greater than that between the classical input and a guess, hence: $I(X: B) \geq I\left(X: X^{\prime}\right)$ and $I(X: B)=H(B)-H(B \mid X) \leq$ $H(B) \leq n(\alpha+\beta)$ Hence we have that $2 n \leq n(\alpha+\beta)$, hence $\alpha+\beta \geq 2$.

