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Exercise 9.1 Some properties of von Neumann entropy

We will now derive some properties of the von Neumann entropy that will be useful in later exercises. The
von Neumann entropy of a density operator ρ ∈ S(H) is defined as

H(ρ) = −Tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.
Given a composite system ρABC ∈ S(HA ⊗HB ⊗HC) and ρAB = TrC(ρABC) etc., we often write H(AB)
instead of H(ρAB) to denote the entropy of a subsystem.
The conditional von Neumann entropy may be defined in a composed system HA ⊗HB as

H(A|B) = H(AB)−H(B). (2)

The strong sub-additivity property of the von Neumann entropy proves very useful:

H(ABC) +H(B) ≤ H(AB) +H(BC). (3)

a) Prove the following general properties of the von Neumann entropy:

1. If ρAB is pure, then H(A) = H(B).

2. If two subsystem are independent, ρAB = ρA ⊗ ρB , then H(AB) = H(A) +H(B).

b) Consider a bipartite system that is classical on a subsystem Z, namely ρZA =
∑

z pz|z〉〈z|Z ⊗ ρzA for
some basis {|z〉Z}z of HZ . Show that:

1. The entropy of the global state is given by

H(AZ) = H(Z) +
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(ρzA).

2. Even if one has access to subsystem A the classical variable is not fully known,

H(Z|A) ≥ 0. (5)

Remark: Eq (6) holds in general only for classical Z. Consider, e.g., the Bell-States as an
immediate counterexample in the fully quantum case.

Exercise 9.2 Upper bound on von Neumann entropy

Given a state ρ ∈ S(H), show that
H(ρ) ≤ log |H|. (6)

Consider the state ρ̄ =
∫
UρU†dU , where the integral is over all unitaries U ∈ U(H) and dU is the Haar

measure. Find ρ̄ and use concavity of von Neumann entropy to show (7).
Hint: The Haar measure satisfies d(UV ) = d(V U) = dU , where V ∈ U(H) is any unitary.
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Exercise 9.3 Data Processing Inequality

Random variables X, Y , Z form a Markov chain X → Y → Z if the conditional distribution of Z depends
only on Y : p(z|x, y) = p(z|y). The goal in this exercise is to prove the data processing inequality, I(X :
Y ) ≥ I(X : Z) for X → Y → Z.

1. First show the chain rule for mutual information: I(X : Y Z) = I(X : Z) + I(X : Y |Z), which holds
for arbitrary X,Y, Z. The conditional mutual information is defined as

I(X : Y |Z) =
∑
z

p(z)I(X : Y |Z = z) =
∑
z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.

2. Next show that in a Markov chain X → Y → Z, X and Z are conditionally independent given Y ; that
is, p(x, z|y) = p(x|y)p(z|y).

3. By expanding the mutual information I(X : Y Z) in two different ways, prove the data processing in
equality.
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