ETH	Exercise Sheet 4	HS 14
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		V. B. Geshkenbein

Problem 1 Correlation function G(r) in d = 3

The correlation function of order parameter $\eta(\mathbf{r})$ is defined as

$$G(\boldsymbol{r} - \boldsymbol{r}') = \langle \eta(\boldsymbol{r})\eta(\boldsymbol{r}') \rangle - \langle \eta(\boldsymbol{r}) \rangle \langle \eta(\boldsymbol{r}') \rangle$$
(1)

where $\langle \ldots \rangle$ denotes the statistical average. In the lecture we derived that the Fourier transform of the correlation function is given by

$$G(\mathbf{k}) = \frac{T}{\gamma \left(\mathbf{k}^2 + \xi^{-2} \right)} \tag{2}$$

where $\xi \propto |T - T_c|^{-\nu}$ is the correlation length. Use result (2) to derive the real space correlation function $G(\mathbf{r})$ in d = 3.

Problem 2 Superconducting grain

Consider a superconducting grain of size L that is much smaller than the correlation length ξ . Under such circumstances we can drop the gradient term in the free energy and the partition function of the system is

$$Z = \int d\psi d\psi^* \exp\left[-\beta \left(at |\psi|^2 + b |\psi|^4\right)\right].$$
(3)

Use this expression to find the specific heat of the grain around the phase transition.