Short Introduction To Special Relativity Lecture Notes*

Reimar Hecht

October 28, 2014

Inertial coordinate system: A coordinate system in which free particles (in absence of forces) satisfy the equation of motion

$$
\begin{equation*}
\ddot{x}=0 \tag{1}
\end{equation*}
$$

is called inertial coordinate system. In particular: two inertial coordinate systems move with constant velocity to each other.

Postulates of SR:

1. The laws of nature are independent of the choice of coordinate system. In particular: any formula describing them has to have the same form in all inertial systems.
2. The speed of light is the same in all coordinate systems

Events Events in \mathbb{R}^{1+3} space-time are 4 -vectors

$$
X=\left(\begin{array}{ll}
X^{0}, & \left.X^{1}, \quad X^{2}, \quad X^{3}\right)=(c t, \underbrace{x, y, z}_{\vec{x}}) \tag{2}
\end{array}\right.
$$

One refers to components of a 4 -vector by $X^{\mu}, \mu \in\{0,1,2,3\}$. Often one is interested in the space-time separation of two events $\Delta X=X_{1}-X_{2}$.

Metric We define the metric

$$
\left(\eta_{\mu \nu}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The metric allows to quantify space-time 'distance ${ }^{2}$,

$$
\begin{equation*}
(\Delta X)^{2}:=\eta_{\mu \nu} \Delta X^{\mu} \Delta X^{\nu}=(c \Delta t)^{2}-(\Delta \vec{x})^{2} \tag{4}
\end{equation*}
$$

Since the metric is indefinite there are three cases. We define:

- ΔX is space-like if $(\Delta X)^{2}<0$
- ΔX is light-like if $(\Delta X)^{2}=0$
- ΔX is time-like if $(\Delta X)^{2}>0$

[^0]Transformation between inertial frames 1 st postulate \Rightarrow Free particle move in all inertial coordinate systems on a straight line $\Rightarrow X^{\mu} \mapsto A^{\mu} X^{\nu}+a^{\mu}$. Coordinate differences transform then as

$$
\begin{equation*}
\Delta X^{\mu} \mapsto A_{\nu}^{\mu} \Delta X^{\nu} \tag{5}
\end{equation*}
$$

2nd postulate \Rightarrow light-like distances have to be light-like in all coordinate systems: $\Delta X^{\nu} A_{\nu}^{\mu} \eta_{\mu \sigma} A_{\rho}^{\sigma} \Delta X^{\rho}=0$ for ΔX light-like. One can show that this requirement leads to

$$
\begin{equation*}
A_{\nu}^{\mu} \eta_{\mu \sigma} A_{\rho}^{\sigma}=\alpha^{2} \eta_{\nu \rho}, \alpha \in \mathbb{R} \tag{6}
\end{equation*}
$$

We can write $A=\alpha \Lambda$ which defines an element Λ in the Lorentz group L :

Definition: The Lorentz group L is defined by the linear transformations Λ that leave the metric invariant

$$
\begin{equation*}
\Lambda_{\nu}^{\mu} \eta_{\mu \sigma} \Lambda_{\rho}^{\sigma}=\eta_{\nu \rho} \tag{7}
\end{equation*}
$$

Properties: Taking the determinant and the $\nu=0, \mu=0$ component of (7) leads to

$$
\begin{align*}
& (\operatorname{det}(L))^{2}=1 \tag{8}\\
& \qquad 1=\Lambda_{0}^{\mu} \eta_{\mu \sigma} \Lambda_{0}^{\sigma}=\Lambda_{0}^{0} \Lambda_{0}^{0}-\sum_{i=1}^{3} \Lambda_{0}^{i} \Lambda_{0}^{i} \quad \Rightarrow \Lambda_{0}^{0} \geq 1 \vee \Lambda_{0}^{0} \leq-1 \tag{9}
\end{align*}
$$

Thus the Lorentz group has four connected components:

Examples for each component are the reflections

$$
\left.\begin{array}{rlrl}
1 & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), & P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 \\
0 & 0 & -1
\end{array}\right. & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The transformations $L_{+}^{\uparrow}=\left\{\Lambda \in L \mid \operatorname{det} \Lambda=1, \Lambda_{0}^{0} \geq 1\right\}$ form a sub group: the proper orthochronous Lorentz-transformations. Any general element in L can be written as an element in L_{+}^{\uparrow} times one of the reflections.

Examples:

- Spatial rotations

$$
\Lambda(R):=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & & & \\
0 & & R & \\
0 & & &
\end{array}\right), R \in S O(3)
$$

- Boost in x^{1}-direction

$$
\Lambda(v):=\left(\begin{array}{cccc}
\gamma & -\frac{v}{c} \gamma & 0 & 0 \\
-\frac{v}{c} \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \geq 1
$$

Transforms coordinates from the reference frame \mathcal{O} to the reference frame \mathcal{O}^{\prime}, with aligned spatial axes, moving with constant velocity v in x^{1}-direction.

A general element $\Lambda \in L_{+}^{\uparrow}$ can be written as $\Lambda=\Lambda\left(R_{1}\right) \Lambda(v) \Lambda\left(R_{2}\right)$.

Example Let us write down the boost for each component

$$
\begin{gather*}
\left(\begin{array}{c}
c \Delta t^{\prime} \\
\Delta x^{\prime} \\
\Delta y^{\prime} \\
\Delta z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\frac{v}{c} \gamma & 0 & 0 \\
-\frac{v}{c} \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c \Delta t \\
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right)=\left(\begin{array}{c}
\gamma\left(c \Delta t-\frac{v}{c} \Delta x\right) \\
\gamma(-v \Delta t+\Delta x) \\
\Delta y \\
\Delta z
\end{array}\right) \\
\Delta t^{\prime}=\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right) \tag{10}\\
\Delta x^{\prime}=\gamma(-v \Delta t+\Delta x) \tag{11}
\end{gather*}
$$

note: The coordinates perpendicular to \vec{v} are not affect by the boost.
Time dilation: Let us consider a clock in its rest frame \mathcal{O}. We consider the time difference Δt between two ticks, since the clock does not move: $\Delta x=0$. In the frame \mathcal{O}^{\prime} of some observer passing the clock with velocity v we find

$$
\begin{align*}
\Delta t^{\prime} & =\gamma \Delta t \geq \Delta t \tag{12}\\
\Delta x^{\prime} & =\gamma(-v \Delta t) \tag{13}
\end{align*}
$$

The passing observer measures with a clock of his reference frame \mathcal{O}^{\prime} a longer time interval Δt^{\prime} between two ticks of the clock in \mathcal{O} than the clock in \mathcal{O} itself. Note that seen from \mathcal{O}^{\prime} the clock in \mathcal{O} has moved between the two ticks by Δx^{\prime}.

- The time interval Δt measured by a clock at a fixed location is called proper time. In any other reference frame $\Delta t^{\prime} \geq \Delta t$.

Simultaneity: Let us consider two events $X_{1 / 2}=\left(c t_{1 / 2}, \vec{x}_{1 / 2}\right)$, e.g. two flashes, that happen at the same time in \mathcal{O}, i.e. $\Delta t=t_{1}-t_{2}=0$. In a reference frame \mathcal{O}^{\prime} moving passed with velocity v we observe

$$
\begin{align*}
\Delta t^{\prime} & =\gamma\left(-\frac{v}{c^{2}} \Delta x\right) \tag{14}\\
\Delta x^{\prime} & =\gamma(\Delta x) \tag{15}
\end{align*}
$$

Thus the two events do not happen at the same time in $\mathcal{O}^{\prime}, \Delta t^{\prime} \neq 0$. Simultaneity depends on the reference frame.

Length contraction: Let us consider an object of length $\Delta x=l$ in its rest frame \mathcal{O}. In order to determine the length of an object we determine the coordinates of its endpoints $X_{1 / 2}=\left(c t_{1 / 2}, \vec{x}_{1 / 2}\right)$. In the rest frame of the object it doesn't matter at what time we measure the endpoints, since the object is at rest. However in order to measure the length in a reference frame \mathcal{O}^{\prime} passing with v, we have to determine the end points $X_{1 / 2}^{\prime}$ at the same time, i.e. $\Delta t^{\prime}=0$, since the object is moving w.r.t \mathcal{O}^{\prime}.

$$
\begin{align*}
0 & =\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right) \\
l^{\prime}=\Delta x^{\prime} & =\gamma\left(1-\frac{v^{2}}{c^{2}}\right) \Delta x \\
\Rightarrow l^{\prime} & =\frac{l}{\gamma} \leq l \tag{16}
\end{align*}
$$

Hence the object appears shorter in \mathcal{O}^{\prime}.

- The length l of an object measured in a reference frame \mathcal{O} where the object is at rest is caller proper length. In any other reference frame $\mathcal{O}^{\prime}, l^{\prime} \leq l$.

Addition of velocities Consider an object moving with velocity u^{\prime} measured in coordinate system \mathcal{O}^{\prime}, which is moving with velocity v with respect to coordinate system \mathcal{O}. What is the velocity u of the object measured in \mathcal{O} ?

In \mathcal{O}^{\prime} the object covers a distance $d x^{\prime}=u^{\prime} d t^{\prime}$ in a time interval $d t^{\prime}$. Transformed to the coordinate system \mathcal{O} (now we have to use $\Lambda(v)^{-1}=\Lambda(-v)$) we get

$$
\begin{align*}
d t & =\gamma\left(d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}\right) \tag{17}\\
d x & =\gamma\left(v d t^{\prime}+d x^{\prime}\right) \tag{18}
\end{align*}
$$

Hence

$$
\begin{equation*}
u=\frac{d x}{d t}=\frac{\left(v+\frac{d x^{\prime}}{d t^{\prime}}\right)}{\left(1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}\right)}=\frac{\left(v+u^{\prime}\right)}{\left(1+\frac{v u^{\prime}}{c^{2}}\right)} \leq\left(v+u^{\prime}\right) \tag{19}
\end{equation*}
$$

In particular

$$
\begin{equation*}
u^{\prime}, v \leq c \Rightarrow u \leq c \tag{20}
\end{equation*}
$$

World-line and Action A moving point particle traces out a line in Minkowski space $X(t)=(c t, \quad \vec{x}(t))$ called world-line. We would like to write down an action A that is both reparametrization- and Lorentz invariant:

$$
\begin{equation*}
A[X] \propto \int \sqrt{\eta_{\mu \nu} \dot{X}^{\mu}(t) \dot{X}^{\nu}(t)} d t=\int \sqrt{c^{2}-v^{2}} d t=c \int \frac{1}{\gamma} d t=c \int d \tau \tag{21}
\end{equation*}
$$

where τ is the proper time of the particle, i.e. the time measured in its rest frame. The units of an action should be $[$ energy $] \times[$ time $]$. Therefore the proportionality constant has to have units $[$ mass $] \times[$ velocity $]$. Furthermore the constant has to be a Lorentz invariant quantity. The obvious choice is $m c$, where m is the Lorentz invariant rest mass of the particle. Thus the complete action reads

$$
\begin{equation*}
A=\int L d t, \quad L=m c \sqrt{\eta_{\mu \nu} \dot{X}^{\mu}(t) \dot{X}^{\nu}(t)} \tag{22}
\end{equation*}
$$

Energy and momentum conservation As in classical mechanics, the canonical momentum and the equations of motion are given by

$$
\begin{equation*}
p^{\mu}=\frac{\partial L}{\partial \dot{X}_{\mu}}=\frac{m c \dot{X}^{\mu}}{\sqrt{\eta_{\mu \nu} \dot{X}^{\mu} \dot{X}^{\nu}}}=\gamma m \underbrace{\dot{X}^{\mu}}_{(c, \vec{v}(t))}, \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{X}_{\mu}}-\underbrace{\frac{\partial L}{\partial X_{\mu}}}_{=0}=\frac{d p^{\mu}}{d t}=0 \tag{23}
\end{equation*}
$$

In fact the equations of motion are stating that energy and momentum are conserved for a free particle. The conserved quantity associated with time translation invariance is the energy. The p^{0} component of the momentum is the conserved quantity associated to invariance of $x^{0}=c t$. Therefore we interpret

$$
\begin{equation*}
E=c p^{0}=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{24}
\end{equation*}
$$

as relativistic energy. In the limit $v \ll c$

$$
\begin{equation*}
E \approx m c^{2}+\frac{1}{2} m v^{2}+\cdots \tag{25}
\end{equation*}
$$

we recover the classical expression for the kinetic energy $\frac{1}{2} m v^{2}$, but also a new term $m c^{2}$, which is also present when the particle is at rest. We interpret the latter as the rest energy of the particle.

4-velocity and 4- momentum Instead of parameterizing the world-line $X(t)=(c t, \vec{x}(t))$ with the time of the observing reference frame, we can use the proper time τ of the particle to parameterize the world-line: $X(\tau):=$ $(c t(\tau), \quad \vec{x}(t(\tau)))$. We define the 4 -velocity as

$$
\begin{equation*}
u^{\mu}=\frac{d X^{\mu}}{d \tau} \tag{26}
\end{equation*}
$$

The 4 -momentum found above can then be written in terms of the 4 -velocity as

$$
\begin{equation*}
p^{\mu}=m u^{\mu} \tag{27}
\end{equation*}
$$

They transform as vectors for orthochronous Lorentz transformation. For general Lorentz transformations they pick up the sign $\operatorname{sgn}\left(\Lambda_{0}^{0}\right)$, and hence transform as pseudo vectors (due to the choice of the positive root in the definition of the proper time $d \tau=\sqrt{1-\frac{v^{2}}{c^{2}}} d t$.

In the rest-frame \mathcal{O}^{\prime} of the particle we have $u^{\prime}=(c, 0,0,0)$, thus $\eta_{\mu \nu} u^{\prime \mu} u^{\prime \nu}=c^{2}$. Since the metric is Lorentz invariant, $u^{\mu} u_{\mu}=c^{2}$ in any reference frame and similarly $p^{\mu} p_{\mu}=m^{2} c^{2}$. Hence using $E=c p^{0}$

$$
\begin{align*}
\left(p^{0}\right)^{2}-\vec{p}^{2} & =m^{2} c^{2} \\
E & =\sqrt{m^{2} c^{4}+\vec{p}^{2} c^{2}} \tag{28}
\end{align*}
$$

The last equation is also valid for massless particles. Then $E=c|\vec{p}|$ and the 4 -momentum $(|\vec{p}|, \quad \vec{p})$.
Example: Decay of particle Let a particle of rest mass M decay symmetrically into two particles, each of rest mass m. In the rest frame of the initial particle we have the 4 -momentum $P^{\mu}=(c M, 0,0,0)$. After the decay the two particles have 4-momentum $p_{ \pm}^{\mu}=\gamma(c m, \quad \pm m \vec{v})$ due to conservation of the $P^{i}, i \in\{1,2,3\}$ components of the 4 -momentum . The conservation of P^{0} yields

$$
\begin{equation*}
c M=2 \gamma c m, \quad \Rightarrow 2 m=\frac{M}{\gamma}<M \tag{29}
\end{equation*}
$$

The total mass is not conserved, some of the rest energy was transformed into kinetic energy: for each particle $E_{k i n}=E-m c^{2}=\frac{1}{2} M c^{2}\left(1-\sqrt{1-\frac{v^{2}}{c^{2}}}\right)$.

Electrodynamics There are two unit systems that are frequently used in electrodynamics, SI and cgs. We give the relevant expressions in both systems. The electromagnetic fields \vec{E} and \vec{B} can be described in terms of the scalar potential ϕ and the vector potential \vec{A}. In order to find a relativistic covariant description of electrodynamics we combine both potentials to a 4 -potential and define it as 1-form

$$
\begin{equation*}
\mathrm{SI}: A=\left(A_{0}, \quad A_{1}, \quad A_{2}, \quad A_{3}\right)=\left(\frac{\phi}{c}, \quad-\vec{A}\right), \quad \operatorname{cgs}: A=(\phi,-\vec{A}) \tag{30}
\end{equation*}
$$

The electromagnetic field tensor is then defined as the exterior derivative d of A. Those who are unfamiliar with exterior derivative may content themselves with the explicit definition

$$
\begin{equation*}
F=\mathrm{d} A, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{31}
\end{equation*}
$$

In components, the field tensor takes following form

$$
\mathrm{SI}:\left(F_{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & \frac{E_{x}}{c} & \frac{E_{y}}{c} & \frac{E_{z}}{c} \tag{32}\\
-\frac{E_{x}}{c} & 0 & -B_{z} & B_{y} \\
-\frac{E_{y}}{c} & B_{z} & 0 & -B_{x} \\
-\frac{E_{z}}{c} & -B_{y} & B_{x} & 0
\end{array}\right), \quad \operatorname{cgs}:\left(F_{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right) .
$$

Electromagnetic fields are created due to the presence of electric charge density ρ and current density \vec{j}. The charge density ρ_{0} measured in the rest frame of the charges is perceived in a frame moving with velocity \vec{v}, as

$$
\begin{equation*}
\rho=\gamma \rho_{0} \tag{33}
\end{equation*}
$$

This follows from the fact that the volume element is length contracted in one direction. Given the charge density ρ the current density is as usual

$$
\begin{equation*}
\vec{j}=\rho \vec{v} \tag{34}
\end{equation*}
$$

We also need to express the sources in a covariant way. We define the 4 -current density

$$
\begin{equation*}
j^{\mu}=(c \rho, \quad \vec{j})=\rho_{0} u^{\mu} . \tag{35}
\end{equation*}
$$

The continuity equation takes the very simple and Lorentz invariant form

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=0 \tag{36}
\end{equation*}
$$

since explicitly $\partial_{\mu} j^{\mu}=\frac{\partial \rho}{\partial t}+\operatorname{div} \vec{j}$.
Maxwell equations The inhomogeneous Maxwell equation are expressed as

$$
\begin{equation*}
\mathrm{SI}: \partial_{\mu} F^{\mu \nu}=\mu_{0} j^{\nu} . \quad \operatorname{cgs}: \partial_{\mu} F^{\mu \nu}=\frac{j^{\nu}}{c} \tag{37}
\end{equation*}
$$

The homogeneous Maxwell equations follow immediately from the very definition of the field tensor and the property of the exterior derivative $\mathrm{d} \circ \mathrm{d}=0$. Again, those unfamiliar with the exterior derivative may be satisfied with the explicit expression.

$$
\begin{equation*}
\mathrm{d} F=\mathrm{d}(\mathrm{~d} A)=0, \quad(\mathrm{~d} F)_{\mu \nu \rho}=\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0 \tag{38}
\end{equation*}
$$

Example: inhom. M. eq. $\nu=1$ We do this example only in SI units. First we need to lift the indices of the field tensor

$$
F^{\mu \nu}=\eta^{\mu \rho} \eta^{\nu \sigma} F_{\rho \sigma}=\left(\begin{array}{cccc}
0 & -\frac{E_{x}}{c} & -\frac{E_{y}}{c} & -\frac{E_{z}}{c} \tag{39}\\
\frac{E_{x}}{c} & 0 & -B_{z} & B_{y} \\
\frac{E_{y}}{c} & B_{z} & 0 & -B_{x} \\
\frac{E_{z}}{c} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

where $\left(\eta^{\mu \nu}\right)=\left(\eta_{\mu \nu}\right)^{-1}$ which happens to have the same matrix entries as $\left(\eta_{\mu \nu}\right)$. Now we write down the inhomogeneous Maxwell equation for $\nu=1$

$$
\begin{equation*}
\partial_{\mu} F^{\mu 1}=-\partial_{0} \frac{E_{x}}{c}+\partial_{2} B_{z}-\partial_{3} B_{y}=-\frac{1}{c^{2}} \frac{\partial}{\partial t} E_{x}+(\nabla \times \vec{B})_{x}=\mu_{0} j_{x} \tag{40}
\end{equation*}
$$

Example: hom. M. eq. $\mu=1, \nu=2, \rho=3$

$$
\begin{equation*}
-\partial_{1} B_{x}-\partial_{2} B_{y}-\partial_{3} B_{z}=-\operatorname{div} \vec{B}=0 \tag{41}
\end{equation*}
$$

Action Finally we mention that the Maxwell equations can be derived form the action $\int \mathcal{L}(A, \partial A) d^{4} x$, where the integral goes over all of space-time, with the Lagrangian density

$$
\begin{equation*}
\text { SI : } \mathcal{L}=-\frac{1}{4 \mu_{0}} F_{\mu \nu} F^{\mu \nu}-A_{\mu} j^{\mu}, \quad \operatorname{cgs}: \mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-\frac{1}{c} A_{\mu} j^{\mu} \tag{42}
\end{equation*}
$$

References

[Graf] Lecture Notes Elektrodynamik FS08, Gian Michele Graf, ETH Zurich
[Renner] Lecture Notes Elektrodynamik 2010, Renato Renner, ETH Zurich

[^0]: *based on the relevant chapters of the lecture notes [Graf, Renner]

