Phase Transitions and Critical Phenomena

Exercise Sheet 7

HS 14 V. B. Geshkenbein

Problem 1 Gaussian fixed point

Consider the Landau model (the ϕ^4 -theory)

$$H = \int d^{d}\mathbf{r} \left(t\phi^{2} + \frac{c}{2} \left(\mathbf{\nabla} \phi \right)^{2} + u\phi^{4} \right)$$
 (1)

and its rescaling by $\mathbf{r} \mapsto b\mathbf{r}'$ and $\phi \mapsto b^{-x}\phi'$ with x = (d-2)/2. This produces the Gaussian fixed point (0, c, 0).

Show that near the Gaussian fixed point, magnetic field h transforms as

$$h' = hb^{\frac{d}{2}+1}. (2)$$