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Inertial coordinate system: A coordinate system in which free particles (in absence of forces) satisfy the
equation of motion
i=0 (1)

is called inertial coordinate system. In particular: two inertial coordinate systems move with constant velocity to
each other.

Postulates of SR:

1. The laws of nature are independent of the choice of coordinate system. In particular: any formula describing
them has to have the same form in all inertial systems.

2. The speed of light is the same in all coordinate systems

Events Events in R'™3 space-time are 4-vectors
X = (XO7 Xt X2 X3) = (ct, z, Y, z) (2)
——
#
One refers to components of a 4-vector by X*, € {0,1,2,3}. Often one is interested in the space-time separation

of two events AX = X; — X,.

Metric We define the metric

1 0 0 0
0 -1 0 0
0 0 0o -1
The metric allows to quantify space-time ‘distance?®’
(AX)? =, AXPAXY = (cAt)? — (AT)’ (4)

Since the metric is indefinite there are three cases. We define:
e AX is space-like if (AX)? <0
o AX is light-like if (AX)> =0

e AX is time-like if (AX)* >0

*based on the relevant chapters of the lecture notes [Graf, Renner|



Transformation between inertial frames 1st postulate = Free particle move in all inertial coordinate systems
on a straight line = X* — A% X" 4 a*. Coordinate differences transform then as

AXH s AR AXY. (5)

2nd postulate = light-like distances have to be light-like in all coordinate systems: AXY A% n,,A7AX? = 0 for
AX light-like. One can show that this requirement leads to

Al AS, = a®n,, a €R. (6)

We can write A = oA which defines an element A in the Lorentz group L:

Definition: The Lorentz group L is defined by the linear transformations A that leave the metric invariant
A e AT, = p- (7)
Properties: Taking the determinant and the v = 0, 4 = 0 component of (7) leads to

(det(L))* =1 (8)
3

1= Mm% = AQAG =D AN = A >1vAG <1 (9)
i=1

Thus the Lorentz group has four connected components:
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The transformations L1 = {A € LldetA =1, AY > 1} form a sub group: the proper orthochronous

Lorentz-transformations. Any general element in L can be written as an element in Ll times one of the
reflections.

Examples:

e Spatial rotations

, ReSO(3)

coo~
ay



e Boost in z!-direction

¥y o=y 00
_v 0 O 1
O I A S R !
0 0 01 e

Transforms coordinates from the reference frame O to the reference frame (', with aligned spatial axes,
moving with constant velocity v in x!-direction.

A general element A € Ll can be written as A = A(R;)A(v)A(R2).

Example Let us write down the boost for each component

cAt ¥y =%y 0 0 cAt 7 (cAt — LAx)
Azl =%y v 00 Az | [ v (—vAt+ Ax)
Ay | T 0 0 10 Ay | Ay
A7 0 0 0 1 Az Az
v
At =~ (At - szAm) : (10)
Ar' =~y (—vAt + Ax). (11)

note: The coordinates perpendicular to ¢ are not affect by the boost.

Time dilation: Let us consider a clock in its rest frame . We consider the time difference At between two
ticks, since the clock does not move: Az = 0. In the frame O of some observer passing the clock with velocity v
we find

At =~yAL > At (12)
Az’ =~ (—vAt) (13)

The passing observer measures with a clock of his reference frame O a longer time interval At between two ticks
of the clock in O than the clock in O itself. Note that seen from O’ the clock in O has moved between the two ticks
by Axz’.

e The time interval At measured by a clock at a fixed location is called proper time. In any other reference
frame At' > At.

Simultaneity: Let us consider two events X /5 = (ctl/Q, :1?1/2), e.g. two flashes, that happen at the same time
in O, i.e. At =1t; —t3 =0. In a reference frame O’ moving passed with velocity v we observe

At =~ (_C%Ax) , (14)
Az =~ (Ax). (15)

Thus the two events do not happen at the same time in @', At’ # 0. Simultaneity depends on the reference frame.



Length contraction: Let us consider an object of length Ax = [ in its rest frame O. In order to determine
the length of an object we determine the coordinates of its endpoints X/ = (Ctl/g, ;E’l/g). In the rest frame of the
object it doesn’t matter at what time we measure the endpoints, since the object is at rest. However in order to
measure the length in a reference frame OO’ passing with v, we have to determine the end points X7 /2 at the same

time, i.e. At’ = 0, since the object is moving w.r.t O'.

<1 (16)

Hence the object appears shorter in O'.

e The length [ of an object measured in a reference frame O where the object is at rest is caller proper length.
In any other reference frame O’, I’ <.

Addition of velocities Consider an object moving with velocity «’ measured in coordinate system ', which
is moving with velocity v with respect to coordinate system . What is the velocity u of the object measured in
o7

In O the object covers a distance dx’ = v’ dt’ in a time interval dt’. Transformed to the coordinate system O
(now we have to use A(v)~! = A(—v) ) we get

v
dt =~ (dt' + C—de’) , (17)
dx = v (vdt' + dx'). (18)
Hence
dz’
d v+ S5 /
_ ( d;) S Ch LRy (19)
dt - (1+5g)  (+%)
In particular
vv<e =u<e (20)

World-line and Action A moving point particle traces out a line in Minkowski space X (t) = (ct7 i’(t)) called
world-line. We would like to write down an action A that is both reparametrization- and Lorentz invariant:

A[X] m/\/n#VXH(t)XV(t)dt:/\/mdt = c/%dt = c/dT (21)

where 7 is the proper time of the particle, i.e. the time measured in its rest frame. The units of an action should
be [energy] x [time]. Therefore the proportionality constant has to have units [mass] x [velocity]. Furthermore the
constant has to be a Lorentz invariant quantity. The obvious choice is mec, where m is the Lorentz invariant rest
mass of the particle. Thus the complete action reads

A= /L dt, L = mey/ n XH() X (t). (22)



Energy and momentum conservation As in classical mechanics, the canonical momentum and the equations
of motion are given by

oL meX* : d 8L  OL  dp*
pr= — = =ym X" | i ) (23)
- ~~ dt 0X dt
OX \ M X1 XY (e, 5(2) NG

=0

In fact the equations of motion are stating that energy and momentum are conserved for a free particle. The
conserved quantity associated with time translation invariance is the energy. The p® component of the momentum
is the conserved quantity associated to invariance of z° = ct. Therefore we interpret

2

E=c’ =22 (24)
v2
T2
as relativistic energy. In the limit v < ¢
1
E%m62+§mv2+--~ (25)

we recover the classical expression for the kinetic energy %va, but also a new term mc?, which is also present
when the particle is at rest. We interpret the latter as the rest energy of the particle.

4-velocity and 4- momentum Instead of parameterizing the world-line X (¢) = (ct, Z(t)) with the time of the
observing reference frame, we can use the proper time 7 of the particle to parameterize the world-line: X (7) :=
(ct(r), Z(t(7))). We define the 4-velocity as
ut = dXH. (26)
dr

The 4-momentum found above can then be written in terms of the 4-velocity as

pH = mut. (27)

They transform as vectors for orthochronous Lorentz transformation. For general Lorentz transformations they pick
up the sign sgn(A}), and hence transform as pseudo vectors (due to the choice of the positive root in the definition

of the proper time dr = 4/1 — “é—sdt).
2

In the rest-frame O of the particle we have v’ = (c,0,0,0), thus n,,u*u" = ¢*. Since the metric is Lorentz
invariant, u#u, = ¢* in any reference frame and similarly p#p, = m?c?. Hence using E = cp’

= vm2ct + p2c2. (28)
The last equation is also valid for massless particles. Then E = c|p] and the 4-momentum (|g], 7).

Example: Decay of particle Let a particle of rest mass M decay symmetrically into two particles, each of rest
mass m. In the rest frame of the initial particle we have the 4-momentum P* = (cM , 0, 0, O) . After the decay

the two particles have 4-momentum p{ =~ (cm, imﬁ) due to conservation of the P?, i € {1,2,3} components of
the 4-momentum . The conservation of P? yields

M
cM = 2~yem, = 2m=— < M. (29)
Y

The total mass is not conserved, some of the rest energy was transformed into kinetic energy: for each particle

Eyin = E—mc? = LM (1—,/ —gj).



Electrodynamics There are two unit systems that are frequently used in electrodynamics, SI and cgs. We give
the relevant expressions in both systems. The electromagnetic fields E and B can be described in terms of the
scalar potential ¢ and the vector potential A. In order to find a relativistic covariant description of electrodynamics
we combine both potentials to a 4-potential and define it as 1-form

SI: A= (Ao, Al, AQ, Ag) = (%7 —A) s Cgs : A= (¢, —/T) . (30)

The electromagnetic field tensor is then defined as the exterior derivative d of A. Those who are unfamiliar with
exterior derivative may content themselves with the explicit definition

F =dA, F = 0,4, — 0,A,. (31)

In components, the field tensor takes following form

E
—== 0 -B B —-F 0 -B B
SI: (F,) = z L : (Fu) = o # v 32
Fw)=|_& 5 o _p, ' Fw)=|_p B 0 B (32)
7% *By Br 0 *Ez — Dy Bm 0

Electromagnetic fields are created due to the presence of electric charge density p and current density j The charge
density po measured in the rest frame of the charges is perceived in a frame moving with velocity v, as

P =po- (33)

This follows from the fact that the volume element is length contracted in one direction. Given the charge density
p the current density is as usual

j=pv. (34)
We also need to express the sources in a covariant way. We define the 4-current density
j“ = (cp’ _;) = pou“. (35)

The continuity equation takes the very simple and Lorentz invariant form
Oug" = (36)

since explicitly 9,j" = % + divj.

Maxwell equations The inhomogeneous Maxwell equation are expressed as

SV
SI: 9, F" = jigj". cgs : O =L (37)
c
The homogeneous Maxwell equations follow immediately from the very definition of the field tensor and the property
of the exterior derivative d o d = 0. Again, those unfamiliar with the exterior derivative may be satisfied with the
explicit expression.

dF = d(dA) =0, (AF),,,, = 8uFvp + 8y Fpp + 0,F,, = 0. (38)

pvp
Example: inhom. M. eq.v =1 We do this example only in SI units. First we need to lift the indices of the

field tensor
_ B, _Ey, _E.
0 -B, B,
B, 0 —-B, |’

-B, B, 0

Py — n/tpnwapa — (39)

where (n*") = (nwf1 which happens to have the same matrix entries as (7),,). Now we write down the inhomo-
geneous Maxwell equation for v =1

10

E
Frl = —9y—= B, - 03B, = —— =
8, o= + 028 — 03B, = — 5 =,

E, + (ng)z:uojx. (40)



Example: hom. M. eq.u=1,v=2,p=3
— B, — 9B, — 33B. = —divB =0 (41)
Action Finally we mention that the Maxwell equations can be derived form the action [ £(A4, 0A)d*x, where the
integral goes over all of space-time, with the Lagrangian density

1

1
SI: L= ——F, F" — A" L=
A0 " wl c8s 167

LV 1 - [
P — A5, (42)
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