Phase Transitions and Critical Phenomena

Exercise Sheet 13

HS 14
V. B. Geshkenbein

Problem 1 Vertex renormalization of the n-component model

Consider again the n-component model from the lecture with a quartic term

$$
\begin{equation*}
u \int d^{d} \boldsymbol{r} F_{i j k \ell} \phi_{i}(\boldsymbol{r}) \phi_{j}(\boldsymbol{r}) \phi_{k}(\boldsymbol{r}) \phi_{\ell}(\boldsymbol{r}) \tag{1}
\end{equation*}
$$

where $F_{i j k \ell}$ is the completely symmetric tensor of rank four,

$$
\begin{equation*}
F_{i j k \ell}=\frac{1}{3}\left(\delta_{i j} \delta_{k \ell}+\delta_{i k} \delta_{j \ell}+\delta_{i \ell} \delta_{j, k}\right) \tag{2}
\end{equation*}
$$

Prove the identity

$$
\begin{equation*}
\sum_{k \ell}\left(F_{a b k \ell} F_{k \ell c d}+F_{a c k \ell} F_{k \ell b d}+F_{a d k \ell} F_{k \ell b c}\right)=\frac{n+8}{3} F_{a b c d} \tag{3}
\end{equation*}
$$

that is needed to find the RG equation for the quartic coefficient u.

Problem 2ε-expansion of the n-component model

Use identity (3) for the vertex renormalization and identity

$$
\begin{equation*}
\sum_{k} F_{i j k k}=\frac{n+2}{3} \delta_{i j} \tag{4}
\end{equation*}
$$

for the propagator renormalization to arrive at the following RG equations for the n component model,

$$
\begin{align*}
& \frac{d u}{d \xi}=-\frac{n+8}{9} u^{2} \tag{5}\\
& \frac{d \tau}{d \xi}=-\frac{n+2}{9} u \tau \tag{6}
\end{align*}
$$

Use these to derive the critical exponent γ in $4-\varepsilon$ dimensions to the linear order in ε.

