Exercise 3.1 Reduced density matrix - partial trace

Partial trace is an important concept in the quantum mechanical treatment of multi-partite systems, and is the natural generalisation of the concept of marginal distributions in classical probability theory.

Assume two Hilbert spaces \mathcal{H}_A and \mathcal{H}_B with orthonormal bases $\{\xi_j : j = 1, ..., m\}$ and $\{\eta_k : k = 1, ..., n\}$, respectively, and vector $|\Psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$ given by

$$|\Psi\rangle_{AB} = \sum_{j,k} C_{j,k} |\xi_j\rangle |\eta_k\rangle$$

Reduced density matrix of a system A is defined via a partial trace on the whole system:

$$\rho_A = \operatorname{Tr}_B(\rho_{AB}) = \sum_{k=1}^n \langle \eta_k | \rho_{AB} | \eta_k \rangle \tag{1}$$

a) Show that the reduced state on a system A can be written as:

$$\rho_A = \sum_{j,k,r} C_{jk} \overline{C}_{rk} |\xi_j\rangle \langle \xi_r$$

and deduce that the matrix of ρ_A with respect to the basis $\{\xi_j\}$ can be written as CC^{\dagger} , where C is the $m \times n$ matrix with entries C_{jk} , and C^{\dagger} its transpose. Also show that the matrix of ρ_B is $C^{\dagger}C$. Deduce that ρ_A and ρ_B must have same non-negative eigenvalues.

- b) Show that ρ_A is a valid density operator by proving it is:
 - 1) Hermitian: $\rho_A = \rho_A^{\dagger}$.
 - 2) Positive: $\rho_A \ge 0$.
 - 3) Normalised: $Tr(\rho_A) = 1$.
- c) Find ρ_A and ρ_B in the case when H_A and H_B have orthonormal bases $\{v_0, v_1, v_2\}$ and $\{\omega_1, \omega_2\}$, respectively (hence m = 3, n = 2), and the (unnormalised) state ψ is given by

$$|\Psi\rangle_{AB} = |v_0\rangle(|\omega_1\rangle - |\omega_2\rangle) + |v_1\rangle|\omega_1\rangle + |v_2\rangle|\omega_2\rangle$$

Show that ρ_A and ρ_B have the same non-zero eigenvalues.

d) Calculate the reduced density matrix of the system A in the Bell state

$$|\Psi\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right).$$

e) Consider a classical probability distribution P_{XY} with marginals P_X and P_Y .

1) Calculate the marginal distribution P_X for

$$P_{XY}(x,y) = \begin{cases} 0.5 & \text{for } (x,y) = (0,0), \\ 0.5 & \text{for } (x,y) = (1,1), \\ 0 & \text{else}, \end{cases}$$

with alphabets $\mathcal{X}, \mathcal{Y} = \{0, 1\}.$

- 2) How can we represent P_{XY} in form of a quantum state?
- 3) Calculate the partial trace of P_{XY} in its quantum representation.

f) Can you think of an experiment to distinguish the bipartite states of parts d) and e?

Exercise 3.2 State Distinguishability

One way to understand the cryptographic abilities of quantum mechanics is from the fact that non-orthogonal states cannot be perfectly distinguished.

a) In the course of a quantum key distribution protocol, suppose that Alice randomly chooses one of the following two states and transmits it to Bob:

$$|\phi_0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad \text{or} \quad |\phi_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle).$$

Eve intercepts the qubit and performs a measurement to identify the state. The measurement consists of the orthogonal states $|\psi_0\rangle$ and $|\psi_1\rangle$, and Eve guesses the transmitted state was $|\phi_0\rangle$ when she obtains the outcome $|\psi_0\rangle$, and similar for $|\phi_1\rangle$. What is the probability that Eve correctly guesses the state, averaged over Alice's choice of the state for a given measurement? What is the optimal measurement Eve should make (choice of $|\psi_0\rangle$), and what is the resulting optimal guessing probability?

b) Now suppose Alice randomly chooses between two states separated by an angle θ on the Bloch sphere. What is the measurement which optimizes the guessing probability? What is the resulting probability of correctly identifying the state?

Exercise 3.3 One-qubit POVM

Consider a single qubit and unit vectors $\vec{n}_k, k \in \{1, ..., n\}$ such that

$$\sum_k \lambda_k \vec{n_k} = 0$$

for $\lambda_k \in (0,1)$ and $\sum_k \lambda_k = 1$. Show that a measurement on a qubit defined by

$$F_k = 2\lambda_k |\uparrow_{\vec{n_k}}\rangle \langle\uparrow_{\vec{n_k}}|$$

is a POVM. Explain cases N = 2 and N = 3, and connect them to the Bloch sphere representation. For the case N = 3 think of suitable vectors $\vec{n_k}$ and extend above POVM measurement on a qubit to the orthogonal measurement on a qutrit in a suitable basis (*Neumark's theorem is a generalisation* of this fact).