Exercise 2.1 Bloch sphere

In this exercise we will see how we may represent qubit states as points in a three-dimensional unit ball. A qubit is a two level system, whose Hilbert space is equivalent to \mathbb{C}^{2}. The Pauli matrices together with the identity form a basis for 2×2 Hermitian matrices,

$$
\mathcal{B}=\left\{\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathbb{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

where the matrices are represented in basis $\{|0\rangle,|1\rangle\}$.
We will see that density operators can always be expressed as

$$
\begin{equation*}
\rho=\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma}) \tag{2}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right),|\vec{r}| \leq 1$ is the so-called Bloch vector, that gives us the position of a point in an unit ball. The surface of that ball is usually known as the Bloch sphere.
a) Show that the Pauli matrices respect following commutation relations:

$$
\begin{align*}
{\left[\sigma_{i}, \sigma_{j}\right] } & :=\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i} \tag{3}\\
\left\{\sigma_{i}, \sigma_{j}\right\} & :=\varepsilon_{i j k} \sigma_{k} \sigma_{j}+\sigma_{j} \sigma_{i} \tag{4}
\end{align*}=2 \delta_{i j} \mathbb{1} .
$$

b) Show that the operator ρ defined in (2) is a valid density operator for any vector \vec{r} with $|\vec{r}| \leq 1$ by proving it fulfils the following properties:

1. Hermiticity: $\rho=\rho^{\dagger}$.
2. Positivity: $\rho \geq 0$.
3. Normalisation: $\operatorname{Tr}(\rho)=1$.
c) Now do the converse: show that any two-level density operator may be written as (2).
d) Check that the surface of the ball is formed by all pure states.
e) Using (2) :
4. Find and draw the following vectors inside/on the Bloch sphere:

- the fully mixed state
- pure states that form the bases $\{|0\rangle,|1\rangle\},\{|+\rangle,|-\rangle\}$ and $\{|\circlearrowleft\rangle,|\circlearrowright\rangle\}$. Hint: Use $| \pm\rangle=(|0\rangle \pm|1\rangle) / \sqrt{2}$ and $|\circlearrowleft / \circlearrowright\rangle=(|0\rangle \pm i|1\rangle) / \sqrt{2}$.

2. Find and diagonalise the states represented by Bloch vectors $\vec{r}_{1}=\left(\frac{1}{2}, 0,0\right)$ and $\vec{r}_{2}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$. Do they represent pure or mixed states?

Exercise 2.2 The Hadamard Gate

An important qubit transformation in quantum information theory is the Hadamard gate. In the basis of $\sigma_{\hat{z}}$, it takes the form

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{5}\\
1 & -1
\end{array}\right)
$$

That is to say, if $|0\rangle$ and $|1\rangle$ are the $\sigma_{\hat{z}}$ eigenstates, corresponding to eigenvalues +1 and -1 , respectively, then:

$$
\begin{equation*}
H=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1|) \tag{6}
\end{equation*}
$$

a) Show that H is unitary.
b) What are the eigenvalues and eigenvectors of H ?
c) What form does H take in the basis of $\sigma_{\hat{x}}$? $\sigma_{\hat{y}}$?
d) Give a geometric interpretation of the action of H in terms of the Bloch sphere.

