Short Introduction To Special Relativity Lecture Notes^{*}

Reimar Hecht

October 28, 2014

Inertial coordinate system: A coordinate system in which free particles (in absence of forces) satisfy the equation of motion

 $\ddot{x} = 0 \tag{1}$

is called inertial coordinate system. In particular: two inertial coordinate systems move with constant velocity to each other.

Postulates of SR:

- 1. The laws of nature are independent of the choice of coordinate system. In particular: any formula describing them has to have the same form in all inertial systems.
- 2. The speed of light is the same in all coordinate systems

Events Events in \mathbb{R}^{1+3} space-time are 4-vectors

$$X = \begin{pmatrix} X^0, & X^1, & X^2, & X^3 \end{pmatrix} = \begin{pmatrix} ct, & \underline{x}, & y, & \underline{z} \end{pmatrix}.$$
(2)

One refers to components of a 4-vector by X^{μ} , $\mu \in \{0, 1, 2, 3\}$. Often one is interested in the space-time separation of two events $\Delta X = X_1 - X_2$.

Metric We define the metric

$$(\eta_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (3)

The metric allows to quantify space-time 'distance²'

$$(\Delta X)^2 := \eta_{\mu\nu} \Delta X^{\mu} \Delta X^{\nu} = (c\Delta t)^2 - (\Delta \vec{x})^2 \tag{4}$$

Since the metric is indefinite there are three cases. We define:

- ΔX is space-like if $(\Delta X)^2 < 0$
- ΔX is light-like if $(\Delta X)^2 = 0$
- ΔX is time-like if $(\Delta X)^2 > 0$

^{*}based on the relevant chapters of the lecture notes [Graf, Renner]

Transformation between inertial frames 1st postulate \Rightarrow Free particle move in all inertial coordinate systems on a straight line $\Rightarrow X^{\mu} \mapsto A^{\mu}_{\nu} X^{\nu} + a^{\mu}$. Coordinate differences transform then as

$$\Delta X^{\mu} \mapsto A^{\mu}_{\ \nu} \Delta X^{\nu}. \tag{5}$$

2nd postulate \Rightarrow light-like distances have to be light-like in all coordinate systems: $\Delta X^{\nu} A^{\mu}_{\ \nu} \eta_{\mu\sigma} A^{\sigma}_{\ \rho} \Delta X^{\rho} = 0$ for ΔX light-like. One can show that this requirement leads to

$$A^{\mu}_{\ \nu}\eta_{\mu\sigma}A^{\sigma}_{\ \rho} = \alpha^2\eta_{\nu\rho}, \ \alpha \in \mathbb{R}.$$
 (6)

We can write $A = \alpha \Lambda$ which defines an element Λ in the Lorentz group L:

Definition: The Lorentz group L is defined by the linear transformations Λ that leave the metric invariant

$$\Lambda^{\mu}_{\ \nu}\eta_{\mu\sigma}\Lambda^{\sigma}_{\ \rho} = \eta_{\nu\rho}.\tag{7}$$

Properties: Taking the determinant and the $\nu = 0, \mu = 0$ component of (7) leads to

$$\left(\det(L)\right)^2 = 1\tag{8}$$

$$1 = \Lambda^{\mu}_{\ 0} \eta_{\mu\sigma} \Lambda^{\sigma}_{\ 0} = \Lambda^{0}_{\ 0} \Lambda^{0}_{\ 0} - \sum_{i=1}^{3} \Lambda^{i}_{\ 0} \Lambda^{i}_{\ 0} \quad \Rightarrow \Lambda^{0}_{\ 0} \ge 1 \lor \Lambda^{0}_{\ 0} \le -1 \tag{9}$$

Thus the Lorentz group has four connected components:

Examples for each component are the reflections

$$1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad P = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad T = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The transformations $L_{+}^{\uparrow} = \{\Lambda \in L | \det \Lambda = 1, \Lambda_{0}^{0} \ge 1\}$ form a sub group: the **proper orthochronous** Lorentz-transformations. Any general element in L can be written as an element in L_{+}^{\uparrow} times one of the reflections.

Examples:

• Spatial rotations

$$\Lambda(R) := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & R & \\ 0 & & & \end{pmatrix}, \ R \in SO(3)$$

• Boost in x^1 -direction

$$\Lambda(v) := \begin{pmatrix} \gamma & -\frac{v}{c}\gamma & 0 & 0\\ -\frac{v}{c}\gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \ge 1$$

Transforms coordinates from the reference frame \mathcal{O} to the reference frame \mathcal{O}' , with aligned spatial axes, moving with constant velocity v in x^1 -direction.

A general element $\Lambda \in L^{\uparrow}_{+}$ can be written as $\Lambda = \Lambda(R_1)\Lambda(v)\Lambda(R_2)$.

Example Let us write down the boost for each component

$$\begin{pmatrix} c\Delta t' \\ \Delta x' \\ \Delta y' \\ \Delta z' \end{pmatrix} = \begin{pmatrix} \gamma & -\frac{v}{c}\gamma & 0 & 0 \\ -\frac{v}{c}\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c\Delta t \\ \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = \begin{pmatrix} \gamma \left(c\Delta t - \frac{v}{c}\Delta x \right) \\ \gamma \left(-v\Delta t + \Delta x \right) \\ \Delta y \\ \Delta z \end{pmatrix}$$

$$\Delta t' = \gamma \left(\Delta t - \frac{v}{c^2}\Delta x \right), \qquad (10)$$

$$\Delta x' = \gamma \left(-v\Delta t + \Delta x \right).$$

note: The coordinates perpendicular to \vec{v} are not affect by the boost.

Time dilation: Let us consider a clock in its rest frame \mathcal{O} . We consider the time difference Δt between two ticks, since the clock does not move: $\Delta x = 0$. In the frame \mathcal{O}' of some observer passing the clock with velocity v we find

$$\Delta t' = \gamma \Delta t \ge \Delta t \tag{12}$$

$$\Delta x' = \gamma \left(-v\Delta t \right) \tag{13}$$

The passing observer measures with a clock of his reference frame \mathcal{O}' a longer time interval $\Delta t'$ between two ticks of the clock in \mathcal{O} than the clock in \mathcal{O} itself. Note that seen from \mathcal{O}' the clock in \mathcal{O} has moved between the two ticks by $\Delta x'$.

• The time interval Δt measured by a clock at a fixed location is called **proper time**. In any other reference frame $\Delta t' \geq \Delta t$.

Simultaneity: Let us consider two events $X_{1/2} = (ct_{1/2}, \vec{x}_{1/2})$, e.g. two flashes, that happen at the same time in \mathcal{O} , i.e. $\Delta t = t_1 - t_2 = 0$. In a reference frame \mathcal{O}' moving passed with velocity v we observe

$$\Delta t' = \gamma \left(-\frac{v}{c^2} \Delta x \right),\tag{14}$$

$$\Delta x' = \gamma \left(\Delta x \right). \tag{15}$$

Thus the two events do not happen at the same time in $\mathcal{O}', \Delta t' \neq 0$. Simultaneity depends on the reference frame.

Length contraction: Let us consider an object of length $\Delta x = l$ in its rest frame \mathcal{O} . In order to determine the length of an object we determine the coordinates of its endpoints $X_{1/2} = (ct_{1/2}, \vec{x}_{1/2})$. In the rest frame of the object it doesn't matter at what time we measure the endpoints, since the object is at rest. However in order to measure the length in a reference frame \mathcal{O}' passing with v, we have to determine the end points $X'_{1/2}$ at the same time, i.e. $\Delta t' = 0$, since the object is moving w.r.t \mathcal{O}' .

$$0 = \gamma \left(\Delta t - \frac{v}{c^2} \Delta x \right)$$
$$l' = \Delta x' = \gamma \left(1 - \frac{v^2}{c^2} \right) \Delta x$$
$$\Rightarrow l' = \frac{l}{\gamma} \le l$$
(16)

Hence the object appears shorter in \mathcal{O}' .

• The length l of an object measured in a reference frame \mathcal{O} where the object is at rest is caller **proper length**. In any other reference frame \mathcal{O}' , $l' \leq l$.

Addition of velocities Consider an object moving with velocity u' measured in coordinate system \mathcal{O}' , which is moving with velocity v with respect to coordinate system \mathcal{O} . What is the velocity u of the object measured in \mathcal{O} ?

In \mathcal{O}' the object covers a distance dx' = u' dt' in a time interval dt'. Transformed to the coordinate system \mathcal{O} (now we have to use $\Lambda(v)^{-1} = \Lambda(-v)$) we get

$$dt = \gamma \left(dt' + \frac{v}{c^2} dx' \right),\tag{17}$$

$$dx = \gamma \left(v dt' + dx'\right). \tag{18}$$

Hence

$$u = \frac{dx}{dt} = \frac{\left(v + \frac{dx'}{dt'}\right)}{\left(1 + \frac{v}{c^2}\frac{dx'}{dt'}\right)} = \frac{\left(v + u'\right)}{\left(1 + \frac{vu'}{c^2}\right)} \le \left(v + u'\right).$$
(19)

In particular

$$u', v \le c \Rightarrow u \le c. \tag{20}$$

World-line and Action A moving point particle traces out a line in Minkowski space $X(t) = (ct, \vec{x}(t))$ called world-line. We would like to write down an action A that is both reparametrization- and Lorentz invariant:

$$A[X] \propto \int \sqrt{\eta_{\mu\nu} \dot{X}^{\mu}(t)} \dot{X}^{\nu}(t) dt = \int \sqrt{c^2 - v^2} dt = c \int \frac{1}{\gamma} dt = c \int d\tau$$
⁽²¹⁾

where τ is the proper time of the particle, i.e. the time measured in its rest frame. The units of an action should be $[energy] \times [time]$. Therefore the proportionality constant has to have units $[mass] \times [velocity]$. Furthermore the constant has to be a Lorentz invariant quantity. The obvious choice is mc, where m is the Lorentz invariant rest mass of the particle. Thus the complete action reads

$$A = \int L \, dt, \qquad \qquad L = mc \sqrt{\eta_{\mu\nu} \dot{X}^{\mu}(t) \dot{X}^{\nu}(t)}. \tag{22}$$

Energy and momentum conservation As in classical mechanics, the canonical momentum and the equations of motion are given by

In fact the equations of motion are stating that energy and momentum are conserved for a free particle. The conserved quantity associated with time translation invariance is the energy. The p^0 component of the momentum is the conserved quantity associated to invariance of $x^0 = ct$. Therefore we interpret

$$E = cp^{0} = \frac{mc^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$
(24)

as relativistic energy. In the limit $v \ll c$

$$E \approx mc^2 + \frac{1}{2}mv^2 + \cdots$$
 (25)

we recover the classical expression for the kinetic energy $\frac{1}{2}mv^2$, but also a new term mc^2 , which is also present when the particle is at rest. We interpret the latter as the **rest energy** of the particle.

4-velocity and 4- momentum Instead of parameterizing the world-line $X(t) = (ct, \vec{x}(t))$ with the time of the observing reference frame, we can use the proper time τ of the particle to parameterize the world-line: $X(\tau) := (ct(\tau), \vec{x}(t(\tau)))$. We define the 4-velocity as

$$u^{\mu} = \frac{dX^{\mu}}{d\tau}.$$
(26)

The 4-momentum found above can then be written in terms of the 4-velocity as

$$p^{\mu} = m u^{\mu}. \tag{27}$$

They transform as vectors for orthochronous Lorentz transformation. For general Lorentz transformations they pick up the sign $sgn(\Lambda_0^0)$, and hence transform as pseudo vectors (due to the choice of the positive root in the definition of the proper time $d\tau = \sqrt{1 - \frac{v^2}{c^2}} dt$).

In the rest-frame \mathcal{O}' of the particle we have u' = (c, 0, 0, 0), thus $\eta_{\mu\nu}u'^{\mu}u'^{\nu} = c^2$. Since the metric is Lorentz invariant, $u^{\mu}u_{\mu} = c^2$ in any reference frame and similarly $p^{\mu}p_{\mu} = m^2c^2$. Hence using $E = cp^0$

$$(p^{0})^{2} - \vec{p}^{2} = m^{2}c^{2},$$

$$E = \sqrt{m^{2}c^{4} + \vec{p}^{2}c^{2}}.$$
(28)

The last equation is also valid for massless particles. Then $E = c|\vec{p}|$ and the 4-momentum $(|\vec{p}|, \vec{p})$.

Example: Decay of particle Let a particle of rest mass M decay symmetrically into two particles, each of rest mass m. In the rest frame of the initial particle we have the 4-momentum $P^{\mu} = (cM, 0, 0, 0)$. After the decay the two particles have 4-momentum $p^{\mu}_{\pm} = \gamma (cm, \pm m\vec{v})$ due to conservation of the P^i , $i \in \{1, 2, 3\}$ components of the 4-momentum. The conservation of P^0 yields

$$cM = 2\gamma cm, \qquad \Rightarrow 2m = \frac{M}{\gamma} < M.$$
 (29)

The total mass is not conserved, some of the rest energy was transformed into kinetic energy: for each particle $E_{kin} = E - mc^2 = \frac{1}{2}Mc^2\left(1 - \sqrt{1 - \frac{v^2}{c^2}}\right).$

Electrodynamics There are two unit systems that are frequently used in electrodynamics, SI and cgs. We give the relevant expressions in both systems. The electromagnetic fields \vec{E} and \vec{B} can be described in terms of the scalar potential ϕ and the vector potential \vec{A} . In order to find a relativistic covariant description of electrodynamics we combine both potentials to a 4-potential and define it as 1-form

SI:
$$A = (A_0, A_1, A_2, A_3) = (\frac{\phi}{c}, -\vec{A}),$$
 cgs: $A = (\phi, -\vec{A}).$ (30)

The electromagnetic field tensor is then defined as the exterior derivative d of A. Those who are unfamiliar with exterior derivative may content themselves with the explicit definition

$$F = dA, \qquad \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}. \qquad (31)$$

In components, the field tensor takes following form

$$\operatorname{SI}: (F_{\mu\nu}) = \begin{pmatrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & -B_z & B_y \\ -\frac{E_y}{c} & B_z & 0 & -B_x \\ -\frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix}, \qquad \operatorname{cgs}: (F_{\mu\nu}) = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}.$$
(32)

Electromagnetic fields are created due to the presence of electric charge density ρ and current density \vec{j} . The charge density ρ_0 measured in the rest frame of the charges is perceived in a frame moving with velocity \vec{v} , as

$$\rho = \gamma \rho_0. \tag{33}$$

This follows from the fact that the volume element is length contracted in one direction. Given the charge density ρ the current density is as usual

$$\vec{j} = \rho \vec{v}.\tag{34}$$

We also need to express the sources in a covariant way. We define the 4-current density

$$j^{\mu} = (c\rho, \ \vec{j}) = \rho_0 u^{\mu}.$$
 (35)

The continuity equation takes the very simple and Lorentz invariant form

$$\partial_{\mu}j^{\mu} = 0 \tag{36}$$

since explicitly $\partial_{\mu} j^{\mu} = \frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j}$.

Maxwell equations The inhomogeneous Maxwell equation are expressed as

SI:
$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu}$$
. cgs: $\partial_{\mu}F^{\mu\nu} = \frac{j^{\nu}}{c}$. (37)

The homogeneous Maxwell equations follow immediately from the very definition of the field tensor and the property of the exterior derivative $d \circ d = 0$. Again, those unfamiliar with the exterior derivative may be satisfied with the explicit expression.

$$dF = d (dA) = 0, \qquad (dF)_{\mu\nu\rho} = \partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0. \qquad (38)$$

Example: inhom. M. eq. $\nu = 1$ We do this example only in SI units. First we need to lift the indices of the field tensor

$$F^{\mu\nu} = \eta^{\mu\rho} \eta^{\nu\sigma} F_{\rho\sigma} = \begin{pmatrix} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{pmatrix},$$
(39)

where $(\eta^{\mu\nu}) = (\eta_{\mu\nu})^{-1}$ which happens to have the same matrix entries as $(\eta_{\mu\nu})$. Now we write down the inhomogeneous Maxwell equation for $\nu = 1$

$$\partial_{\mu}F^{\mu 1} = -\partial_0 \frac{E_x}{c} + \partial_2 B_z - \partial_3 B_y = -\frac{1}{c^2} \frac{\partial}{\partial t} E_x + \left(\nabla \times \vec{B}\right)_x = \mu_0 j_x. \tag{40}$$

Example: hom. M. eq. $\mu = 1, \nu = 2, \rho = 3$

$$-\partial_1 B_x - \partial_2 B_y - \partial_3 B_z = -\operatorname{div} \vec{B} = 0 \tag{41}$$

Action Finally we mention that the Maxwell equations can be derived form the action $\int \mathcal{L}(A, \partial A) d^4x$, where the integral goes over all of space-time, with the Lagrangian density

SI:
$$\mathcal{L} = -\frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu},$$
 cgs: $\mathcal{L} = -\frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} - \frac{1}{c} A_{\mu} j^{\mu}.$ (42)

References

[Graf] Lecture Notes Elektrodynamik FS08, Gian Michele Graf, ETH Zurich

[Renner] Lecture Notes Elektrodynamik 2010, Renato Renner, ETH Zurich