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Inertial coordinate system: A coordinate system in which free particles (in absence of forces) satisfy the
equation of motion

ẍ = 0 (1)

is called inertial coordinate system. In particular: two inertial coordinate systems move with constant velocity to
each other.

Postulates of SR:

1. The laws of nature are independent of the choice of coordinate system. In particular: any formula describing
them has to have the same form in all inertial systems.

2. The speed of light is the same in all coordinate systems

Events Events in R1+3 space-time are 4-vectors

X =
(
X0, X1, X2, X3

)
=
(
ct, x, y, z︸ ︷︷ ︸

~x

)
. (2)

One refers to components of a 4-vector by Xµ, µ ∈ {0, 1, 2, 3} . Often one is interested in the space-time separation
of two events ∆X = X1 −X2.

Metric We define the metric

(ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3)

The metric allows to quantify space-time ‘distance2’

(∆X)
2

:= ηµν∆Xµ∆Xν = (c∆t)
2 − (∆~x)

2 (4)

Since the metric is indefinite there are three cases. We define:

• ∆X is space-like if (∆X)
2
< 0

• ∆X is light-like if (∆X)
2

= 0

• ∆X is time-like if (∆X)
2
> 0

∗based on the relevant chapters of the lecture notes [Graf, Renner]
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Transformation between inertial frames 1st postulate⇒ Free particle move in all inertial coordinate systems
on a straight line ⇒ Xµ 7→ AµνX

ν + aµ. Coordinate differences transform then as

∆Xµ 7→ Aµν∆Xν . (5)

2nd postulate ⇒ light-like distances have to be light-like in all coordinate systems: ∆XνAµνηµσA
σ
ρ∆X

ρ = 0 for
∆X light-like. One can show that this requirement leads to

AµνηµσA
σ
ρ = α2ηνρ, α ∈ R. (6)

We can write A = αΛ which defines an element Λ in the Lorentz group L:

Definition: The Lorentz group L is defined by the linear transformations Λ that leave the metric invariant

ΛµνηµσΛσρ = ηνρ. (7)

Properties: Taking the determinant and the ν = 0, µ = 0 component of (7) leads to

(det(L))
2

= 1 (8)

1 = Λµ0ηµσΛσ0 = Λ0
0Λ0

0 −
3∑
i=1

Λi0Λi0 ⇒ Λ0
0 ≥ 1 ∨ Λ0

0 ≤ −1 (9)

Thus the Lorentz group has four connected components:

Examples for each component are the reflections

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



PT =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The transformations L↑+ =
{

Λ ∈ L|det Λ = 1, Λ0
0 ≥ 1

}
form a sub group: the proper orthochronous

Lorentz-transformations. Any general element in L can be written as an element in L↑+ times one of the
reflections.

Examples:

• Spatial rotations

Λ(R) :=


1 0 0 0
0
0 R
0

 , R ∈ SO(3)
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• Boost in x1-direction

Λ(v) :=


γ − vcγ 0 0
−vcγ γ 0 0

0 0 1 0
0 0 0 1

 , γ =
1√

1− v2

c2

≥ 1

Transforms coordinates from the reference frame O to the reference frame O′, with aligned spatial axes,
moving with constant velocity v in x1-direction.

A general element Λ ∈ L↑+ can be written as Λ = Λ(R1)Λ(v)Λ(R2).

Example Let us write down the boost for each component
c∆t′

∆x′

∆y′

∆z′

 =


γ −vcγ 0 0
−vcγ γ 0 0

0 0 1 0
0 0 0 1



c∆t
∆x
∆y
∆z

 =


γ
(
c∆t− v

c∆x
)

γ (−v∆t+ ∆x)
∆y
∆z



∆t′ = γ
(

∆t− v

c2
∆x
)
, (10)

∆x′ = γ (−v∆t+ ∆x) . (11)

note: The coordinates perpendicular to ~v are not affect by the boost.

Time dilation: Let us consider a clock in its rest frame O. We consider the time difference ∆t between two
ticks, since the clock does not move: ∆x = 0. In the frame O′ of some observer passing the clock with velocity v
we find

∆t′ = γ∆t ≥ ∆t (12)
∆x′ = γ (−v∆t) (13)

The passing observer measures with a clock of his reference frame O′ a longer time interval ∆t′ between two ticks
of the clock in O than the clock in O itself. Note that seen from O′ the clock in O has moved between the two ticks
by ∆x′.

• The time interval ∆t measured by a clock at a fixed location is called proper time. In any other reference
frame ∆t′ ≥ ∆t.

Simultaneity: Let us consider two events X1/2 =
(
ct1/2, ~x1/2

)
, e.g. two flashes, that happen at the same time

in O, i.e. ∆t = t1 − t2 = 0. In a reference frame O′ moving passed with velocity v we observe

∆t′ = γ
(
− v

c2
∆x
)
, (14)

∆x′ = γ (∆x) . (15)

Thus the two events do not happen at the same time in O′, ∆t′ 6= 0. Simultaneity depends on the reference frame.
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Length contraction: Let us consider an object of length ∆x = l in its rest frame O. In order to determine
the length of an object we determine the coordinates of its endpoints X1/2 =

(
ct1/2, ~x1/2

)
. In the rest frame of the

object it doesn’t matter at what time we measure the endpoints, since the object is at rest. However in order to
measure the length in a reference frame O′ passing with v, we have to determine the end points X ′1/2 at the same
time, i.e. ∆t′ = 0, since the object is moving w.r.t O′.

0 = γ
(

∆t− v

c2
∆x
)

l′ = ∆x′ = γ

(
1− v2

c2

)
∆x

⇒ l′ =
l

γ
≤ l (16)

Hence the object appears shorter in O′.

• The length l of an object measured in a reference frame O where the object is at rest is caller proper length.
In any other reference frame O′, l′ ≤ l.

Addition of velocities Consider an object moving with velocity u′ measured in coordinate system O′, which
is moving with velocity v with respect to coordinate system O. What is the velocity u of the object measured in
O?

In O′ the object covers a distance dx′ = u′ dt′ in a time interval dt′. Transformed to the coordinate system O
(now we have to use Λ(v)−1 = Λ(−v) ) we get

dt = γ
(
dt′ +

v

c2
dx′
)
, (17)

dx = γ (vdt′ + dx′) . (18)

Hence

u =
dx

dt
=

(
v + dx′

dt′

)
(
1 + v

c2
dx′

dt′

) =
(v + u′)(
1 + vu′

c2

) ≤ (v + u′) . (19)

In particular
u′, v ≤ c ⇒ u ≤ c. (20)

World-line and Action A moving point particle traces out a line in Minkowski space X(t) =
(
ct, ~x(t)

)
called

world-line. We would like to write down an action A that is both reparametrization- and Lorentz invariant:

A[X] ∝
ˆ √

ηµνẊµ(t)Ẋν(t)dt =

ˆ √
c2 − v2dt = c

ˆ
1

γ
dt = c

ˆ
dτ (21)

where τ is the proper time of the particle, i.e. the time measured in its rest frame. The units of an action should
be [energy]× [time]. Therefore the proportionality constant has to have units [mass]× [velocity]. Furthermore the
constant has to be a Lorentz invariant quantity. The obvious choice is mc, where m is the Lorentz invariant rest
mass of the particle. Thus the complete action reads

A =

ˆ
Ldt, L = mc

√
ηµνẊµ(t)Ẋν(t). (22)
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Energy and momentum conservation As in classical mechanics, the canonical momentum and the equations
of motion are given by

pµ =
∂L

∂Ẋµ

=
mcẊµ√
ηµνẊµẊν

= γm Ẋµ︸︷︷︸
(c, ~v(t))

,
d

dt

∂L

∂Ẋµ

− ∂L

∂Xµ︸ ︷︷ ︸
=0

=
dpµ

dt
= 0. (23)

In fact the equations of motion are stating that energy and momentum are conserved for a free particle. The
conserved quantity associated with time translation invariance is the energy. The p0 component of the momentum
is the conserved quantity associated to invariance of x0 = ct. Therefore we interpret

E = cp0 =
mc2√
1− v2

c2

(24)

as relativistic energy. In the limit v � c

E ≈ mc2 +
1

2
mv2 + · · · (25)

we recover the classical expression for the kinetic energy 1
2mv

2, but also a new term mc2, which is also present
when the particle is at rest. We interpret the latter as the rest energy of the particle.

4-velocity and 4- momentum Instead of parameterizing the world-line X(t) = (ct, ~x(t)) with the time of the
observing reference frame, we can use the proper time τ of the particle to parameterize the world-line: X(τ) :=(
ct(τ), ~x(t(τ))

)
. We define the 4-velocity as

uµ =
dXµ

dτ
. (26)

The 4-momentum found above can then be written in terms of the 4-velocity as

pµ = muµ. (27)

They transform as vectors for orthochronous Lorentz transformation. For general Lorentz transformations they pick
up the sign sgn(Λ0

0), and hence transform as pseudo vectors (due to the choice of the positive root in the definition

of the proper time dτ =
√

1− v2

c2 dt).
In the rest-frame O′ of the particle we have u′ = (c, 0, 0, 0), thus ηµνu′µu′ν = c2. Since the metric is Lorentz

invariant, uµuµ = c2 in any reference frame and similarly pµpµ = m2c2. Hence using E = cp0(
p0
)2 − ~p2 = m2c2,

E =
√
m2c4 + ~p2c2. (28)

The last equation is also valid for massless particles. Then E = c|~p| and the 4-momentum
(
|~p|, ~p

)
.

Example: Decay of particle Let a particle of rest mass M decay symmetrically into two particles, each of rest
mass m. In the rest frame of the initial particle we have the 4-momentum Pµ =

(
cM, 0, 0, 0

)
. After the decay

the two particles have 4-momentum pµ± = γ
(
cm, ±m~v

)
due to conservation of the P i, i ∈ {1, 2, 3} components of

the 4-momentum . The conservation of P 0 yields

cM = 2γcm, ⇒ 2m =
M

γ
< M. (29)

The total mass is not conserved, some of the rest energy was transformed into kinetic energy: for each particle

Ekin = E −mc2 = 1
2Mc2

(
1−

√
1− v2

c2

)
.
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Electrodynamics There are two unit systems that are frequently used in electrodynamics, SI and cgs. We give
the relevant expressions in both systems. The electromagnetic fields ~E and ~B can be described in terms of the
scalar potential φ and the vector potential ~A. In order to find a relativistic covariant description of electrodynamics
we combine both potentials to a 4-potential and define it as 1-form

SI : A =
(
A0, A1, A2, A3

)
=
(
φ
c , − ~A

)
, cgs : A =

(
φ,− ~A

)
. (30)

The electromagnetic field tensor is then defined as the exterior derivative d of A. Those who are unfamiliar with
exterior derivative may content themselves with the explicit definition

F = dA, Fµν = ∂µAν − ∂νAµ. (31)

In components, the field tensor takes following form

SI : (Fµν) =


0 Ex

c
Ey

c
Ez

c

−Ex

c 0 −Bz By
−Ey

c Bz 0 −Bx
−Ez

c −By Bx 0

 , cgs : (Fµν) =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 . (32)

Electromagnetic fields are created due to the presence of electric charge density ρ and current density ~j. The charge
density ρ0 measured in the rest frame of the charges is perceived in a frame moving with velocity ~v, as

ρ = γρ0. (33)

This follows from the fact that the volume element is length contracted in one direction. Given the charge density
ρ the current density is as usual

~j = ρ~v. (34)

We also need to express the sources in a covariant way. We define the 4-current density

jµ =
(
cρ, ~j

)
= ρ0u

µ. (35)

The continuity equation takes the very simple and Lorentz invariant form

∂µj
µ = 0 (36)

since explicitly ∂µjµ = ∂ρ
∂t + div~j.

Maxwell equations The inhomogeneous Maxwell equation are expressed as

SI : ∂µF
µν = µ0j

ν . cgs : ∂µF
µν =

jν

c
. (37)

The homogeneous Maxwell equations follow immediately from the very definition of the field tensor and the property
of the exterior derivative d ◦ d = 0. Again, those unfamiliar with the exterior derivative may be satisfied with the
explicit expression.

dF = d (dA) = 0, (dF )µνρ = ∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (38)

Example: inhom. M. eq.ν = 1 We do this example only in SI units. First we need to lift the indices of the
field tensor

Fµν = ηµρηνσFρσ =


0 −Ex

c −Ey

c −Ez

c
Ex

c 0 −Bz By
Ey

c Bz 0 −Bx
Ez

c −By Bx 0

 , (39)

where (ηµν) = (ηµν)
−1 which happens to have the same matrix entries as (ηµν). Now we write down the inhomo-

geneous Maxwell equation for ν = 1

∂µF
µ1 = −∂0

Ex
c

+ ∂2Bz − ∂3By = − 1

c2
∂

∂t
Ex +

(
∇× ~B

)
x

= µ0jx. (40)
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Example: hom. M. eq.µ = 1, ν = 2, ρ = 3

−∂1Bx − ∂2By − ∂3Bz = −div ~B = 0 (41)

Action Finally we mention that the Maxwell equations can be derived form the action
´
L(A, ∂A)d4x, where the

integral goes over all of space-time, with the Lagrangian density

SI : L = − 1

4µ0
FµνF

µν −Aµjµ, cgs : L = − 1

16π
FµνF

µν − 1

c
Aµj

µ. (42)
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