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Exercise 8.1 Fano’s Inequality

Given random variables X and Y , how well can we predict X given Y ? Fano’s inequality bounds the
probability of error in terms of the conditional entropy H(X|Y ). The goal of this exercise is to prove the
inequality

Perror ≥
H(X|Y )− 1

log |X|
.

1. Representing the guess of X by the random variable X̂, which is some function, possibly random, of
Y , show that H(X|X̂) ≥ H(X|Y ).

2. Consider the indicator random variable E which is 1 if X̂ 6= X and zero otherwise. Using the chain
rule we can express the conditional entropy H(E,X|X̂) in two ways:

H(E,X|X̂) = H(E|X, X̂) +H(X|X̂) = H(X|E, X̂) +H(E|X̂)

Calculate each of these four expressions and complete the proof of the Fano inequality. Hints: For
H(E|X̂) use the fact that conditioning reduces entropy: H(E|X̂) ≤ H(E). For H(X|E, X̂) consider
the cases E = 0, 1 individually.

Exercise 8.2 Quantum mutual information

Consider a composed system A⊗B ⊗ C with a shared state ρABC .
In a first step we ignore system C and consider only A ⊗ B (and the reduced state ρAB = TrC(ρABC)).
One way of quantifying the correlations between A and B is to use the mutual information between them,
defined as

I(A : B) = H(A) +H(B)−H(AB) (1)

= H(A)−H(A|B). (2)

If we have access to C, we can define a conditional version of the mutual information between A and B as

I(A : B|C) = H(A|C) +H(B|C)−H(AB|C) (3)

= H(A|C)−H(A|BC). (4)

(a) Assume a system formed by two qubits A and B that share a state ρAB . Consider bases {|0〉A, |1〉A}
and {|0〉B , |1〉B} for the subsystems of each qubit.

1. Check that the mutual information of the fully entangled state , |Ψ+〉 = 1√
2

(|00〉+ |11〉), is maxi-

mal.

2. See that for classically correlated states, ρAB = p|0〉〈0|A⊗σ0
B+(1−p)|1〉〈1|A⊗σ1

B (where 0 ≤ p ≤ 1),
the mutual information cannot be greater than one.

(b) Consider the so-called cat state shared by four qubits, A⊗B ⊗ C ⊗D, that is defined as

|,〉 =
1√
2

(|0000〉+ |1111〉) . (5)

Check how the mutual information between qubits A and B changes with the knowledge of the remaining
qubits, namely:
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1. I(A : B) = 1.

2. I(A : B|C) = 0.

3. I(A : B|CD) = 1.

Exercise 8.3 Mutual Information in a weather bet

After losing a bet with your Scottish grandfather about whether listening to the radio forecast would help
you predict the weather, you have been studying information theory compulsively to try to come up with a
clever argument that would make him stop mocking you. You are convinced that even though you did not
guess correctly more often than he, you somehow have more information about the weather than he does.

a) The mutual information between two random variables is given by

I(X : Y )P = H(X)P −H(X|Y )P ,

where H(X) is the Shannon entropy of X,

H(X)P = 〈− logPX(x)〉x = −
∑
x

PX(x) logPX(x)

and H(X|Y ) is the conditional Shannon entropy of X given Y ,

H(X|Y )P = 〈− logPX|Y=y(x)〉x,y = −
∑
x,y

PXY (x, y) logPX|Y=y(x) = H(XY )P −H(Y )P .

Compute the mutual information between your guess and the actual weather, and do the same for
your grandfather. Remember that your grandfather knows it rains on 80% of the days. You also listen
to the forecst, knowing it is right 80% of the time and always correct when it predicts rain.

b) You devise the following betting game to prove that your extra information is useful. You and your
grandfather start with £1. Every night each of you can bet part of your money on the next day’s
weather. If your guess was right you double the amount you bet (e.g., in the first night your grandfather
bets £0.2 on rain; if it rains he ends up with £1.2, otherwise with £0.8). Any winnings can be used in
future rounds.

What would your strategy be? And your grandfather’s? After N days, what is the expected gain for
each of you? And what is the probability that he finishes with more money than you?
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