ETH	Evencia Sheet 2	HS 14
Eidgenössische Technische Hochschule Zürich	Exercise Sheet 5	V B Cochlephoin
Swiss Federal Institute of Technology Zurich		V. D. Gesnkenben

Problem 1 Two-component superconductivity in tetragonal crystals

Tetragonal crystals may exhibit superconductivity with a two component order parameter

$$\eta = (\eta_1, \eta_2). \tag{1}$$

The Landau free energy of such a superconducting order parameter is

$$F = \alpha \eta \cdot \eta^* + \frac{\beta_1}{2} \left(\eta \cdot \eta^* \right)^2 + \frac{\beta_2}{2} \left| \eta \cdot \eta \right|^2 + \frac{\beta_3}{2} \left(|\eta_1|^4 + |\eta_2|^4 \right).$$
(2)

Find all possible superconducting phases as function of the coefficients $\beta_1, \beta_2, \beta_3$.

Problem 2 Susceptibility near the Néel temperature

Consider the Landau free energy of spins on a bipartite lattice with external field H

$$F = \frac{a}{2} \left(M_1^2 + M_2^2 \right) + A \boldsymbol{M}_1 \cdot \boldsymbol{M}_2 + \frac{b}{4} \left(M_1^4 + M_2^4 \right) - \boldsymbol{H} \cdot \boldsymbol{M}$$
(3)

where M_1, M_2 are magnetizations of spins on the two sublattices and $M = M_1 + M_2$ is their sum.

We argued in the lecture that close to the Néel temperature $T_{\rm N}$

$$A = a - \alpha \left(T - T_{\rm N} \right) \tag{4}$$

Find the magnetic susceptibilities $\chi_{\parallel}, \chi_{\perp}$ of the system near the Néel temperature for a field oriented parallel and perpendicular to the order parameter.