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1. Manifolds and tensor fields

1.1. Differentiable manifolds

A differentiable manifold M is “locally homeomorphic to R
n”, meaning it is defined

by the following elements:
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x x̄

M : topological space

xn

covering of M

continuous

chart K ⊂ R
n

x1 x̄1

by open sets (‘patches’)

maps

chart K ⊂ R
n

p

φ

x̄n

Within the shaded overlap region of two charts the change of coordinates x̄↔ x (transition
functions φ, φ−1) are differentiable any number of times. Definition: dimM = n.

Notions

• Differentiable functions f :M → R (algebra F = C∞(M))

• Fp: algebra of C∞-functions defined in any neighborhood of p (f = g means f(q) =
g(q) in some neighborhood of p)

• Differentiable curve γ : R →M

• Differentiable map: M →M ′

The notions are to be understood by means of a chart: e.g. f : M → R is differentiable
if x 7→ f(p(x)) ≡ f(x) is. This is independent of the chart representing a neighborhood
of p.

Tangent space Tp of the point p ∈M

A vector X ∈ Tp is a linear map Fp → R with the derivation property

X(fg) = (Xf)g(p) + f(p)(Xg) . (1.1)
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Tp is a linear space. In any chart (representing p) we have

Xf = X if,i(x) : X i = X(xi) ,

where ,i = ∂/∂xi and xi ∈ Fp denotes the coordinate function p 7→ xi. Note the summa-
tion convention: each index appearing once as upper and once as lower indexx is to be
summed over from 1 to n.

Proof. For f ≡ 1 we have f 2 = f , whence Xf = 2Xf = 0. Thus Xf = 0, if f is
constant. Let p have coordinates x = 0. The identity

f(x) = f(0) + xi
∫ 1

0

dtf,i(tx)

︸ ︷︷ ︸
gi(x)

implies by (1.1) Xf = X(xi) · gi(0) = X if,i(0). �

Directional derivative

Let γ(t) ∈M be a curve through γ(0) = p. Then γ defines a vector X ∈ Tp through

Xf =
d

dt
f(γ(t))

∣∣∣∣
t=0

, (1.2)

denoted by X = γ̇(0). In components:

X i =
dγi

dt

∣∣∣∣
t=0

(γi = coordinates of γ). One can thus regard a tangent vector X as an equivalence class
of curves through p sharing the same tangent vector there.

Basis of Tp

Tp has dimension n. In any basis (e1, . . . en) we have

X = X iei .

Change of basis:
ēi = φi

kek , X̄ i = φikX
k (1.3)

✻ ✻

inverse-transposed

In particular ei = ∂/∂xi is called coordinate basis (w.r.t. a chart). Upon change of
chart,

φi
k =

∂xk

∂x̄i
, φik =

∂x̄i

∂xk
. (1.4)

The cotangent space T ∗
p

Dual space of Tp: a covector ω ∈ T ∗
p is a linear form

ω : X 7→ ω(X) ≡ 〈ω,X〉 ∈ R ,
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where 〈·, ·〉 is called duality bracket. In particular, for any f ∈ Fp

df : X 7→ Xf

is an element of T ∗
p . The elements df = f,idx

i form a linear space of dimension n, hence
all of T ∗

p .

Basis (e1, . . . en) of T ∗
p :

ω = ωie
i .

In particular the dual basis (of a basis (e1, . . . en) of Tp) is given by

〈ei, X〉 = X i , or 〈ei, ek〉 = δik .

Thus ωi = 〈ω, ei〉. Upon changing the basis the ωi transform like the ei and the ei like
the X i (cf. (1.3)). In particular we have for the coordinate basis

ei =
∂

∂xi
, ei = dxi .

The change of basis then is

∂

∂x̄i
=
∂xk

∂x̄i
∂

∂xk
, dx̄i =

∂x̄i

∂xk
dxk .

Remark. Sometimes vectors X and covectors ω are called contravariant and covariant
vectors, respectively. This alludes to the transformation law of their components X i and
ωi, which is opposite (contra), respectively alike (co) that of the change of basis (ei).

Tensors on Tp

Tensors are multilinear forms on T ∗
p and Tp, e.g. a tensor T of type

(
1
2

)
(for short:

T ∈ ⊗1
2Tp): T (ω,X, Y ) is a trilinear form on T ∗

p×Tp×Tp. In particular⊗0
1Tp = T ∗

p , ⊗1
0Tp =

(T ∗
p )

∗ ∼= Tp, as well as ⊗0
0Tp = R. General tensors are of type

(
r
s

)
with r, s ∈ N and

sometimes called r times contravariant and s times covariant. They take as arguments r
and s vectors of the opposite kinds.

The tensor product is defined between tensors of any type, e.g.

T (ω,X, Y ) = R(ω,X) · S(Y ) : T = R⊗ S .

Components (w.r.t. a pair of dual bases)

T (ω,X, Y ) = T (ei, ej, ek)︸ ︷︷ ︸
≡T i

jk

ωiX
jY k

︸ ︷︷ ︸
ei(ω)ej(X)ek(Y )

,

hence
T = T ijkei ⊗ ej ⊗ ek .

Any tensor of this type can therefore be obtained as a linear combination of tensor prod-
ucts X ⊗ ω ⊗ ω′ with X ∈ Tp, ω, ω

′ ∈ T ∗
p , denoted as ⊗1

2Tp = Tp ⊗ T ∗
p ⊗ T ∗

p .

Change of basis

T
i
jk = T αβγφ

i
αφj

βφk
γ . (1.5)
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Trace

Any bilinear form b ∈ T ∗
p⊗Tp determines a linear form l ∈ (Tp⊗T ∗

p )
∗

such that

l(X ⊗ ω) = b(X,ω) .

Tp × T ∗
p

⊗
��

b // R

Tp ⊗ T ∗
p

l

<<
x

x
x

x
x

x
x

x
x

Proof. The map l 7→ b is one-to-one and on grounds of dimension also onto. �

In particular trT is a linear form on tensors T of type
(
1
1

)
defined by

tr(X ⊗ ω) = 〈ω,X〉 .

In components w.r.t. a dual pair of bases we have

trT = T ii .

Similarly,
T ijk 7→ Sk = T iik

defines for instance a map from tensors of type
(
1
2

)
to tensors of type

(
0
1

)
.

The tangent map

Let ϕ be a differentiable map M →M ; let p ∈M and p̄ = ϕ(p). Then ϕ induces a linear
map

ϕ∗ : Tp(M) → Tp̄(M) ,

called the tangent map of ϕ (or push forward), which we describe in two ways:

(a) For any f̄ ∈ Fp̄(M) set
(ϕ∗X)f̄ = X(f̄ ◦ ϕ) .

(b) Let γ be a representative of X (cf. (1.2)). Then let

γ = ϕ ◦ γ

be a representative of ϕ∗X. This agrees with (a), because

d

dt
f̄(γ(t))

∣∣
t=0

=
d

dt
(f̄ ◦ ϕ)(γ(t))

∣∣
t=0

.

W.r.t. bases (e1, . . . en) of Tp, (ē1, . . . , ēn̄) of Tp̄ reads X = ϕ∗X

X
i
= (ϕ∗)

i
kX

k

with (ϕ∗)
i
k = 〈ei, ϕ∗ek〉 or, in case of coordinate bases,

(ϕ∗)
i
k =

∂xi

∂xk
.

The adjoint map ϕ∗ (or pull back) of ϕ∗ is

ϕ∗ : T ∗
p̄ → T ∗

p , ω 7→ ϕ∗ω
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with
〈ϕ∗ω,X〉 = 〈ω, ϕ∗X〉 .

The same result is obtained from the definition

ϕ∗ : df̄ 7→ d(f̄ ◦ ϕ) , (f̄ ∈ F(M)) . (1.6)

In components, ω = ϕ∗ω reads
ωk = ωi(ϕ∗)

i
k .

Comparison with ωk = (ϕ∗)k
iωi gives (ϕ∗)k

i = (ϕ∗)
i
k: the matrices for ϕ∗ and ϕ∗ are

transposed.

Given a further map ψ :M →M one has

(ψ ◦ ϕ)∗ = ψ∗ϕ∗ , (ψ ◦ ϕ)∗ = ϕ∗ψ∗ , (1.7)

where the composition of linear maps is written without ◦.

From now on we limit ourselves to (local) diffeomorphisms. These are maps ϕ such that
ϕ−1 exists in an neighborhood of p̄, i.e.

dimM = dimM , det
( ∂xi
∂xk

)
6= 0 .

Then ϕ∗ and ϕ∗ are invertible and may be extended to tensors of arbitrary type. They
are naturally called pushforward, resp. pullback of ϕ.

Example. Type
(
1
1

)
:

(ϕ∗T )(ω,X) = T (ϕ∗ω, ϕ−1
∗ X) ,

(ϕ∗T )(ω,X) = T (ϕ∗−1ω, ϕ∗X) .

Here, ϕ∗, ϕ
∗ are each other’s inverse and we have

ϕ∗(T ⊗ S) = (ϕ∗T )⊗ (ϕ∗S) ,

tr(ϕ∗T ) = ϕ∗(trT )
(1.8)

(tr = any trace) and similarly for ϕ∗. In components T = ϕ∗T reads

T
i
k = T αβ

∂xi

∂xα
∂xβ

∂xk
(1.9)

(coordinate bases). This is formally the same as the transformation (1.5) when changing
basis.

1.2. Tensor fields

A vector field on M is a linear map X : F → F with the derivation property

X(fg) = (Xf)g + f(Xg) . (1.10)
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This implies that (Xf)(p) depends only on the equivalence class f ∈ Fp. Proof: From
f = 0 in a neighborhood U of p we conclude by means of a function g with supp g ⊂
U, g(p) = 1, that (Xf)(p) = 0. �

Hence, for any p ∈M
Xp : f 7→ (Xf)(p)

is a vector in Tp. In a chart we thus have

(Xf)(x) = X i(x)f,i(x) , i.e. X = X i(x)
∂

∂xi

with smooth componentsX i(x): vector fields are linear differential operators of first order.
The vector fields on M form a linear space on which the following operations are defined
as well

X 7→ fX (multiplication by f ∈ F) ,

X, Y 7→ [X, Y ] = XY − Y X (commutator) .

Indeed, [X, Y ], unlike XY , satisfies (1.10):

[X, Y ](fg) = X((Y f)g + f(Y g))− Y ((Xf)g + f(Xg))

= ([X, Y ]f)g + f([X, Y ]g) .

In components (coordinate basis):

(fX)i = fX i , [X, Y ]i = XjY i
,j − Y jX i

,j .

Moreover the Jacobi identity holds true

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 . (1.11)

1-forms (or covector fields) are “F -linear” maps

ω : X 7→ ω(X) ∈ F
from the space of vector fields to F , i.e.,

ω(X + Y ) = ω(X) + ω(Y ) ,

ω(fX) = fω(X) , (f ∈ F) .

This is stronger than mere linearity (f ❀ λ ∈ R). It implies that ω(X)(p) depends only
on Xp. Proof: chart: p ∈ U → R

n, p 7→ x = 0. Let supp f ⊂ U , f(p) = 1. If Xp = 0,
then ω(X)(p) = ω(f 2X)(p) = (fX i)(0)ω(f∂/∂xi) = 0, since X i(0) = 0. �

Thus, for any p ∈M a covector ωp ∈ T ∗
p is defined through

ω(X)(p) = 〈ωp, Xp〉 .
In any chart we then have

ω(X) = ωi(x)X
i(x) , i.e. ω = ωi(x)dx

i

(dxi : X 7→ X i, locally) with smooth components ωi(x). A word of caution: While every
covector ω ∈ T ∗

p is of the form ω = df (i.e. pointwise), this is not true for a 1-form ω
(in fact, not even locally). Indeed ωi = f,i implies ωi,j = ωj,i, which is false as a rule for
arbitrary components ωi(x).
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Tensor fields

Example: A tensor field R of type
(
1
2

)
is a function R(ω,X, Y ) of: ω (1-form), X, Y

(vector fields), taking values in F , which is F -linear in each variable. A tensor field can
also be viewed as a function

R : p ∈M 7→ Rp : tensor on Tp ,

which is smooth in terms of its components: In any chart we have

R(ω,X, Y ) = Ri
jk(x)ωi(x)X

j(x)Y k(x)

with smooth components Ri
jk(x). They transform according to (1.5, 1.4) under coordinate

changes.

Tangent map

(ϕ :M →M differentiable)

1-forms: ω 7→ ϕ∗ω. The 1-form ϕ∗ω on M is defined by (1.6) and F -linearity. Equiva-
lently,

(ϕ∗ω)p = ϕ∗ωϕ(p) .

Let henceforth ϕ be a diffeomorphism.

Vector fields: X 7→ ϕ∗X, a vector field on M :

(ϕ∗X)f = [X(f ◦ ϕ)] ◦ ϕ−1 ,

hence (ϕ∗X)p̄ = ϕ∗Xϕ−1(p̄). One readily verifies

ϕ∗(fX) = (f ◦ ϕ−1)ϕ∗X , ϕ∗[X, Y ] = [ϕ∗X,ϕ∗Y ] .

Tensor fields: R → ϕ∗R, (ϕ∗ = ϕ∗−1), e.g. R of type
(
1
1

)
:

(ϕ∗R)(ω,X) = R(ϕ∗−1ω, ϕ∗X) ◦ ϕ ,

resp.
(ϕ∗R)p = ϕ∗Rϕ(p) , (1.12)

i.e. ϕ∗ acts pointwise on the tensors of the field.

Flows and generating vector fields

A flow is a 1-parameter group of diffeomorphisms ϕt :M →M , (t ∈ R) with

ϕt ◦ ϕs = ϕt+s .

In particular ϕ0 = id. Moreover the orbits (or integral curves) of any point p ∈M

t 7→ ϕt(p) ≡ γ(t)

7



shall be differentiable. A flow determines a vector field X by means of

Xf =
d

dt
(f ◦ ϕt)

∣∣∣∣
t=0

, (1.13)

i.e. Xp =
d

dt
γ(t)

∣∣∣∣
t=0

= γ̇(0) ,

where γ̇(0) is the tangent vector to γ at the point p = γ(0). At the point γ(t) we then
have

γ̇(t) =
d

dt
ϕt(p) =

d

ds
(ϕs ◦ ϕt)(p)

∣∣∣∣
s=0

= Xϕt(p) .

i.e. γ(t) solves the ordinary differential equation (ODE)

γ̇(t) = Xγ(t) , γ(0) = p . (1.14)

The generating vector field thus determines the flow uniquely. (In general a vector field
may fail to generate a flow, because (1.14) may not admit global solutions (i.e. for all
t ∈ R). For most purposes “local flows” suffice, though.)

Remark. A vector field Y is pushed forward under ϕt∗ according to

d

dt
ϕt∗Y = −ϕt∗[X, Y ] . (1.15)

Indeed, by (1.7) we have

d

dt
ϕt∗Y =

d

ds
ϕt+s∗Y

∣∣∣
s=0

= ϕt∗

( d

ds
ϕs∗Y

∣∣∣
s=0

)

and we see that the case t = 0 suffices:

d

dt
(ϕt∗Y )f

∣∣∣
t=0

=
d

dt
Y (f ◦ ϕt) ◦ ϕ−t

∣∣∣
t=0

= Y
( d
dt
f ◦ ϕt

∣∣∣
t=0

)
+
d

dt
((Y f) ◦ ϕ−t)

∣∣∣
t=0

= Y Xf −XY f .

On the meaning of [X, Y ] = 0

Let ϕt be the flow generated by X. If [X, Y ] = 0, then

ϕt∗Y = Y , i.e. Yϕt(p) = ϕt∗Yp , (1.16)

by (1.15). Let now ψs be the flow generated by Y . By (1.16) we have

d

ds
ϕt(ψs(p)) = ϕt∗Yψs(p) = Yϕt(ψs(p)) ,

i.e. ϕt(ψs(p)) satisfies the ODE and the initial value for ψs(ϕt(p)). Hence they are the
same. The result is:

[X, Y ] = 0 ⇐⇒ ϕt ◦ ψs = ψs ◦ ϕt (1.17)

(if X, Y generate global flows). Actually, the above proves “⇒”, the other direction being
simpler.
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1.3. The Lie derivative

The derivative of a vector field V rests on the comparison of Vp and Vp′ at nearby points
p, p′. Since Vp ∈ Tp, Vp′ ∈ Tp′ belong to different spaces their difference can be taken only
after Vp′ has been transported to Tp. This can be achieved by means of the tangent map
ϕ∗ (Lie transport).

The Lie derivative LXR of a tensor field R in direction of a vector field X is defined by

LXR =
d

dt
ϕ∗
tR

∣∣∣
t=0

(1.18)

or, somewhat more explicitely, cf. (1.12),

(LXR)p =
d

dt
ϕ∗
tRϕt(p)

∣∣∣
t=0

.

Here, ϕt is the (local) flow generated by X, whence ϕ∗
tRϕt(p) is a tensor on Tp depending

on it. In order to express LX in components we write ϕt in a chart

ϕt : x 7→ x̄(t, x)

and linearize in small t:

x̄i = xi + tX i(x) + . . . , xi = x̄i − tX i(x̄) + . . . ,

hence
∂2x̄i

∂xk∂t
= − ∂2xi

∂x̄k∂t
= X i

,k (1.19)

at t = 0. As an example, let R be of type
(
1
1

)
. By (1.9) we then have

(ϕ∗
tR)

i
j(x) = Rα

β(x̄)
∂xi

∂x̄α
∂x̄β

∂xj
.

Taking a derivative w.r.t. t at t = 0 yields:

(LXR)
i
j = Ri

j,kX
k −Rα

jX
i
,α +Ri

βX
β
,j . (1.20)

Properties of LX

(a) LX is a linear map from tensor field to tensor fields of the same type
(b) LX(trT ) = tr(LXT ), (tr any trace)
(c) LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS)
(d) LXf = Xf, (f ∈ F)
(e) LXY = [X, Y ], (Y : vector field)
(f) (LXω)(Y ) = Xω(Y )− ω([X, Y ]), (ω 1-form)

Proof. (a) follows from (1.18), (b,c) from (1.8), (d) from (1.13) and (e) from (1.15) with
ϕ∗
t = ϕ−t∗ Finally, (f) follows from (a–e) by

(LXω)(Y ) = tr(LXω ⊗ Y ) = trLX(ω ⊗ Y )− trω ⊗ LXY = Xω(Y )− ω([X, Y ]) .

�
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Alternate definition of LX : For a given vector field X the properties (a–e) (which do
not refer to flows) determine LXR uniquely for any tensor field R. In particular, this
definition agrees with (1.18).

Proof. As noted, (f) follows from (a–e). By (c) LXR is defined for tensors of all types.
�

Further properties of LX

LX is linear in X

LX+Y = LX + LY , LλX = λLX , (λ ∈ R)

(but not F -linear, LfX 6= fLX , as a rule!) and

L[X,Y ] = LXLY − LYLX .

Proof. The r.h.s. of the last equation satisfies (a–c) and agrees with the l.h.s. on f ∈ F ,
as well as on vector fields Z, the latter because of (1.11). �

1.4. Differential forms

A p-form Ω is a totally antisymmetric tensor field of type
(
0
p

)
:

Ω(Xπ(1), . . . , Xπ(p)) = (sgn π)Ω(X1, . . . Xp)

for any permutation π of {1, . . . , p} : π ∈ Sp, with sgn π being its parity. In particular,
Ω ≡ 0 for p > dimM . Any tensor field of type

(
0
p

)
can be antisymmetrized by means of

the operation A:

(AT )(X1, . . . , Xp) =
1

p!

∑

π∈Sp

(sgn π)T (Xπ(1), . . . , Xπ(p)) . (1.21)

We have A2 = A. The exterior product of a p1-form Ω1 with a p2-form Ω2 is the
(p1 + p2)-form

Ω1 ∧ Ω2 =
(p1 + p2)!

p1!p2!
A(Ω1 ⊗ Ω2). (1.22)

Properties:

Ω1 ∧ Ω2 = (−1)p1p2 Ω2 ∧ Ω1

Ω1 ∧ (Ω2 ∧ Ω3) = (Ω1 ∧ Ω2) ∧ Ω3 =
(p1 + p2 + p3)!

p1!p2!p3!
A(Ω1 ⊗ Ω2 ⊗ Ω3)

Components: In a (local) basis of 1-forms (e1, . . . en)

Ω = Ωi1...ip e
i1 ⊗ . . .⊗ eip = AΩ

= Ωi1...ip A(ei1 ⊗ . . .⊗ eip)

= Ωi1...ip

1

p!
ei1 ∧ . . . ∧ eip (1.23)

= Ωi1...ip e
i1 ∧ . . . ∧ eip (when restricting the sum to i1 < . . . < ip).
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Examples: For 1-forms A,B we have

(A ∧B)ik = AiBk − AkBi .

For a 2-form A and 1-form B,

(A ∧ B)ikl = AikBl + AklBi + AliBk , (1.24)

because

A ∧ B = AikBl
1

2
ei ∧ ek ∧ el = (AikBl + zykl.)︸ ︷︷ ︸

(A ∧ B)ikl

1

6
ei ∧ ek ∧ el ,

since the bracket is totally antisymmetric.

The exterior derivative of a differential form

The derivative df of a 0-form f ∈ F is the 1-form df(X) = Xf : the argument X acts as
a derivation. The derivative dΩ of a 1-form Ω is

dΩ(X1, X2) = X1Ω(X2)−X2Ω(X1)− Ω([X1, X2]) .

The last term ensures that dΩ is a 2-form, being F -linear in X1, X2:

dΩ(fX1, X2) = fX1Ω(X2)−X2Ω(fX1)− Ω([fX1, X2])

= fX1Ω(X2)−
(
(X2f)Ω(X1) + fX2Ω(X1)

)
− Ω(f [X1, X2] + (X2f)X1)

= fdΩ(X1, X2) . (1.25)

On Ω ∧ f = fΩ the product rule d(Ω ∧ f) = dΩ ∧ f − Ω ∧ df applies, since

d(Ω ∧ f)(X1, X2) = X1(fΩ)(X2)−X2(fΩ)(X1)− (fΩ)([X1, X2])

= fdΩ(X1, X2)− Ω(X1)f(X2) + Ω(X2)f(X1) . (1.26)

Moreover we have d2f = 0, because

d2f(X1, X2) = X1df(X2)−X2df(X1)− df([X1, X2])

= X1X2f −X2X1f − [X1, X2]f = 0 . (1.27)

The generalization of the definition to p-forms Ω is

dΩ(X1, . . . Xp+1) =

p+1∑

i=1

(−1)i−1XiΩ(X1, . . . X̂i, . . . Xp+1)

+
∑

i<j

(−1)i+jΩ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xp+1) , (1.28)

where ̂ denotes omission. Analogously to (1.25-1.27) one shows the

Properties of d

(a) d is a linear map from p-forms to (p+ 1)-forms
(b) d(Ω1 ∧ Ω2) = dΩ1 ∧ Ω2 + (−1)p1Ω1 ∧ dΩ2

11



(c) d2 = 0, i.e. d(dΩ) = 0
(d) df(X) = Xf , (f ∈ F)

Alternate definition of d: By means of (a–d), hence without reference to commutators.

Proof. We need to show that d is defined on all p-forms Ω. By (1.23) we have w.r.t. a
coordinate basis

Ω =
1

p!
Ωi1...ip dx

i1 ∧ . . . ∧ dxip , (1.29)

hence

dΩ =
1

p!
dΩi1...ip ∧ dxi1 ∧ . . . ∧ dxip .

�

Components: (,i = ∂/∂xi)

p!dΩ = Ωi1i2...ip,i0dx
i0 ∧ . . . ∧ dxip

= −Ωi0i2...ip,i1dx
i0 ∧ . . . ∧ dxip

= (−1)kΩi0...̂ik...ip,ik
dxi0 ∧ . . . ∧ dxip , (k = 0, . . . p) ,

dΩ =

p∑

k=0

(−1)kΩi0...̂ik...ip,ik

︸ ︷︷ ︸
(dΩ)i0...ip

1

(p+ 1)!
dxi0 ∧ . . . ∧ dxip . (1.30)

Examples:

p = 1 :

p = 2 :

(dΩ)ik =Ωk,i − Ωi,k , (1.31)

(dΩ)ikl =Ωik,l + Ωkl,i + Ωli,k . (1.32)

Further properties: For any map ϕ :M → N ,

ϕ∗ ◦ d = d ◦ ϕ∗ . (1.33)

Proof. Because of (1.29, 1.8) and property (b) it suffices to verify (1.33) on:

0-forms f̄ : (1.33) is identical to (1.6);
1-forms, which are differentials df̄ : because of (c) we have

(ϕ∗ ◦ d)(df̄) = 0 , (d ◦ ϕ∗)(df̄) = d(ϕ∗ ◦ df̄) = (d2 ◦ ϕ∗)(f̄) = 0 .

�

Setting ϕ = ϕt (the flow generated by X) and forming d/dt
∣∣
t=0

, one obtains the infinites-
imal version of (1.33):

LX ◦ d = d ◦ LX . (1.34)

Definition. A p-Form ω with

• ω = dη is exact;
• dω = 0 is closed.

12



The implication “ω exact ⇒ ω closed” holds true, but the converse generally not. A local
converse is the Poincaré lemma:

Lemma. Let G ⊂ M be an open domain in a “star-shaped” chart. Any point in the
chart is connected to the origin by a straight line lying in the chart. Let ω be a p-form
with dω = 0 in G. Then there exists a (p− 1)-form η such that

ω = dη .

Proof. See p. 15.

Remark. Obviously, η is not unique, since “gauge transformations” η → η + dρ, with ρ
any (p− 2)-form, leave dη unchanged.

The integral of an n-form

Let an orientation be given on M : an atlas of “positively oriented” charts, i.e.

det

(
∂x̄i

∂xj

)
> 0 (1.35)

for any change of coordinates. (Not every manifold is orientable; example: the Möbius
strip). An n-form ω, (n = dimM),

ω = ωi1...in
1

n!
dxi1 ∧ . . . ∧ dxin = ω1...n︸︷︷︸

ω(x)

dx1 ∧ . . . ∧ dxn

is determined by the single component ω(x); under a change of coordinates it transforms
as

ω̄(x̄) = ω̄1...n = ωi1...in
∂xi1

∂x̄1
. . .

∂xin

∂x̄n
= ω(x) det

(
∂xi

∂x̄j

)
. (1.36)

The integral of an n-form is defined as follows. If suppω is contained in a (positive)
chart, we set ∫

M

ω =

∫
dx1 . . . dxnω(x1 . . . xn) .

For suppω in the intersection of two charts,
∫
ω is independent of the one used by (1.35,

1.36) and ∫
dx1 . . . dxnω(x) =

∫
dx̄1 . . . dx̄nω(x)

∣∣∣∣ det
(∂xi
∂x̄j

)∣∣∣∣ .

For arbitrary ω of compact support we define

∫

M

ω =
∑

k

∫
hkω . (1.37)

Here {hk} is a partition of unity on M :

hk ∈ F , hk ≥ 0 ,
∑

k

hk = 1
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such that each supphk is contained in some chart (such partitions do exist). The inde-
pendence of (1.37) on the choice of the partition is seen by considering the refinement
{hkgl} of two partitions {hk}, {gl}.

Remark. Upon reversing the orientation,
∫
M
ω changes sign.

The Stokes Theorem

A(n-dimensional) manifold with boundary is locally homeomorphic to R
n− = {(x1 . . .

xn) ∈ R
n | x1 ≤ 0}:

x

x1 x1

x2, . . . xn

M

∂M

p

p̃

x̃

x2, . . . xn

The boundary ∂M consists of those p ∈ M ,
whose image x in some (and hence any) chart
satisfies x1 = 0.

Orientation of the boundary: an orienta-
tion on M induces one on ∂M : If (x1 . . . xn)
is a positive chart for U ⊂M , then (x2 . . . xn)
is one on ∂M ∩ U . (Show the consistency of
this definition.)

Stokes Theorem: Let M , (dimM = n), be an oriented manifold with boundary. Then,
for any (n− 1)-form ω: ∫

M

dω =

∫

∂M

ω . (1.38)

Proof. Let {hk} be a partition of unity on M . We decompose ω =
∑

k hkω. We then
need to prove (1.38) in two special cases:

(a) suppω lies in a chart without boundary. Then (cf. (1.30))

∫

M

dω =

∫
dx1 . . . dxn

n∑

k=1

(−1)k−1ω1...k̂...n,k = 0 .

(b) suppω lies in a chart with boundary. Then

∫

M

dω =

∫
dx1 . . . dxn

n∑

k=1

(−1)k−1ω1...k̂...n,k =

∫
dx1 . . . dxnω2...n,1

=

∫
dx2 . . . dxnω(0, x2, . . . xn) =

∫

∂M

ω ,

since (x2 . . . xn) is a positively oriented chart of ∂M . �

The inner product of a p-form

Let X be a vector field on M . For any p-form Ω let

(iXΩ)(X1, . . . , Xp−1) = Ω(X,X1, . . . , Xp−1) , (1.39)
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(= 0 if p = 0).

Properties

(a) iX is a linear map from p-forms to (p− 1)-forms
(b) iX(Ω

1 ∧ Ω2) = (iXΩ
1) ∧ Ω2 + (−1)p1Ω1 ∧ iXΩ2

(c) i2X = 0
(d) iXdf = Xf , (f ∈ F)
(e) LX = iX ◦ d+ d ◦ iX
Proof. (a–d) are straightforward. It suffices to verify (e) on:

0-forms f : both sides equal Xf .
1-form, which are differentials df : both sides equal d(Xf) because of (1.34). �

Applications:

1) The Gauss Theorem:
The manifold M is oriented iff there is an n-form η with ηp 6= 0 for all p ∈ M (“volume
form”). Let X be a vector field. Then d(iXη) is a n-form and a function divηX ∈ F is
defined through

(divηX)η = d(iXη) (1.40)

(also = LXη, because of (e)). The Stokes Theorem immediately implies the Gauss
Theorem: ∫

M

(divηX)η =

∫

∂M

iXη .

In a chart:

(iXη)i2...in = Xaηa i2...in

d(iXη)1...n =
n∑

k=1

(−1)k−1
(
Xaηa 1...k̂...n︸ ︷︷ ︸

(−1)k−1Xkη1...n

)
,k
=

(
Xkη1...n

)
,k

hence, setting again η(x) ≡ η1...n(x),

divηX =
1

η
(ηXk),k . (1.41)

For the integral
∫
∂D
iXη (only boundary charts contribute, see figure on p. 14) we obtain:

∫

∂M

iXη =

∫
dx2 . . . dxn(iXη)2...n (0, x2, . . . , xn) =

∫
dx2 . . . dxn(ηX1)(0, x2, . . . , xn)

because (x2, . . . , xn) is a positively oriented chart of ∂M .

2) Proof of the Poincaré lemma: By using a chart we may assume U ⊂ R
n and thus

identify Tx ∼= R
n. We shall construct a map T from p- to (p− 1)-forms on U with

(T ◦ d+ d ◦ T )ω = ω
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(ω: arbitrary p-form). For dω = 0 this implies dη = ω for η = Tω, as claimed. Construc-
tion of T :

(Tω)x =

∫ 1

0

tp−1(iXω)txdt , (x ∈ U) ,

where X is the vector field with components X i(x) = xi. Then (e) implies

[(Td+ dT )ω]x =

∫ 1

0

tp−1(LXω)tx dt . (1.42)

Here LXω = (x∇)ω + pω because by (1.20) we have

(LXω)i1...ip = xkωi1...ip,k +

p∑

j=1

ωi1...k...ip X
k
,ij︸ ︷︷ ︸

δkij

.

✻

j-th position

Moreover we have [(x∇)ω]tx = tx(∇ω)tx = t d
dt
ωtx, hence

tp−1(LXω)tx = tp
d

dt
ωtx + ptp−1ω =

d

dt
(tpωtx)

and (1.42) equals ωx. �
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2. Affine connections

2.1. Parallel transport and covariant derivative

Definition: Any curve γ in M is equipped with a parallel transport of vectors:

γ

γ(t)

γ(s)

τ(t, s)
τ(t, s) : Tγ(s) → Tγ(t)

is a linear map with

τ(t, t) = 1, τ(t, s)τ(s, r) = τ(t, r) . (2.1)

In any chart we shall have

∂

∂t
τ ik(t, s)

∣∣∣
t=s

= −Γilk(γ(s))γ̇
l(s) . (2.2)

Remarks. 1) The Lie transport ϕt∗ along an orbit of Y is not of the form (2.2): Infinites-
imally it is

d

dt
(ϕt∗)

i
k

∣∣∣
t=0

= Y i
,k ,

by (1.19), which is not expressible solely by its tangent vector γ̇l(0) = Y l(x).

2) A parallel transported vector X(t) = τ(t, s)X(s) ∈ Tγ(t) solves, in a chart, the differ-
ential equation

Ẋ i(s) = −Γilk(γ(s))γ̇
l(s)Xk(s) . (2.3)

The Ẋ i are not the components of a vector, hence the Christoffel symbols Γilk(x) not
those of a tensor (s. below).

3) Equation (2.3) states, that the Ẋ i are linear in γ̇l, Xk. Because of this property (which
is independent of the chart) τ(t, s) does not depend on the parameterization of γ (but
also not just on the endpoints γ(s), γ(t)).

4) Because of (2.1) we also have

∂

∂s
τ ik(t, s)

∣∣∣
s=t

= Γilk(γ(t))γ̇
l(t) . (2.4)

5) Upon changing chart,

τ ik(t, s) = τ pq(t, s)
∂x̄i

∂xp

∣∣∣
γ(t)

∂xq

∂x̄k

∣∣∣
γ(s)

.

Applying ∂
∂s

∣∣
s=t

and (2.4) implies

Γ
i
lk ˙̄γ

l = Γprq γ̇r︸︷︷︸
∂xr

∂x̄l
˙̄γl

∂x̄i

∂xp
∂xq

∂x̄k
+ δpq

∂x̄i

∂xp
∂2xq

∂x̄k∂x̄l
˙̄γl ,

hence:

Γ
i
lk(x) = Γprq(x)

∂x̄i

∂xp
∂xq

∂x̄k
∂xr

∂x̄l
+
∂x̄i

∂xp
∂2xp

∂x̄k∂x̄l
. (2.5)
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Conversely, a field Γilk(x) with this transformation law determines a parallel transport
along any curve γ(t) by means of the differential equation (2.2).

The parallel transport is extended to tensors by means of the requirements

τ(t, s)(T ⊗ S) = (τ(t, s)T )⊗ (τ(t, s)S) ,

τ(t, s)(trT ) = tr(τ(t, s)T ) , (tr = any trace)

τ(t, s)c = c , (c ∈ R) ,

so e.g. for a covector ω

〈τ(t, s)ω, τ(t, s)X〉γ(t) = 〈ω,X〉γ(s)

and for a tensor T of type
(
1
1

)

(τ(t, s)T )(τ(t, s)ω, τ(t, s)X) = T (ω,X) . (2.6)

In components:
(τ(t, s)T )ik = T αβτ

i
α(t, s)τk

β(t, s)

with (τi
k) the inverse-transposed of (τ ik) .

The covariant derivative ∇X (X: vector field, T : tensor field) associated to τ is

(∇XT )p =
d

dt
τ(0, t)Tγ(t)

∣∣∣
t=0

, (2.7)

where γ(t) is any curve through p = γ(0) with γ̇(0) = Xp.

Properties

(a) ∇X is a linear map from tensor fields to tensor fields of the same type
(b) ∇Xf = Xf
(c) ∇X(trT ) = tr(∇XT ), (tr = any trace)
(d) ∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗∇XS

They follow from the corresponding properties of τ(t, s). For a 1-form ω we have

(∇Xω)(Y ) = tr(∇Xω ⊗ Y ) = tr∇X(ω ⊗ Y )− tr(ω ⊗∇XY )

= ∇X tr(ω ⊗ Y )− ω(∇XY ) = Xω(Y )− ω(∇XY ) . (2.8)

We write the general differentiation rule for a tensor field of type
(
1
1

)

(∇XT )(ω, Y ) = XT (ω, Y )− T (∇Xω, Y )− T (ω,∇XY ) . (2.9)

It is obvious from (2.8, 2.9) and (a–d) that the operation ∇X is completely determined
by its action on vector fields Y . The latter is called an affine connection:

(i) ∇XY is a vector field depending linearly on X, Y
(ii) ∇XY is F -linear in X:

∇fXY = f∇XY , (f ∈ F) . (2.10)
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(iii) ∇X(fY ) = f∇XY + (Xf)Y

Proof. (iii) is a special case of (d); (ii) is verified by means of its representation in a chart

(∇XY )i =
d

dt
τ ik(0, t)Y

k(x1 + tX1 +O(t2), . . .)
∣∣∣
t=0

= (Y i
,l + ΓilkY

k)X l (2.11)

where we used (2.4) and γl(t) = xl + tX l +O(t2). Incidentally, this shows that any curve
γ conforming with (2.7) yields the same result. �

Conversely any affine connection entails a parallel transport (bijectively): In any chart
with coordinate basis (e1, . . . en) we have

∇XY = ∇X(Y
iei) = (XY i)ei + Y k(∇Xek)

= Y i
,lX

lei + Y kX l∇elek

which, after defining
Γilk(x) = 〈ei,∇elek〉 , (2.12)

agrees with (2.11). One can show that (2.12) transforms according to (2.5), and hence
defines a parallel transport.

The covariant derivative ∇

Example: By (2.9) (∇XT )(ω, Y ) is F -linear in all 3 variables ω, Y , X, and this defines
a tensor field of type

(
1
2

)
through

(∇T )(ω, Y,X) = (∇XT )(ω, Y ) .

The notation
T ik;l ≡ (∇T )ikl

for its components is customary, but a bit dangerous: for fixed i, k, T ik;l is not determined
by the sole component T ik(x)! Examples:

Y i
;k = Y i

,k + ΓiklY
l ,

ωi;k = ωi,k − ωlΓ
l
ki ,

T ik;r = T ik,r + ΓirlT
l
k − ΓlrkT

i
l .

2.2. Torsion and curvature

Let an affine connection be given on M , let X, Y, Z be vector fields. Definitions:

T (X, Y ) = ∇XY −∇YX − [X, Y ] ,

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] .

To begin with, the torsion T (X, Y ) is a vector field and the curvature R(X, Y ) a linear
map from tensor fields to tensor fields of the same type. They are both antisymmetric in
X, Y . Moreover, they have however tensorial character:

• T (X, Y ) is F -linear in X, Y and thus defines a tensor of type
(
1
2

)
through

(ω,X, Y ) 7→ 〈ω, T (X, Y )〉 ,

called torsion tensor.
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• The vector field R(X, Y )Z is F -linear in X, Y, Z. Therefore R determines a tensor
of type

(
1
3

)
(curvature or Riemann tensor):

(ω, Z,X, Y ) 7→ 〈ω,R(X, Y )Z〉 ≡ Ri
jklωiZ

jXkY l .

Proof. We have
[fX, Y ] = f [X, Y ]− (Y f)X .

Thus

T (fX, Y ) = f∇XY − f∇YX − (Y f)X − f [X, Y ] + (Y f)X = fT (X, Y ) ,

R(fX, Y ) = f∇X∇Y −∇Y f∇X︸ ︷︷ ︸
−f∇Y∇X − (Y f)∇X

−f∇[X,Y ] + (Y f)∇X = fR(X, Y )

with cancellation of the underlined terms. The F -linearity in Z of R(X, Y )Z follows from
(d) of the next proposition. �

Proposition:

(a) R(X, Y )f = 0
(b) R(X, Y )(S ⊗ T ) = (R(X, Y )S)⊗ T + S ⊗ (R(X, Y )T )
(c) trR(X, Y )T = R(X, Y ) trT , (tr without contraction involving X or Y )
(d)

〈ω,R(X, Y )Z〉 = −〈R(X, Y )ω, Z〉 . (2.13)

Proof. (a) R(X, Y )f = X(Y f) − Y (Xf) − [X, Y ]f = 0; (b) follows from the product
rule for ∇X (property (d)); (c) from (c) for ∇X ; (d) From (a–c) we have

0 = R(X, Y )〈ω, Z〉 = R(X, Y ) tr(Z ⊗ ω〉 = trR(X, Y )(Z ⊗ ω)

= tr(R(X, Y )Z ⊗ ω) + tr(Z ⊗R(X, Y )ω) = 〈ω,R(X, Y )Z〉+ 〈R(X, Y )ω, Z〉 .

�

Components (w.r.t. a coordinate basis ei = ∂/∂xi, ei = dxi). From [ei, ej] = 0 we have

T kij = 〈ek,∇eiej −∇ejei〉 = Γkij − Γkji . (2.14)

In particular we have

T = 0 ⇐⇒ Γkij = Γkji ,

Ri
jkl = 〈ei, (∇ek∇el −∇el∇ek)ej〉 = 〈ei,∇ek(Γ

s
ljes)−∇el(Γ

s
kjes)〉

= Γilj,k − Γikj,l + ΓsljΓ
i
ks − ΓskjΓ

i
ls . (2.15)

Bianchi identities for the special case of vanishing torsion, T = 0:

1)

2)

R(X, Y )Z + cycl. = 0 , (2.16)

(∇XR)(Y, Z) + cycl. = 0 .
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Proof. 1) Let us write X1 = X, X2 = Y, X3 = Z and suppress the sum over i = 1, 2, 3
from the notation:

R(Xi, Xi+1)Xi+2 = ∇Xi
∇Xi+1

Xi+2︸ ︷︷ ︸−∇Xi+1
∇Xi

Xi+2︸ ︷︷ ︸−∇[Xi,Xi+1]Xi+2

cyclic permutation ∇Xi+2
∇Xi

Xi+1 ∇Xi+2
∇Xi+1

Xi︸ ︷︷ ︸
T = 0 : ∇Xi+2

[Xi, Xi+1]

hence, R(Xi, Xi+1)Xi+2 = [Xi+2, [Xi, Xi+1]] = 0 because of (1.11).

2)

(∇Xi
R)(Xi+1, Xi+2) = ∇Xi

R(Xi+1, Xi+2)−R(Xi+1, Xi+2)∇Xi

−R(∇Xi
Xi+1, Xi+2)−R(Xi+1,∇Xi

Xi+2) ,

∣∣∣∣∣
I

II

where, through cyclic permutation,

I = ∇Xi
∇Xi+1

∇Xi+2
−∇Xi

∇Xi+2
∇Xi+1

−∇Xi
∇[Xi+1,Xi+2]

−∇Xi+1
∇Xi+2

∇Xi
+∇Xi+2

∇Xi+1
∇Xi

+∇[Xi+1,Xi+2]∇Xi

= R([Xi+1, Xi+2], Xi) +∇[[Xi+1,Xi+2],Xi]︸ ︷︷ ︸
=0

,

II = −R(∇Xi+1
Xi+2, Xi) +R(∇Xi

Xi+2, Xi+1)

= −R(∇Xi+1
Xi+2, Xi) +R(∇Xi+2

Xi+1, Xi) = −R([Xi+1, Xi+2], Xi) .

�

In component notation:

1)

2)

Ri
jkl + cycl. (jkl) = 0 ,

Ri
jkl;m + cycl. (klm) = 0 .

On the meaning of curvature

Let X, Y be vector fields with correspond-
ing flows ϕt, ψs satisfying [X, Y ] = 0. Then
R(X, Y ) = ∇X∇Y−∇Y∇X and ϕt◦ψs = ψs◦ϕt,
see (1.17). Let τX(t) : Tp → Tϕt(p) be the paral-
lel transport along the orbit ϕt′(p), (0 ≤ t′ ≤ t),
of X, and similarly for τY (s). By (2.7) we have
(d/dt)τX(t)Z|t=0 = −∇XZ for a vector field Z.
We transport Z along a small loop consisting of
orbits and obtain

t
XZ

s Z(t, s)
Y

Z(t, s) := τY (−s)τX(−t)τY (s)τX(t)Z .
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Since Z(t, s) = Z for t = 0 or s = 0, the lowest order term of the Taylor expansion
Z(t, s)− Z is proportional to ts. With

∂

∂t
Z(t, s)

∣∣∣
t=0

= τY (−s)∇XτY (s)Z −∇XZ ,

∂2

∂s∂t
Z(t, s)

∣∣∣
t=s=0

= (∇Y∇X −∇X∇Y )Z = −R(X, Y )Z .

we find
Z(t, s) = Z − tsR(X, Y )Z +O(|(t, s)|3) :

The curvature measures the deviation of a vector, before and after the transport around
the loop.

On the meaning of torsion

The parallel transport τ allows to relate a path γ(t) in the manifold M , going through
γ(0) = p, with a path Γ(t) in the tangent space Tp, going through Γ(0) = 0; in fact by
means of

Γ̇(t) = τ(0, t)γ̇(t) (2.17)

by noticing: Since Tp is a linear space (unlike M), the derivative Γ̇(t) is well-defined in
Tp. On the r.h.s. γ̇(t) ∈ Tγ(t) is transported by τ(0, t) back to Tp along the curve already
traced, i.e. γ(t′), (0 ≤ t′ ≤ t).

For a closed path γ its counterpart Γ does not need to be closed. We discuss this based
on the figure used in the previous item. Let X, Y be as there, whence T (X, Y ) = ∇XY −
∇YX. The (closed) path γ is determined by t, s and let Γ(t, s) ∈ Tp be the endpoint of Γ.
Eq. (2.17) is to be integrated along the four sides of the path. We group the contributions
from the two sides in direction of X, resp. Y :

Γ(t, s) = ΓX(t, s) + ΓY (t, s) ,

ΓX(t, s) =

∫ t

0

Γ̇X(t, s; t
′)dt′ ,

Γ̇X(t, s; t
′) = τX(0, t

′)X+(t
′)− τX(0, t)τY (0, s)τX(t, t

′)X−(t
′)

with X+(t
′) = Xϕt′ (p)

and X−(t
′) = Xϕt′−t◦ψs◦ϕt(p) being the vector field X along the near

resp. far side w.r.t. p or, equivalently, along the sides oriented positively resp. negatively
w.r.t. X. (The term ΓY is likewise defined.) Like Z(t, s)−Z in the discussion of curvature,
the Taylor expansion of Γ(t, s) begins with ts. We have

∂

∂t
ΓX(t, s)

∣∣∣
t=0

= Γ̇X(0, s; 0) = Xp − τY (0, s)Xψs(p) ,

∂2

∂s∂t
ΓX(t, s)

∣∣∣
t=s=0

= − ∂

∂s
τY (0, s)Xψs(p) = −∇YX ;

and likewise (∂2/∂t∂s)ΓY (t, s)|t=s=0 = ∇XY with the opposite sign because the near side
is negatively oriented here. Thus,

Γ(t, s) = tsT (X, Y ) +O(|(t, s)|3) :

The torsion measures the failure of the tangent vectors of a loop to add up to zero.
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2.3. The Cartan structure equations

Let (e1, . . . en), (e
1, . . . en) be any pair of dual bases of (local) vector fields, resp. 1-forms,

i.e. not necessarily coordinate bases. For a given connection ∇ we define the connection
forms ωik by

ωik(X) = 〈ei,∇Xek〉 , (2.18)

resp. ∇Xek = ωik(X)ei. The ωik are 1-forms because of (2.10). Conversely, any set of
1-forms ωik defines a connection through

∇XY = ∇X(Y
kek) =

[
XY i + Y kωik(X)︸ ︷︷ ︸

(∇XY )i

]
ei . (2.19)

From ∇X〈ei, ek〉 = ∇Xδ
i
k = 0 we have

〈∇Xe
i, ek〉 = −ωik(X) .

These equations allow to express the components w.r.t that basis of the covariant deriva-
tive of any tensor field, e.g. of a 1-form Ω

(∇XΩ)i = XΩi − ωki(X)Ωk .

Remarks. 1) As the pair of bases changes, ēi = φi
kek, ē

i = φike
k, so do the connection

forms
ωik = φilφk

rωlr + φildφk
l .

2) In a coordinate basis we have (cf. (2.12))

ωik(el) = Γilk , (2.20)

hence
ωik(X) = ΓilkX

l , i.e. ωik = Γilkdx
l .

Definition

T i(X, Y ) = 〈ei, T (X, Y )〉 , (Torsion forms) ,

Ωi
k(X, Y ) = 〈ei, R(X, Y )ek〉 , (Curvature forms) .

These 2-forms are determined by the connection forms:

Cartan structure equation

T i = dei + ωik ∧ ek ,
Ωi

k = dωik + ωil ∧ ωlk .
(2.21)

Proof. From (1.28) we have

dei(X, Y ) = Xei(Y )− Y ei(X)− ei([X, Y ]) ,

whereas (2.19), i.e.,
ei(∇XY ) = Xei(Y ) + (ωik ⊗ ek)(X, Y ) ,
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implies
T i(X, Y ) = (ωik ∧ ek)(X, Y ) +Xei(Y )− Y ei(X)− ei([X, Y ])︸ ︷︷ ︸

dei(X, Y )

since ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1 for 1-forms, cf. (1.22). The 2nd structure equations
follows similarly from (2.18), i.e.,

∇Y ek = ωlk(Y )el ,

and from (2.19), giving

ei(∇X∇Y ek) = Xωik(Y ) + ωil(X)ωlk(Y )

and hence

Ωi
k(X, Y ) = ei((∇X∇Y −∇Y∇X −∇[X,Y ])ek)

= (ωil ∧ ωlk)(X, Y ) +Xωik(Y )− Y ωik(X)− ωik([X, Y ])︸ ︷︷ ︸
dωik(X, Y )

.

�

Components
T ijk = T i(ej, ek) ; Ri

jkl = Ωi
j(ek, el) , (2.22)

resp.

T i =
1

2
T ijke

j ∧ ek ; Ωi
j =

1

2
Ri

jkle
k ∧ el .

Remark: In a coordinate basis (i.e., ei = dxi, dei = 0, eqs. (2.22, 2.21, 2.20) allow to
recover (2.14, 2.15).

Finally we write once more the Bianchi identities, again for the case of vanishing torsion
T = 0, but this time in the Cartan formalism

1)

2)

Ωi
k ∧ ek = 0 ,

dΩi
k = Ωi

l ∧ ωlk − ωil ∧ Ωl
k .

Proof. 1) The exterior derivative of the first eq. (2.21) yields, because of T i = 0,

0 = d(ωik ∧ ek) = dωik︸︷︷︸
(2.21): Ωi

k − ωil ∧ ωlk

∧ek − ωik ∧ dek︸︷︷︸
−ωkl ∧ el

hence
Ωi

k ∧ ek = ωil ∧ ωlk ∧ ek − ωik ∧ ωkl ∧ el = 0 .

2) The exterior derivative of the second eq. (2.21) yields

dΩi
k = dωil︸︷︷︸
Ωi

l − ωij ∧ ωj l

∧ωlk − ωil ∧ dωlk︸︷︷︸
Ωl

k − ωlj ∧ ωjk

= Ωi
l ∧ ωlk − ωil ∧ Ωl

k .

�

One checks, e.g. by using a coordinate basis, that the above form of the Bianchi identities
agrees with the one seen previously.
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3. Pseudo-Riemannian manifolds

3.1. Metric

Let M be equipped with a pseudo-Riemannian metric: a symmetric, non-degenerate
tensor field

g(X, Y ) ≡ (X, Y )

of type
(
0
2

)
. Non-degenerate means that for any p ∈M and (X, Y ∈ Tp) one has

gp(X, Y ) = 0 , ∀Y ∈ Tp ⇒ X = 0 . (3.1)

In particular, a vector X ∈ Tp is determined by the values gp(X, Y ), (Y ∈ Tp).

In components:
(X, Y ) = gikX

iY k

with gik = gki and det(gik) 6= 0.

In passing we remark that the metric is called Riemannian, if (3.1) is replaced by the
stronger condition, known as positivity (X ∈ Tp):

gp(X,X) ≥ 0 and gp(X,X) = 0 ⇒ X = 0 .

It will not be assumed here.

The metric allows to identify vector fields with 1-forms:

X 7→ gX , ω 7→ g−1ω (3.2)

by means of
〈gX, Y 〉 = (X, Y ) , (g−1ω, Y ) = 〈ω, Y 〉 .

The maps (3.2) are called lowering, resp. raising indices, because for X̃ = gX, ω̃ =
g−1ω we have

X̃i = gikX
k , ω̃i = gikωk ,

where (gik) denotes the inverse of the matrix (gik). We henceforth suppress the ˜ and
speak of X i and Xi as of the contravariant, resp. covariant components of the same vector
X. By the same token we can identify different types of tensor fields having the same
number of indices. In components (e.g.):

T ik = Tlkg
il = T ilglk .

(Note the consistency of gik as obtained from gik by inversion resp. by raising both
indices.) Finally, given a basis (e1, . . . en) of Tp, the covectors of the dual basis (e

1, . . . en)
become themselves vectors in Tp; actually, we have

ei = gije
j ,

as seen by comparing (ei, X) = gijX
j with (ej, X) = 〈ej, X〉 = Xj . It is not possible to

pick a self-dual basis, ei = ei, not even at a point. In fact that would imply gij = δij and
hence positivity of the metric. See however Sect. 3.3.
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3.2. The Levi-Civita connection

The metric distinguishes an affine connection, called Levi-Civita (or Riemann) connec-
tion.

Theorem: There is a unique connection with vanishing torsion, T = 0, and

∇g = 0 . (3.3)

It is given by

2(∇XY, Z) = X(Y, Z)+Y (Z,X)−Z(X, Y )−([Y, Z], X)+([Z,X], Y )+([X, Y ], Z) . (3.4)

Proof: uniqueness: because of (3.3) we have

0 = ∇g(Xi, Xi+1, Xi+2) = (∇Xi+2
g)(Xi, Xi+1)

= Xi+2g(Xi, Xi+1)− g(∇Xi+2
Xi, Xi+1)− g(Xi,∇Xi+2

Xi+1)︸ ︷︷ ︸
g(∇Xi+2

Xi+1, Xi)

(3.5)

By taking the combination (3.5)i+1 + (3.5)i+2 − (3.5)i, we obtain

0 = Xig(Xi+1, Xi+2) +Xi+1g(Xi+2Xi)−Xi+2g(Xi, Xi+1)

− g(∇Xi+1
Xi+2 −∇Xi+2

Xi+1︸ ︷︷ ︸
[Xi+1,Xi+2]

, Xi) + g(∇Xi+2
Xi −∇Xi

Xi+2︸ ︷︷ ︸
[Xi+2,Xi]

, Xi+1)

− g(∇Xi
Xi+1 +∇Xi+1

Xi︸ ︷︷ ︸
2∇Xi

Xi+1−[Xi,Xi+1]

, Xi+2) , (3.6)

(underbracing uses torsion = 0), which for i = 1, X1 = X, X2 = Y , X3 = Z agrees with
(3.4). That determines ∇XY since g is non-degenerate.

Existence: First, a vector field ∇XY is defined by (3.4) after checking that its r.h.s. is
F -linear in Z. Second, one verifies that ∇XY enjoys the properties of a connection, e.g.
the F -linearity in X:

2(∇fXY, Z) =fX(Y, Z) + Y (fX,Z)︸ ︷︷ ︸
fY (X,Z)+(Y f)(X,Z)

− Z(fX, Y )︸ ︷︷ ︸
fZ(X,Y )+(Zf)(X,Y )

− ([Y, Z], fX) + ( [Z, fX]︸ ︷︷ ︸
f [Z,X]+(Zf)X

, Y ) + ( [fX, Y ]︸ ︷︷ ︸
f [X,Y ]−(Y f)X

, Z)

=2f(∇XY, Z) ,

i.e. ∇fXY = f∇XY . The vanishing of the torsion is manifest from

2(∇XY −∇YX,Z) = 2([X, Y ], Z) .

Finally (3.4), or its equivalent form (3.6), implies (3.6)i+1 + (3.6)i+2 ≡ 2×(3.5)i, which is
in turn equivalent to (3.3). �
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In a chart the Lev-Civita connection reads

Γilk =
1

2
gij(glj,k + gkj,l − glk,j) , (3.7)

since for X = ∂/∂xl, Y = ∂/∂xk, Z = ∂/∂xj = gijdx
i (3.4) reads, cf. (2.12)

2gijΓ
i
lk = gkj,l + gjl,k − glk,j .

Geodesics:

(1)

(2)

x

λ

A parameterized curve x(λ), (λ1 ≤ λ ≤ λ2) is a geodesic if it
solves the variational principle

δ

∫ (2)

(1)

dλ (ẋ, ẋ) = 0

with fixed endpoints (λi, x(λi)), (i = 1, 2). Here ẋ = dx/dλ
denotes the tangent vector. In any chart the geodesics satisfy
the Euler-Lagrange equations corresponding to the Lagrangian

L(x, ẋ) =
1

2
glk(x)ẋ

lẋk , (3.8)

namely:

0 =
d

dλ

∂L

∂ẋj
− ∂L

∂xj
=

d

dλ
(gljẋ

l)− 1

2
glk,jẋ

lẋk

= glj,kẋ
lẋk︸ ︷︷ ︸

(1/2)(glj,k + gkj,l)ẋ
lẋk

+gijẍ
i − 1

2
glk,jẋ

lẋk

i.e.

gijẍ
i +

1

2
(glj,k + gkj,l − glk,j)ẋ

lẋk = 0 ,

or
ẍi + Γilkẋ

lẋk = 0 (3.9)

(geodesic equation). It states that the vector ẋ is parallel transported along the
geodesic, cf. (2.3).

Moreover, (3.9) is invariant under reparameterization λ 7→ λ′ only if d2λ′/dλ2 = 0. The
parameterization is thus fixed by (3.9) up to λ 7→ aλ + b (with a, b constants): λ is then
called an affine parameter.

Properties of the Levi Civita connection

(a) The inner product of any two vectors remains constant upon parallel transporting
them along any curve γ:

(X(t), Y (t))γ(t) = (X, Y )γ(0) (3.10)
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with X(t) = τ(t, 0)X, Y (t) = τ(t, 0)Y and X, Y ∈ Tγ(0). Indeed, because of ∇g = 0 we
have gγ(t) = τ(t, 0)gγ(0), so that (3.10) is equivalent to

(τ(t, 0)gγ(0))(τ(t, 0)X, τ(t, 0)Y ) = gγ(0)(X, Y ) ,

which holds true by (2.6).

(b) The covariant derivative commutes with raising and lowering indices, e.g.

T ik;l = (gkmT
im);l = gkmT

im
;l

because gkm;l = 0. The same without reference to coordinates:

∇X ◦ g = g ◦ ∇X , (3.11)

where g denotes the map (3.2). Proof: By (2.8, 3.5) we have

〈∇XgY, Z〉 = X〈gY, Z〉 − 〈gY,∇XZ〉 = 〈g∇XY, Z〉

for arbitrary vector fields Y, Z.

(c) Riemann tensor

The following symmetries apply:

(W,R(X, Y )Z) = −(Z,R(X, Y )W ) , (3.12)

(W,R(X, Y )Z) = (X,R(W,Z)Y ) . (3.13)

Proof: From (3.11) we have R(X, Y )g = gR(X, Y ) and, together with (2.13), also (3.12).
Because of the 1st Bianchi identity (2.16) the l.h.s. of (3.13) equals

−(W,R(Y, Z)X)− (W,R(Z,X)Y )

as well as, in view of (3.12),

(Z,R(Y,W )X) + (Z,R(W,X)Y ) .

The sum of the two expressions is symmetric in (X, Y ) ↔ (W,Z). �

We summarize all symmetries of the Riemann tensor:

Ri
jkl = −Ri

jlk always
∑

(jkl)R
i
jkl = 0 1. Bianchi id.∑

(klm)R
i
jkl;m = 0 2. Bianchi id.

}
vanishing torsion

Rijkl = −Rjikl

Rijkl = Rklij

}
Levi-Civita connection

Here
∑

(jkl) means the sum over the cyclic permutations of j, k, l.
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(d) Ricci and Einstein tensors

Definition:

Rik = Rj
ijk (Ricci tensor) (3.14)

R = Ri
i (scalar curvature) (3.15)

Gik = Rik −
1

2
Rgik (Einstein tensor) (3.16)

We have:

Rik = Rki , Gik = Gki

Ri
k
;k =

1
2
R;i

Gi
k
;k = 0

}
(contracted 2nd Bianchi identity) (3.17)

Proof: Rik = gjlRlijk = gljRjkli = Rki.

2nd Bianchi identity:
Ri

jkl;m +Ri
jlm;k +Ri

jmk;l = 0 .

(ik)-trace:

Rjl;m + Ri
jlm;i︸ ︷︷ ︸

−gikRjklm;i

−Rjm;l = 0 ,

Rj
l;m − gikRj

klm;i −Rj
m;l = 0 ,

(jm)-trace:
Rj

l;j + gikRkl;i︸ ︷︷ ︸
2Rj

l;j

−R;l = 0 .

�

3.3. Supplementary material

Normal coordinates

The signature of the metric gp is the same for all p ∈M (if M is connected). Let

ηij =

{
0 , (i 6= j)
±1 , (i = j)

be its normal form.

Theorem: In some neighborhood of any point p ∈ M there is a chart such that xi = 0
at p and

gij(0) = ηij ,

gij,l(0) = 0 , i.e. Γilj(0) = 0 . (3.18)

Proof: We first pick local coordinates xi near p such that xi = 0 at p and gij(0) = ηij,
where the latter condition can be achieved by means of a linear transformation. Then we
construct the exponential map from Tp(M) to M :
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e ∈ Tp

p

y = te
x(t)

Let e ∈ Tp. The curve t 7→ x(t) is the solution of the geodesic
equation (3.9) with ẋ(0) = e. The map exp : y = te 7→ x(t) is
uniquely defined, i.e. independent of the factorization y = te.
Thereby a neighborhood of the origin in Tp(M) is mapped
differentiably to M . By the geodesic equation we then have

xi(t) = tẋi(0) +
1

2
t2ẍi(0) +O(t3)

= yi − 1

2
Γilk(0)y

lyk +O(y3) ,

and in particular ∂xi/∂yj = δij at y = 0. Hence exp is a local diffeomorphism and we
can take the yi as new local coordinates. Since the geodesics through y = 0 then become
straight lines, we have in the new coordinates

Γilk(te)e
lek = 0

for all e ∈ Tp. Because of the symmetry Γilk = Γikl we have

Γilk(0) = 0 .

This is equivalent to gij,l(0) = 0, since then 0 = gij;l = gij,l, while the converse is evident
from (3.7).

The volume element

The metric, first defined on vector fields and 1-forms, generalizes to tensor fields of type(
0
p

)
by means of

(ω1 ⊗ . . .⊗ ωp, w1 ⊗ . . .⊗ wp)p :=
1

p!

p∏

i=1

(ωi, wi)

and bilinearity. It remains non-degenerate. In particular, it is defined on n-forms (with
signature σ = ±1). On an orientable manifold there is an n-form η, unique up to the
sign, with

(η, η)n = σ . (3.19)

η is called the volume form of the metric g. W.r.t. a basis of 1-forms we have

η = ±|g|1/2e1 ∧ . . . ∧ en ,

where
g = det(gij) , gij = g(ei, ej) .

Indeed,

(η, η)n = |g|
(
e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en

)
n
= |g|

∑

π∈Sn

sgn π
n∏

i=1

(
ei, eπ(i)

)

= |g| det(gij)︸ ︷︷ ︸
g−1

= sgn g = σ .
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In components
ηi1...in = ±|g|1/2 εi1...in ,

where

εi1...in = sgn

(
1 . . . n

i1 . . . in

)
.

The structure equations of the Levi-Civita connection

Theorem: In any basis (not necessarily a coordinate basis) the connection coefficients
ωik, cf. (2.18), are uniquely determined by

ωik + ωki = dgik , (∇g = 0) (3.20)

dei + ωik ∧ ek = 0 , (torsion zero) (3.21)

where we set
ωik = gilω

l
k .

Proof: For all X, ei, ek one has

0 = (∇Xg)(ei, ek) = X g(ei, ek)︸ ︷︷ ︸
gik

−g(∇Xei︸ ︷︷ ︸
ωl

i(X)el

, ek)− g(ei, ∇Xek︸ ︷︷ ︸
ωl

k(X)el

)

= dgik(X)− ωli(X)glk − ωlk(X)gil .

Thus (3.20) is equivalent to ∇g = 0. According to (2.21), eq. (3.21) means T = 0.
Conversely, these two equations determine, by the theorem on p. 26 the connection (and
hence the connection forms) uniquely. �
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4. Time, space and gravitation

4.1. The classical relativity principle

Clocks and global, rigid frames are at the basis of the classical idea of time and space:
Simultaneity is absolute and space is Euclidean. Newtonian Mechanics distinguishes a
special class of trajectories: those of free particles, which may be identified with particles
far away from any others. The 1st Law postulates the existence of special rigid frames,
so-called inertial frames (IF), in which all such trajectories take the simple form

~̈x = 0 .

(Note that in this setup geometry is prior to physics.) The classical relativity principle
(or equivalence principle) postulates that the equations of motion of any isolated system
read the same in all IF. The 2nd Law specifies the deviation from a free trajectory

mi~̈xi = ~Fi(~x1, . . . , ~xN) ,

where the inertial mass mi is a property of the i-th particle, and ~Fi are given by force
laws, such as

~F = e ~E , (e : electric charge)

for a particle in an electric field ~E, or

~F = m̃~g , (m̃ : gravitational mass)

for a particle in a gravitational field ~g. Remarkable and without explanation in the present
context is the fact that

m = m̃ ,

whence
~̈x = ~g (4.1)

for all freely falling particles. It ought to be noted that forces proportional to the inertial
mass m do occur as fictitious forces upon using a non-inertial frame. Then

m~̈x = ~F − 2m(~ω ∧ ~̇x)−m(~̇ω ∧ ~x)−m~ω ∧ (~ω ∧ ~x)−m~a , (4.2)

where ~F is a real force as above and ~ω, ~a are the angular velocity and the acceleration of
the frame relative to an inertial one. Among the fictitious forces, −2m(~ω ∧ ~̇x) and −m~a
are known as Coriolis, resp. inertial force.

4.2. The Einstein equivalence principle

Einstein interprets (4.1) in the sense that the “standard of motion” is not set by trajec-
tories of free, but rather of freely falling particles. In this sense gravity is not a real force,
but appears as an inertial force, whose proportionality to m is intrinsic. In formulae:
Eq. (4.1) results from (4.2) by ~F = 0, ~ω = 0, ~a = −~g, while disregarding that ~a is a
constant, unlike the field ~g(~x).
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A strengthening of this point of view is the equivalence principle (EP, 1911).

“All freely falling, non-rotating local inertial frames (for short: LIF) are equiv-
alent w.r.t. all local experiments therein.”

Remarks: 1) A (local) reference frame is non-rotating, if freely falling particles do not
experience any velocity-dependent (Coriolis-) acceleration, locally.

2) The above formulation of the EP is heuristic, because the notion of local experiment
is vague. We stress that the relative deviation of nearby freely falling particles does not
constitute a local experiment.

3) The word “all” in the EP extends its scope beyond gravity itself, cf. (4.1), to other
interactions, like electromagnetism. Without that strengthening one may pretend that a
freely falling charge and one in absence of gravity remain distinguishable by the emission
of radiation in the first case only. By the EP things are more subtle: No radiation will
be observed in that case by a freely falling observer. She will instead observe it from a
supported charge, since that will appear accelerated. The conclusion does however not
extend to a likewise supported observer; the perhaps surprising way out is that emission
itself is dependent on the observer.

A simpler application involving electromagnetism is the following.

Application: The gravitational redshift

We take the classical idea of space and time for granted and consider two reference frames:
O, where we have a homogeneous gravitational field ~g, and O′ which is in free fall. At
time t = 0 the two coincide and are instantaneously at rest to one another.

O

O′

h t > 0

g

O′

O

h t = 0

g

At t = 0 and at ~x = ~x
′

= 0 light of frequency ν is emitted upwards. It reaches height h
w.r.t. O after time t = h/c. According to the EP the frequency measured in O′ is still ν.
But since O′ has then acquired the velocity v = −gt relatively to O, the latter finds the
Doppler shifted frequency

ν̄ = ν
(
1 +

v

c

)
= ν

(
1− gh

c2

)
. (4.3)
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Upon raising in the gravitational field the frequency decreases (or: it is shifted towards
the red).

4.3. The postulates of general relativity (GR)

The postulates (Einstein 1915) clarify and extend the EP:

1. Time and space form a 4-dimensional pseudo-Riemannian manifold M : Its points p
represent events and the metric g of signature (1,−1,−1,−1) describes measurements by
means of (ideal) clocks and rods.

2. Physical laws are relations among tensors.

3. With the exception of the metric g physical laws only contain quantities already present
in special relativity (SR).

4. A local inertial frame about any event p ∈ M is described by normal coordinates (see
p. 29). In those, the laws of SR hold true.

Remarks:

About 1: • Time and space are merged into spacetime and are now devoid of separate,
absolute existence. The signature reflects their dimensions. A particle, formerly thought
of as a succession of events in “time”, is represented by a timelike curve, called its world
line: an arbitrarily parameterized curve x(λ) ∈M , (λ ∈ R) with g(ẋ, ẋ) > 0, (· = d/dλ).

• Notation: Coordinates are generally denoted by x = (xµ) with (Greek) indices µ =
0, . . . 3. If they are such that (g00(x)) has signature (+), i.e. g00(x) > 0, and (gik(x))

3
i,k=1

has (−,−,−) (such coordinates exist locally), then the coordinate x0 is temporal and the
(xi) with (Latin) indices i = 1, 2, 3 spatial, in the sense: The curve x0 7→ (x0, x1, x2, x3)
with fixed (xi) is timelike.

• An ideal clock of world line x = x(λ) measures (infinitesimally) the time ∆τ

c2(∆τ)2 = g(ẋ, ẋ)(∆λ)2 .

An ideal (infinitesimal) rod is represented by the world line x(λ) of one of its endpoints
and by a vector ∆x(λ) with g(ẋ,∆x) = 0. Its length ∆l is

(∆l)2 = −g(∆x,∆x) .

In particular, if in some coordinates the world line of the clock is x = (ct, 0, 0, 0), then

(∆τ)2 = g00(x)(∆t)
2 . (4.4)

One should thus distinguish between measurements by means of clocks and rods on one
hand and coordinates of a chart on the other. However, local measurements done near
an event p by means of clocks and rods at rest to each other define coordinates xµ w.r.t.
which the metric is Minkowski at p, i.e.

gµν(x = 0) = ηµν , (4.5)

ηµν = diag(+1,−1,−1,−1) . (4.6)
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Equivalently, such clocks and rods at p correspond to vectors e0, resp. ei forming a basis
(eµ) of Tp with g(eµ, eν) = ηµν .

In principle it is to be decided on the basis of the physical laws whether a given clock or
rod is ideal. Any clock depending on gravity, like a pendulum, is not.

About 2: (Relativity principle) The physical laws read the same in all coordinates (pro-
vided the physical quantities are transformed suitably): general covariance.

About 4: Gravity can be transformed away locally.

Thanks to the above postulates the physical laws in presence of an external (i.e., given)
gravitational field are essentially determined. The climax of GR are however the field
equations of gravitation, which will be introduced in the next chapter.

4.4. Transition SR → GR

a) Law of inertia

SR

ẍµ = 0 ,

(ẋ, ẋ) = c2 ,

“free particle”

−→

GR

(∇ẋẋ)
µ ≡ ẍµ + Γµνσẋ

ν ẋσ = 0 ,

(ẋ, ẋ) = c2 ,

“free falling particle”

(4.7)

(4.8)

( ˙ = d/dτ, τ : proper time). The equations on the right agree with those on the left in
a local inertial frame, but are generally covariant. The geodesic equation (4.7) describes
the effect of the “gravitational field” on an otherwise free particle: the r.h.s. in

ẍµ = −Γµνσẋ
ν ẋσ (4.9)

can be viewed as gravitational force, hence actually the Γµνσ (not the gµν) as components
of the gravitational field. That one can be transformed away by (3.18) at any point of
spacetime. The “equivalence of gravitational and inertial mass” is now automatic: the
mass just does not appear.

Remark: In (4.7) the Γµνσ are the Christoffel symbols of the Levi-Civita connection.
Postulate 4 can be slightly weakened in the sense that the identification of a LIF with
normal coordinates (gµν(0) = ηµν , Γ

µ
νσ(0) = 0) can be relaxed. Accepting eq. (4.7) for

some connection ∇, which is a priori independent of the metric, the postulate implies at
first just Γµνσ(0) + Γµσν(0) = 0 in a LIF, since the laws of SR are still presumed valid
there; but then, in absence of torsion (cf. Postulate 3), also Γµνσ(0) = 0, cf. (2.14).
Moreover (4.8) implies that gµν(0) = ηµν in a LIF; and the compatibility of eqs. (4.7, 4.8)
that ∇g = 0. Summarizing: A LIF is nonetheless realized by normal coordinates and ∇
is the Levi-Civita connection after all.

b) For light rays we analogously have:

SR

ẍµ = 0 ,

(ẋ, ẋ) = 0 ,
−→

GR

ẍµ + Γµνσẋ
ν ẋσ = 0 ,

(ẋ, ẋ) = 0 ,

(null geodesics)

(4.10)
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Here (4.10) describes the light deflection in a gravitational field. Actually the full
Maxwell theory can be formulated covariantly: It suffices to replace partial derivatives (of
1st order) by covariant ones in any (fundamental) equation of SR. The recipe is known
as the ”comma goes to semicolon rule” (, ❀ ;).

The electromagnetic field tensor F as an antisymmetric tensor field of type
(
0
2

)
. The

homogeneous Maxwell equations then read

Fµν,σ + cycl. = 0 −→ Fµν;σ + cycl. = 0 ; (4.11)

because the second form reduces to the first one in a LIF, cf. Postulate 4. The inhomo-
geneous equations read

F µν
;µ =

1

c
jν (4.12)

by the same reason. Eq. (4.12) again implies charge conservation

jν ;ν = 0 , (4.13)

because by F µν = −F νµ we have

F µν
;µν = F µν

;νµ︸ ︷︷ ︸
−F νµ

;νµ

+Rµ
τµν︸ ︷︷ ︸

Rτν

F τν +Rν
τµν︸ ︷︷ ︸

−Rτµ

F µτ

︸ ︷︷ ︸
(Rτν−Rντ )F τν=0

= −F µν
;µν .

The energy-momentum tensor is

T µν = F µ
σF

σν − 1

4
FρσF

σρgµν (4.14)

and for a “freely falling” field (jν = 0) we have

T µν ;ν = 0 ;

the derivation again parallels that of T µν,ν = 0 from the Maxwell equations in SR.

The representation of the electromagnetic field in terms of the potentials is

Fµν = Aν,µ − Aµ,ν = Aν;µ − Aµ;ν .

Remarks. 1) The above rule may not apply to higher derivatives, though it did in
hindsight in (4.13).

2) By

F µν
;µ = F µν

,µ + ΓµµσF
σν + ΓνµσF

µσ

= F µν
,µ +

1

2
(Γµµσ + Γµσµ + T µµσ)F

σν +
1

2
T νµσF

µσ

it is seen that the generalization (4.12) makes use of the vanishing of the Christoffel
symbols in a LIF, and thus of the torsion in general; rather than merely of their symmetric
part, as in (4.7) (cf. remark on p. 35). Likewise for Aν;µ − Aµ;ν = Aν,µ − Aµ,ν + T σµνAσ.
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c) The equations of motion of a charged particle (charge e, mass m) in an electro-
magnetic field and in presence of gravity now read

ẍµ + Γµνσẋ
ν ẋσ =

e

mc
F µν ẋν , (4.15)

because they are generally covariant (the l.h.s. is ∇ẋẋ, hence a vector) and reduce to
the equations of SR in a LIF. Moreover, one verifies that (4.15) are the Euler-Lagrange
equations corresponding to the manifestly covariant Hamilton principle

δ

(2)∫

(1)

dτ
(
c2 +

e

mc
(ẋ, A)

)
= 0

with fixed endpoints (1), (2) in M .

4.5. Transition geodesic equation → Newton’s equation of motion

Newton’s equation of motion appears as an approximation under certain assumptions.
We use coordinates which in the immediate (infinitesimal) neighborhood of the observer
(not a LIF, as a rule) have the meaning of lengths and times, cf. (4.5):

gµν = ηµν for x = (ct, 0, 0, 0) .

We follow trajectories within a region where the gravitational field is weak in the sense
that

gµν = ηµν + hµν , |hµν | ≪ 1 . (4.16)

In particular we have hµν,0 = 0 at the origin ~x = 0. Moreover, the particle shall be slow
in that frame, v ≪ c. Then

ẋµ = (c, ~v) , ( ˙=
d

dτ
=

d

dt
up to O(v2) +O(h))

with ~v = d~x/dt, as seen by inserting (4.16) in (ẋ, ẋ) = c2.

At first, let the particle be nearly at rest during some (short) time, meaning that we even
neglect any term O(v) such as ~x ∼ ~vt. Then ẋµ = (c,~0) and (4.7) reads

ẍi = −c2Γi00 ,

where in linear approximation in h

Γi00 =
1

2
ηik(h0k,0 + h0k,0 − h00,k) =

1

2
h00,i − hi0,0 =

1

2
h00,i , (4.17)

cf. (4.6); in the last step we evaluated at ~x = 0. Thus

~̈x = −~∇ϕ , ϕ =
1

2
c2h00 .

Put differently: In a weak gravitational field we have

g00 = 1 +
2ϕ

c2
(4.18)
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where ϕ is the Newtonian potential normalized at the observer, ϕ(t, ~x = 0) = 0.

At a second look, we shall retain terms ∝ ~v (i.e., we neglect only terms O(v2)); then
ẋµ = (c, ~v) and (4.7) becomes

ẍi = −c2Γi00 − 2cΓi0jẋ
j (4.19)

with

Γi0j =
1

2
ηik(h0k,j + hjk,0 − h0j,k) =

1

2
(h0j,i − h0i,j) .

Correspondingly we keep terms O(~x) in (4.17), since ~x ∼ ~vt. For comparison, the Newto-
nian equation of motion of a freely falling particle in an accelerated reference frame (not
an IF) is, cf. (4.2)

~̈x = −~∇ϕ− 2~ω ∧ ~̇x− ~ω ∧ (~ω ∧ ~x)− ~̇ω ∧ ~x , (4.20)

where the inertial acceleration is included in ~∇ϕ. Now (4.19, 4.20) agree locally for

g00 =1 +
2

c2
(ϕ− 1

2
(~ω ∧ ~x)2) ,

g0i =− 1

c
(~ω ∧ ~x)i .

This follows by means of ch0i = −εijkωjxk, c(h0j,i − h0i,j) = 2εjikωk, cΓ
i
0jẋ

j = (~ω ∧ ~̇x)i,
~ω ∧ (~ω ∧ ~x) = −(1/2)~∇(~ω ∧ ~x)2 and c2hi0,0 = −(~̇ω ∧ ~x)i.

Redshift

t

(1)

~x(t)

~x(t− t0)

~x(2)

We consider a metric which is independent of time in suitable
coordinates (ct, ~x):

gµν,0 = 0 .

If (t, ~x(t)), (t1 ≤ t ≤ t2), is a (null-) geodesic, then so is
(t, ~x(t−t0)), (t1+t0 ≤ t ≤ t2+t0). In particular, the difference
∆t between consecutive minima of a light wave is constant
along the ray. The proper time τ of an observer resting at ~x
is related to coordinate time according to (4.4)

(∆τ)2 = g00(~x)(∆t)
2 .

Hence we have for the frequency ν at the positions (1), (2) of a light ray.

ν2
ν1

=
(∆τ)1
(∆τ)2

=

√
g00(~x1)

g00(~x2)
. (4.21)

Remarks: 1) In the situation of (4.18) (and hence with 2ϕ≪ c2) we have

ν2
ν1

=

√
1− 2

∆ϕ

c2
≈ 1− ∆ϕ

c2

with ∆ϕ = ϕ|21. This agrees with (4.3) (∆ϕ = gh).

2) The EP is incompatible with SR, at least if its metric ηµν is supposed to describe time
measurements, see (4.4): With any light ray, a time translate thereof is one too (even, if
it weren’t a null geodesic). With gµν = ηµν we would always get ν2/ν1 = 1 (no redshift).
Gravitation can thus not be accommodated within SR.
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4.6. Geodesic deviation

p

ϕτ (q)

ϕτ (p)

γ(s) {τ = 0}q

Family of geodesics x(τ) with 4-velocity field u
(cf. (4.7)):

dx

dτ
= u(x(τ)) , ∇uu = 0 , g(u, u) = c2 .

Let ϕτ be the flow generated by u. We investi-
gate the relative displacement of the trajectories
ϕτ (p), ϕτ (q) of two (eventually infinitesimally
close) nearby points p, q ∈ γ in the “surface”
{τ = 0} :

p, q ∈ {τ = 0} 7→ ϕτ (p), ϕτ (q) ,

γ ⊂ {τ = 0} 7→ ϕτ ◦ γ .

Vector fields n = dγ/ds (“infinitesimal initial displacements”) in the surface {τ = 0} are
mapped to d(ϕτ ◦ γ)/ds as proper time τ progresses. In other words, according to

np 7→ ϕτ∗np =: nϕτ (p)

(Lie transport) and thus extended to vector fields n = ϕτ∗n on M . In particular we have

[u, n] =
d

dτ
ϕ∗
τn

∣∣∣
τ=0

= 0

by (1.18) and property (e) thereafter. (By the way that step also follows from (1.17),
since the flows of u and n commute by construction of the latter field.) This implies
∇un = ∇nu (torsion = 0) for the relative 4-velocity and

∇2
un = ∇u∇nu =

(
R(u, n) +∇n∇u

)
u ,

i.e. we have the equation of geodesic deviation

∇2
un = R(u, n)u . (4.22)

The curvature describes the relative acceleration of nearby freely falling particles.

Remarks: 1) The choice of the surface {τ = 0} is irrelevant, since an infinitesimal change
amounts to the replacement n ❀ n + λu with uλ = 0; then we have ∇u(λu) = 0 and
R(u, λu) = 0.

2) If the surface {τ = 0} is perpendicular to u, then we have

g(u, n) = 0

there, and hence everywhere, since by ∇g = 0 its derivative along the above geodesics
vanishes:

u
(
g(u, n)

)
= g( ∇uu︸︷︷︸

= 0

, n) + g(u, ∇un︸︷︷︸
= ∇nu

) =
1

2
n
(
g(u, u)︸ ︷︷ ︸
= c2

)
= 0 .
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3) Let eµ be a basis of vector fields with [eµ, u] = 0 and e0 = 0. The relative acceleration in
direction i, (i = 1, 2, 3) of particles, whose separation is in the same direction, is 〈ei,∇2

uei〉.
Summed over directions we obtain

3∑

i=1

〈ei,∇2
uei〉 = 〈eµ,∇2

ueµ〉 = 〈eµ, R(u, eµ)u〉 = −Ric(u, u) . (4.23)

4) The geodesic deviation in Newtonian mechanics (or SR) is found by differentiating
ẍi = −ϕ,i(x) w.r.t. s, where ni = ∂xi/∂s|s=0. This yields

n̈i = −ϕ,iknk . (4.24)

Incidentally: If its form in absence of gravity, n̈i = 0, were to be generalized to GR by
the ”comma goes to semicolon rule” it would incorrectly yield ∇2

un = 0; cf. Remark 1 on
p. 36 or 2 on p. 33.
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5. The Einstein field equations

5.1. The energy-momentum tensor

The energy-momentum tensor T µν of a field generally describes

T 00 : energy density T 0i : c−1 · energy current density

T i0 : c ·momentum density T ik : momentum current density .

In SR, T 00d3x and c−1T i0d3x are the energy and the i-th component of the momentum in
the volume element d3x, respectively; moreover c

∑3
k=1 T

0kdok and
∑3

k=1 T
ikdok are the

power and the i-th component of the force, respectively, which is exerted on an oriented
area element d~o = (do1, do2, do3). In GR the same holds true in local coordinates around
an event p, where gµν(x = 0) = ηµν ; or equivalently for the components T µν = T (eµ, eν)
in a basis (eµ) with g(eµ, eν) = ηµν , cf. (4.5).

It holds true that T µν = T νµ. In SR the energy momentum conservation reads T µν,ν = 0
while in GR we have by the usual rule

T µν ;ν = 0 . (5.1)

Note however that this variant of the “conservation law” no longer allows for an integral
form, as the one applying to SR did. It in fact stated that the total 4-momentum is
conserved, (d/dt)

∫
x0=ct

T µ0d3x = 0.

Example: the electromagnetic field, see (4.14). As further examples we introduce two
fields as models of matter: the dust and the perfect (or ideal) fluid. We treat them as
continua, even though they may be thought of as consisting of particles.

Dust: freely falling particles with common local velocity.

ρ(x): mass density in the local rest frame (= energy density/c2 = rest mass
× particle density); a scalar by definition.

uµ(x): 4-velocity.

In the local rest frame we have in the 1 + 3 split x = (x0, ~x)

T µν =

(
ρc2 0
0 0

)
,

hence generally
T µν = ρuµuν

by covariance. The equations of motion of the dust are

(ρuµ);µ = 0 , ∇uu = 0 . (5.2)

The first one is the conservation of matter (particle number); the second one describes
the free fall along geodesics. In view of

T µν ;ν = uµ(ρuν);ν + ρ uνuµ;ν︸ ︷︷ ︸
(∇uu)

µ

(5.3)
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we have T µν ;ν = 0, i.e. (5.1), from (5.2). Conversely, T µν ;ν = 0 and uµu
µ = c2 imply

(5.2). To see this, note that the projection onto u, i.e.

P σ
µ = c−2uσuµ ,

leaves the first term on the r.h.s. of (5.3) unaffected, but annihilates the second one by
uµ(∇uu)

µ = ∇u(uµu
µ)/2 = 0. So, applying that projection we get (ρuν);ν = 0; while

applying the complementary one yields

0 =
(
δσµ −

uσuµ
c2

)
T µν ;ν = ρ(∇uu)

σ .

Perfect fluid: freely falling particles with local velocity distribution. The distribution is
isotropic in its local rest frame.

ε(x) :
p(x) :
uµ(x) :

energy density
pressure

}
in the local rest frame

4-velocity of the local rest frame (not of constituent particles)

T µν =




ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 (in local rest frame) (5.4)

T µν = (ε+ p)
uµuν

c2
− pgµν (in general) .

We postulate
T µν ;ν = 0 , (5.5)

as the equation of motion. The number of its components matches in fact that of inde-
pendent fields, provided an equation of state p = p(ε) is taken into account. We note

T µν ;ν =
uµ

c2
(
(ε+ p)uν

)
;ν
+
ε+ p

c2
uνuµ;ν︸ ︷︷ ︸
(∇uu)

µ

−p;νgµν

and P σ
µg

µν = c−2uσuν . Hence (5.5) implies by projection

(
(ε+ p)uν

)
;ν
− p;νu

ν = 0 ,

i.e.

(εuν);ν + puν ;ν = 0 ; (5.6)

resp. by complementary projection

ε+ p

c2
(∇uu)

µ −
(
gµν − uµuν

c2

)
p;ν = 0 ,

i.e.
ε

c2
(∇uu)

µ − gµνp;ν +
uν

c2
(puµ);ν = 0 . (5.7)
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Equivalently, eqs. (5.6, 5.7) are the equations of motion.

We next discuss the non-relativistic limit, uµ = (c, ~v) with |~v| ≪ c, and in fact we do so
in a LIF (Γµνσ = 0) for simplicity. Hence ∇u = uσ∂σ reduces to the material derivative

D/Dt = ∂/∂t+ ~v · ~∇ (time derivative along the velocity field ~v) and (5.6, 5.7) to

∂ε

∂t
+ div(ε~v) + p div~v = 0 ,

ε

c2
D~v

Dt
+ ~∇p+ 1

c2
D

Dt
(p~v) = 0 .

(5.8)

This is to be compared with the Euler equations

∂ρ

∂t
+ div(ρ~v) = 0 ,

ρ
D~v

Dt
+ ~∇p = 0

(5.9)

of Newtonian mechanics, to which (5.8) reduce only in the additional limit of a small
distribution (∆w)2 ≡ 〈(∆~w)2〉 ≪ c2 of the velocities of the constituent particles. In fact
p = ρ ·O((∆w)2), ε = ρc2(1+O((∆w/c)2), whence p≪ ε. The discrepancy between (5.8)
and (5.9) arises because the velocity distribution can be relativistic even for |~v| ≪ c.

Remark. In presence of several fields, possibly interacting, eq. (5.1) may fail for the
individual energy-momentum tensors, but remains valid for their sum.

5.2. Field equations of gravitation

Einstein postulated in 1915 the field equations of the metric tensor gµν

Gµν = κT µν (5.10)

with κ a gravitational constant and Gµν the tensor (3.16).

Remarks. 1. The l.h.s. reflects geometry, the r.h.s. matter: “Matter bends spacetime”.

2. By symmetry, (5.10) are 10 equations. They are non-linear partial differential equations
for the metric g = (gµν(x)) involving its derivatives of order 0, 1, 2.

3. Because of the 2nd Bianchi identity (3.17), equation (5.1) has become a consequence
of (5.10) and hence a necessary condition for it having solutions (integrability condition).
For dust alone, this implies even the geodesic equation ∇uu = 0!

4. Equivalent writing: taking traces yields R− 2R = κT , hence

Rµν = κ
(
T µν − 1

2
Tgµν

)
(5.11)

and in particular
Rµν = 0 (5.12)

in vacuum.
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5. The relative acceleration between nearby geodesics with 4-velocity u is by (4.23)

−Rµνu
µuν = −κ

(
Tµνu

µuν − 1

2
Tc2

)
= −κc

2

2
(ε+ 3p) ,

where we used an perfect fluid (5.4) in the last step, and hence T = ε − 3p. Gravity is
attractive for

ε+ 3p > 0 . (5.13)

To be precise: We applied (4.23) to geodesics of test particles with velocity field ũ co-
inciding with the fluid velocity u on some slice {τ = 0} (assuming this everywhere is
impossible, because ∇ũũ = would conflict with (5.7), unless p = 0). If ũ is not linked to
u, then −Rµν ũ

µũν ≤ −κc2(ε+3p)/2, which exhibits gravity as even more attractive. The
inequality arises by

ũµ
uµuν
c2

ũν ≥ ũµgµν ũ
ν = c2 ,

which in turn relies on gµν − c−2uµuν ≤ 0 in the sense of quadratic forms.

6. The constant κ is (see below) essentially Newton’s gravitational constant G0:

κ =
8πG0

c4
. (5.14)

The Newtonian limiting case

~F12 = −G0m1m2
~r

r3
= G0m1m2

~∇1

r
.

1 2

~F12

For a continuous mass distribution of density ρ (m1 ❀ ρ(~x)d3x, m2 = m) we get

~F = −m~∇ϕ , ϕ(~x) = −G0

∫
d3y

ρ(~y)

|~x− ~y| ,

where the gravitational potential ϕ satisfies the Poisson equation

∆ϕ = 4πG0ρ . (5.15)

In order to derive this limiting case from (5.10) we consider again the setting (4.16),
where Γµνσ = O(h) and in particular Γi00 = h00,i/2, h00 = 2ϕ/c2. Let also the metric be
time-independent. To first order in h we have

Ri
0k0 = Γi00,k − Γik0,0︸ ︷︷ ︸

=0

=
1

c2
ϕ,ik , (5.16)

R00 =
1

c2
∆ϕ .

(Alternatively, (5.16) follows by comparing (4.22, 4.24).) Moreover, let the velocities
of matter be ≪ c, both in mean (|~v| ≪ c) and in distribution (p ≪ ε = ρc2). Then
|T ij| ≪ T 00, cf. (5.4), and hence

T ≡ T αα = T 0
0 = T 00 = ρc2 .
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The (00)-component of the field equations (5.11) thus reads

1

c2
∆ϕ = κρc2

(
1− 1

2

)
,

which coincides with (5.15) and implies (5.14).

The cosmological term

Einstein extended the field equations in 1917

Gµν − Λgµν = κT µν (5.17)

by a term featuring the cosmological constant Λ. This equation is still consistent with
(5.1) since gµν ;ν = 0. The l.h.s. (times a constant) is even the most general expression
D[g]µν , which does not contain any derivatives of g of orders higher than the second and
satisfies D[g]µν ;ν = 0 (proof omitted).

The cosmological term can be understood in the sense of (5.10) as the energy-momentum
tensor of the vacuum: T µν = (Λ/κ)gµν . It corresponds to a perfect fluid (5.4) with
the unusual equation of state ε = −p = Λ/κ; in particular ε + 3p = −2Λ/κ, making
gravity repulsive for Λ > 0, cf. (5.13). If the constant is small enough it remains without
observable consequences at the scale of the solar system, but can eventually become
dominating in an expanding universe (see next chapter), since its energy and momentum
densities do not decrease, unlike those of matter.

5.3. The Hilbert action

The field equations (5.10) can be obtained from a form covariant variation principle. The
action for the metric g is

SD[g] =

∫

D

Rη ,

where D ⊂ M is a compact region in space-time, R is the scalar curvature, and η is the
volume element (3.19). In local coordinates,

SD[g] =

∫

D

R
√−gd4x , (5.18)

where, on the r.h.s., g(x) = det(gµν(x)). The Euler-Lagrange equations for (5.18) are the
field equations in vacuum. More precisely:

δSD[g] = 0

for any variation δg of the metric, vanishing on ∂D together with its first derivatives, is
equivalent to Gµν = 0.

Without yet fixing any field at ∂D we claim

δSD[g] =

∫

D

Gµνδg
µν
√−gd4x+

∫

∂D

W α
√−gdoα , (5.19)
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where doα is the (coordinate) normal of ∂D and

W α = gµνδΓαµν − gαµδΓννµ

is a vector field. Since it vanishes on ∂D the variational principle follows.

Proof of (5.19):

δ

∫

D

R
√−gd4x = δ

∫

D

(Rµνg
µν
√−g)d4x

=

∫

D

Rµνδ(g
µν
√−g)d4x+

∫

D

(δRµν)g
µν
√−gd4x . (5.20)

To compute the first term we recall that for an n× n matrix A(λ) we have

d

dλ
detA = detA · tr(A−1dA

dλ
) ,

d

dλ
(A−1) · A = −A−1dA

dλ
.

This implies

(δgµν)gνσ = −gµν(δgνσ) ,
δg = ggµνδgνµ ,

δ
√−g = 1

2

√−ggµνδgνµ = −1

2

√−ggαβδgαβ , (5.21)

δ(gµν
√−g) = √−gδgµν − 1

2

√−ggµνgαβδgαβ .

The first integrand (5.20) thus equals

√−g(Rµνδg
µν − 1

2
Rgαβδg

αβ) =
√−gGµνδg

µν

and yields the first term in (5.19). As for the second, we claim the Palatini identity

δRµν = (δΓαµν);α − (δΓαµα);ν . (5.22)

In fact, we may at fist compute the variation of

Rµν = Γαµν,α − Γαµα,ν + ΓρµνΓ
α
ρα − ΓρµαΓ

α
ρν

at any point p in normal coordinates centered there (p 7→ x = 0, Γαβγ(0) = 0), whence

δRµν = (δΓαµν),α − (δΓαµα),ν ,

which establishes (5.22) at p and in such coordinates. However δΓαβγ is a tensor (though
Γαβγ is not, see exercises), as is the l.h.s. Thus (5.22) holds in any coordinates. In turn
it implies by gµν;σ = 0

gµν(δRµν) = (gµνδΓαµν);α − (gµνδΓαµα);ν = W α
;α . (5.23)
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Finally we have for any vector field W

W α
;α

√−g = (W α
√−g),α , (5.24)

whence the second term in (5.19) follows by Gauss’ theorem on R
4. Eq. (5.24) follows

from W α
;α = W α

,α + ΓααµW
µ with

Γααµ =
1

2
gαβ(gαβ,µ + gµβ,α − gαµ,β) =

1

2
gαβgαβ,µ =

√−g,µ√−g ,

cf. (5.21). Alternatively, Gauss’ theorem may be applied without reference to coordinates,
cf. (1.40):

∫
D
(divgW )η =

∫
∂D
iWη, where divgW = W α

;α, cf. (1.41, 5.24). �

Remark. It follows from (5.21) that the action for Gµν − Λgµν = 0 is

SD[g] =

∫

D

(R + 2Λ)
√−gd4x .

The action (5.18) depends, through R, on g up to its second derivatives. Usual actions
however depend on the fields only up to their first derivatives; moreover, variations of the
fields, but not of their derivatives, are required to vanish at the boundary. A variant of
(5.18), which is of that kind, is the Palatini action

SD[g,Γ] =

∫

D

gαβRαβ

√−gd4x ,

where Rαβ is the Ricci tensor of a torsion free connection Γ independent of g. Then

δgSD = 0 ⇔ Gµν = 0 ,

δΓSD = 0 ⇔ ∇g = 0 ;

thus the connection is Levi-Civita by virtue of the equations of motion.

Proof. The variations w.r.t. g and Γ yield the two terms in (5.20); hence the first one
Gµν = 0 as before. As for the second, the identity (5.22) still holds true because the
existence of normal coordinates (Γαβγ(0) = 0) just depends on Γαβγ = Γαγβ. However,
since gµν;σ 6= 0 a priori, the r.h.s. of (5.23) has to be completed by

−gµν ;αδΓαµν + gµα;αδΓ
ν
µν = −(gµν ;α − gµβ ;βδα

ν)δΓαµν ,

which yields the Euler-Lagrange equation

2gµν ;α − (gµβ ;βδα
ν + gνβ ;βδα

µ) = 0

by varying δΓαµν = δΓανµ. The (αν)-trace is gµα;α(2− (4 + 1)) = 0, which inserted back
gives gµν ;α = 0, as claimed. �

The variational principle extends to matter described by any field ψ = (ψA) transforming
as a tensor (or spinor) under diffeomorphisms ϕ (or, equivalently, change of coordinates).
Consider an action of the form

SD[g, ψ] =

∫

D

L(g, ψ,∇gψ)η

47



where∇g is the Levi-Civita connection of the metric g and the Lagrangian L is invariant:

L(ϕ∗g, ϕ∗ψ,∇ϕ∗gϕ
∗ψ) = L(g, ψ,∇gψ) ◦ ϕ . (5.25)

The Euler-Lagrange equations, δψS = 0 (ψ fixed on ∂D), are

∂L
∂ψA

−∇µ
∂L

∂(∇µψA)
= 0 . (5.26)

A symmetric energy-momentum tensor T µν is defined through

δg

∫

D

L(g, ψ,∇gψ)
√−gd4x =: −1

2

∫

D

T µν(x)δgµν(x)
√
−g(x)d4x .

Here, the l.h.s. may be read as (d/dλ)SD[g + λδg, ψ]|λ=0, which is linear w.r.t. an
arbitrary variation δgµν(x) = δgνµ(x). It is therefore of the form indicated on the r.h.s..
The computation of T µν may require partial integrations.

Let X be a vector field vanishing on ∂D and ϕt the corresponding flow. Then
∫

ϕ−t(D)

L(ϕ∗
t g, ϕ

∗
tψ,∇ϕ∗

t g
ϕ∗
tψ)

√
−ϕ∗

t gd
4x

is independent of t by (5.25). We compute its (vanishing) derivative at t = 0 for ψ being
a solution of (5.26):

δg =
d

dt
ϕ∗
t g|t=0 = LXg,

δgµν = Xλgµν,λ + gλνX
λ
,µ + gµλX

λ
,ν

= Xµ;ν +Xν;µ , (5.27)

since the expressions on both sides of the last equality are tensorial, agree in normal
coordinates, and hence in any. Thus, by δψS = 0 and ϕ−t(D) = D, that derivative is

−
∫

D

1

2
T µν(Xµ;ν +Xν;µ)

︸ ︷︷ ︸
T µνXµ;ν = (T µνXµ);ν − T µν ;νXµ

√−gd4x = 0 .

The first term under the brace yields a vanishing boundary term, see (5.24) for W ν =
T µνXµ. We conclude

T µν ;ν = 0 ,

as a consequence of the equations of motion for ψ alone, i.e. without appealing to the
field equations. The full action for those is, by the way,

SD =

∫

D

(R + 2Λ− 2κL)√−gd4x ;

note however that if the expression for L contains ∇, the Palatini variational method may
not work.
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Example. The electromagnetic field. The basic field is the 4-potential Aµ and the
Lagrangian in absence of sources is

L = −1

4
FµνF

µν = −1

4
FµνFσρg

µσgνρ

with Fµν = Aν;µ − Aµ;ν = Aν,µ − Aµ,ν . Thus

∂L
∂Aν

= 0 ,
∂L
∂Aν;µ

= −1

4
Fσρg

µσgνρ · 4 = −F µν ,

whence (5.26) are the Maxwell equations F µν
;µ = 0 for the freely falling field, cf. (4.12).

In order to compute the energy momentum tensor, note that

δg

∫

D

L√−gd4x =

∫

D

(δgL+
1

2
Lgαβδgαβ)

√−gd4x

with

δgL = −1

4
FµνFσρ(g

µσδgνρ + gνρδgµσ)

= −1

2
FµνFσρg

µσδgνρ

=
1

2
FµνF

µ
ρg
ναgρβδgαβ

=
1

2
Fµ

αF µβδgαβ .

Thus,

T αβ = −FµαF µβ − Lgαβ

= F α
µF

µβ − 1

4
(FνµF

µν)gαβ ,

cf. (4.14).
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6. Homogeneous isotropic universe

We shall discuss the field equations for a perfect fluid and construct a solution for dust
(Friedmann 1922). It is assumed that the distribution of matter and the geometry of
space are homogeneous and isotropic (cosmological principle).

6.1. The ansatz

We assume that time slices (in suitable coordinates) are 3-dimensional spaces of constant
curvature. We introduce these spaces as submanifolds M0 in an affine R

4 (which bears
no relation with spacetime!), given in terms of coordinates x1, . . . , x4:

k
(
(x1)2 + (x2)2 + (x3)2

)
+ (x4)2 = R2

0

with k = 0,±1 and R0 > 0. The metric g0 on M0 is the one induced by

(dx1)2 + (dx2)2 + (dx3)2 + k(dx4)2

(with (dxi)2 = dxi ⊗ dxi).

k M0 curvature geometry symmetry group S
+1 sphere (“closed”) > 0 spherical O(4) : orthogonal
0 plane = 0 plane E(3) : Euclidean
−1 hyperboloid (“open”) < 0 hyperbolic L(4) : Lorentz

These manifolds are highly symmetric: There is a group S of transformations S with

S(M0) =M0 , S∗g0 = g0 , (6.1)

(isometries of M0). Here S acts according to (Sx)i = Sijx
j, (i = 1, . . . 4) for S ∈

O(4), L(4) and according to (Sx)i = Ri
jx
j + ai, (i = 1, . . . 3) for S = (R, a) ∈ E(3). Any

two points in M0 and any two normalized vectors in Tp(M0) are equivalent in terms of
the symmetry: M0 is homogeneous and isotropic. Any space of signature (+,+,+) and
of constant curvature is (without proof) one of the above “up to the topology” (example
for k = 0: torus (R/Z)3 instead of R3).

Charts:

A: coordinates (x1, x2, x3) with map:

x4 =
√
R2

0 − kr2 ≡ w(r) , r =
√
(x1)2 + (x2)2 + (x3)2 .

With ∂x4/∂xi = −kxi/w we have

g0 =
3∑

i=1

(dxi)2 +
k

R2
0 − kr2

3∑

i,j=1

xixjdxidxj . (6.2)

50



B: coordinates (r, θ, ϕ) with map:

x1 = r cos θ cosϕ , x2 = r cos θ sinϕ , x3 = r sin θ , x4 = w(r) .

With

(dr)2 + k(dx4)2 = (1 + kw′2)dr2 =
1

1− k(r/R0)2
dr2

we have

g0 =
1

1− k(r/R0)2
dr2 + r2(dθ2 + sin2 θdϕ2) . (6.3)

A variant thereof is obtained by replacing r with χ according to

r

R0

=





sinχ , (χ ∈ [0, π], k = 1) ,

χ , (χ ∈ [0,∞), k = 0) ,

shχ , (χ ∈ [0,∞), k = −1) ,

(6.4)

r/R0 = sinnχ for short. Then w(r)/R0 = cosχ, resp. 1, chχ and

g0 = R2
0

(
dχ2 + sinn2 χ(dθ2 + sin2 θdϕ2)

)
. (6.5)

For k = 1 the two charts (but not M0) have a singularity at r = R0.

We now combine these spatial geometries with a time interval t ∈ I ⊂ R and obtain a
spacetime M = I ×M0 with metric (c = 1)

g = dt2 − a2(t)g0 . (6.6)

Remark: Different values of R0 in (6.2) describe the same class of spacetimes (6.6),
because a rescaling of R0 amounts to one of a(t). We thus set R0 = 1, (k/R2

0 ❀ k). Even
then and for k = 0 a rescaling of the Euclidean metric remains possible, since it can be
absorbed by a rescaling of coordinates.

The only velocity field u compatible with isotropy has components

uµ = (1, 0, 0, 0)

w.r.t. chart A. It generates geodesics, ∇uu = 0, since by symmetry (6.1) the l.h.s. equals
λu, and (u,∇uu) = 0 implies λ = 0.

In the case of dust, particles of matter (galaxies or observers therein) shall have constant
spatial coordinates (x1, x2, x3) (comoving coordinates) and thus velocity u; in the case of a
perfect fluid the same is locally true for the fluid as a whole, rather than of its constitutent
particles. Similarly homogeneity demands ε = ε(t). The energy-momentum tensor of
a perfect fluid is T = (ε+ p)u⊗ u− pg, cf. (5.4).

6.2. Expansion

t = x0 is the proper time of a particle at rest in charts A, B and the spatial distance d(t)
of any two of them is proportional to a(t). Hence the expansion rate

ḋ(t)

d(t)
=
ȧ(t)

a(t)
=: H(t) (6.7)

51



is the same for all pairs of particles. That is known as Hubble’s law: The velocity of
particles to one another is proportional to their distance, ḋ(t) = H(t)d(t).

A further important witness to the expansion of the
universe is the redshift of spectral lines. We con-
sider a sender (e.g. an atom) (1) and a receiver (2)
on (time-like) world lines. Two light signals, emitted
by (1) with a proper time difference ∆τ (1), are re-
ceived by (2) with proper time difference ∆τ (2). For
monochromatic light, the ratio of the received to the
emitted frequency is

ν2
ν1

=
∆τ (1)

∆τ (2)
.

∆τ (2)

∆τ (1)

(null-geodesics)
light signals

Atomic spectra just get rescaled and thus remain recognizable. Both ν1 and ν2 can hence
be determined by observation.

In the homogeneous, isotropic universe we consider sender and receiver at rest w.r.t.
matter, i.e., w.r.t. their galaxies. Let the sender S have the (fixed) coordinates (r1, θ1, ϕ1)
w.r.t. chart B, and the receiver r2 = 0. A light ray from (1) to (2) runs spatially radially
along θ, ϕ = const, since this is the only direction distinguished by those endpoints. By
(6.6, 6.3) we thus have along the light ray

dt = a(t)R0
dr

w(r)

and ∫ r1

0

dr

w(r)
= R−1

0

∫ t2

t1

dt

a(t)
(6.8)

where t1, resp. t2 are the times of emission, resp. arrival of a wave trough. For the time
differences ∆ti between two successive troughs (periods) we so get

t2∫

t1

dt

a(t)
=

t2+∆t2∫

t1+∆t1

dt

a(t)
,

i.e.
∆t1
a(t1)

=
∆t2
a(t2)

.

Since ∆τ (i) = ∆ti (sender/receiver at rest) we have

ν2
ν1

=
a(t1)

a(t2)
. (6.9)

During a phase of expansion one has a(t2) > a(t1), hence ν2 < ν1: redshift. The largest
observed values (corresponding to very distant objects) yield 1 + z := ν1/ν2 ≈ 8. Here z
is known as redshift parameter.

52



6.3. The Friedmann equations

We show that the field equations (5.17) can be satisfied by a suitable choice of functions
a(t), ε(t). We will show this twice, using different charts and methods.

A: Because of the symmetry it suffices to fulfill the field equations at points (t, 0, 0, 0).
Since they contain derivatives of gµν only up to 2nd order, we shall retain of gµν(t, x1, x2, x3)
only terms up to 2nd order in ~x:

gµν =




1 0 0 0
0
0 −a2

(
δik + kxixk

)

0


 ,

hence:

gµν,σ = 0 if µ = 0 or ν = 0 ,

gik,0 = −2aȧ δik
gik,l = −a2k

(
xiδkl + xkδil

)
}
in linear approximation in ~x, for l, i, k = 1, 2, 3 .

Accordingly, it will be enough to compute

Γµσν =
1

2
gµρ(gσρ,ν + gνρ,σ − gσν,ρ) .

to 1st order in ~x. As for gµρ the 0th order suffices, since the correction is of 2nd order.

Result: 6= 0 are only

Γ0
ii = aȧ ,

Γii0 = Γi0i =
ȧ

a
,

Γill = kxi .

Example:

Γj il =
1

2

(
− 1

a2
δjk

)
(−a2k)(xiδkl + xkδil + xlδki + xkδil − xiδkl − xlδik)

= kδjkδilx
k = kδilx

j .

Ricci tensor:

Rµν = Rα
µαν = Γανµ,α − Γααµ,ν + ΓσνµΓ

α
ασ − ΓσαµΓ

α
νσ .

Result: 6= 0 are only

R00 = −3ä/a ,

Rjj = aä+ 2ȧ2 + 2k .

(Rij = R11 · δij follows already by isotropy.)
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Example:

R00 = Rα
0α0 = Γα00,α︸ ︷︷ ︸

0

−Γαα0,0︸ ︷︷ ︸
−3( ȧ

a)˙

+Γσ00︸︷︷︸
0

Γαασ −Γσα0Γ
α
0σ︸ ︷︷ ︸

−3( ȧ
a)

2

= −3ä/a ,

Rjj =Γαjj,α

− Γααj,j

+ ΓσjjΓ
α
ασ

− ΓσαjΓ
α
jσ

∣∣∣∣∣∣∣∣∣

= (aȧ)̇ + 3k (α = 0, 1, 2, 3)

= −k (α = j)

= aȧ · (3ȧ/a) (σ = 0, α = j)

= −2aȧ · (ȧ/a) (σ = 0, α = j or σ = j, α = 0)

= aä+ (1 + 3− 2)ȧ2 + 2k .

Einstein tensor:

For the scalar curvature we find

R = R00 −
1

a2
(R11 +R22 +R33) = − 6

a2
(aä+ ȧ2 + k) .

The Einstein tensor Gµν = Rµν − 1
2
gµνR is diagonal with

G00 =
3

a2
(ȧ2 + k) ,

Gjj = −(2aä+ ȧ2 + k) .
(6.10)

B: We use the Cartan calculus. Basis of 1-forms:

e0 = dt
e1 = a

w
dr

e2 = ardθ
e3 = ar sin θdϕ





g = gµνe
µ ⊗ eν , gµν =




1 0
−1

−1
0 −1


 .

We have
de0 = 0

de1 =
ȧ

w
dt ∧ dr = e0 ∧ ȧ

w
dr ,

de2 = ȧrdt ∧ dθ + adr ∧ dθ ,
= e0 ∧ (ȧrdθ) + e1 ∧ (wdθ) ,

de3 = ȧr sin θdt ∧ dϕ+ a sin θdr ∧ dϕ+ ar cos θdθ ∧ dϕ ,
= e0 ∧ (ȧr sin θdϕ) + e1 ∧ (w sin θdϕ) + e2 ∧ (cos θdϕ) .

(6.11)

Connection forms

Structure equations for ωµν

ωµν + ωνµ = dgµν = 0 , deµ = eν ∧ ωµν
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(with ωµν = gµσω
σ
ν). The solution can be guessed by comparison with (6.11) and it is

unique by the theorem on p. 31:

ωµµ = 0 , (without summation convention) ,

−ω2
3 = ω3

2 = cos θdϕ ,

−ω1
3 = ω3

1 = w sin θdϕ ,

ω0
3 = ω3

0 = ȧr sin θdϕ ,

−ω1
2 = ω2

1 = wdθ ,

ω0
2 = ω2

0 = ȧrdθ ,

ω0
1 = ω1

0 =
ȧ

w
dr .

Curvature forms
Ωµ

ν = dωµν + ωµσ ∧ ωσν .
By ωµν + ωνµ = 0 we have Ωµν + Ωνµ = 0. Result:

Ω0
i = Ωi

0 =
ä

a
e0 ∧ ei ,

−Ωj
i = Ωi

j =
k + ȧ2

a2
ei ∧ ej .

Example:

Ω1
0 = dω1

0 =
ä

w
dt ∧ dr = ä

a
e0 ∧ e1 ,

Ω2
1 = dω2

1 + ω2
0 ∧ ω0

1 = w′dr ∧ dθ + ȧ2r

w
dθ ∧ dr

=
1

a2

(ww′

r︸︷︷︸
−k

−ȧ2
)
e1 ∧ e2 .

The remaining Ωi
j follow by isotropy (or by computation).

Ricci tensor:
Rµν = Rα

µαν = Ωα
µ(eα, eν)

is diagonal because of Ωα
µ ∼ eα ∧ eµ. One finds

R00 = −3ä

a
,

Rjj =
ä

a
+

2(k + ȧ2)

a2
=
aä+ 2ȧ2 + 2k

a2
.

Scalar curvature:

R = R00 − (R11 +R22 +R33) = − 6

a2
(aä+ ȧ2 + k) .

Einstein tensor:

G00 =
3

a2
(ȧ2 + k) , Gjj = −2aä+ ȧ2 + k

a2
. (6.12)
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Energy momentum: It is given by (5.4), both in chart A at (t, 0, 0, 0) and w.r.t. the
basis of 1-forms in chart B.

Friedmann equations: (c = κ = 1). After lowering indices the field equations read by
(6.10), resp. (6.12), as well as by (5.4)

(µν) = (00) :

(µν) = (jj) :

a(ȧ2 + k)− 1

3
Λa3 =

1

3
εa3 , (6.13)

2aä+ ȧ2 + k − Λa2 = −pa2 . (6.14)

Remarks 1) With a(t), ε(t) also a(t− t0), ε(t− t0) and a(−t), ε(−t) are solutions.

2) The equations imply

d

dt

(1
3
εa3

)
= ȧ(ȧ2 + k) + 2aȧä− Λa2ȧ = ȧ(2aä+ ȧ2 + k − Λa2) = −p d

dt

(1
3
a3
)
, (6.15)

which is in analogy to the First Law of Thermodynamics in the form

dU = −pdV

valid for adiabatic processes. For ȧ(t) 6= 0 that equation may replace (6.14).

3) The First Law is equivalent to the integrability condition 0 = T µν ;ν = T µν,ν+ΓννρT
µρ+

ΓµνρT
ρν for µ = 0, since

T 0ν
;ν = ε̇+ 3

ȧ

a
ε+ 3aȧ

p

a2
=

1

a3
( d
dt
(εa3) + p

d

dt
a3
)
.

Alternatively, (5.6) multiplied by
√−g = a3 states by (5.24): (d/dt)(εa3)+p(da3/dt) = 0.

4) The equation of state p = wε stands for dust (w = 0), for isotropic electromagnetic
radiation (w = 1/3) and for the cosmological term (w = −1). Then (6.15) implies by

d

dt
(εa3) + wε

d

dt
a3 = a−3w d

dt
(εa3 · a3w)

that
ε ∝ a−3(1+w) . (6.16)

In combination of different fluids, the universe is dominated in the course of its expansion
by fluids of successively smaller w: From radiation to dust to vacuum energy.

In the following we consider the case of dust in combination with Λ. Then ε = ρ, p = 0
and

1

3
ρa3 = C = const > 0 . (6.17)

Thus

ȧ2 − 1

3
Λa2 − C

a
= −k , (6.18)

2aä+
C

a
− 2

3
Λa2 = 0 . (6.19)
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A static universe a(t) = const requires (2/3)Λa3 = C, hence Λ > 0 and k = +1. The
solution (Einstein 1917)

a = Λ−1/2 , ρ = 2Λ (6.20)

however is unstable, because any displacement from equilibrium would be enhanced by ä
according to (6.19).

The solutions depend on parameters Λ, C and on an initial condition a(t0). It is usual
to choose t0 as the present time and to express these quantities by means of properties
of the present universe. To this end we reintroduce the scale R0 (k ❀ k/R2

0). Division of
(6.18) by ȧ(t0)

2 ( 6= 0, which rules out the equilibrium solution) yields

( ȧ(t)
ȧ(t0)

)2

− 1

3
Λ
( a(t)
ȧ(t0)

)2

− 1

3

ρ(t0)a(t0)
3

ȧ(t0)2a(t)
= − k

R2
0ȧ(t0)

2
. (6.21)

We now choose R0 so that a(t0) = 1, hence ȧ(t0) = H(t0), and obtain

ȧ2

H2
− (ΩΛa

2 + Ωma
−1) = 1− ΩΛ − Ωm ≡ Ωk (6.22)

with new parameters

H := H(t0) , ΩΛ :=
Λ

3H2
, Ωm :=

ρ(t0)

3H2
. (6.23)

The constant Ωk has been determined by evaluation of the l.h.s. at t = t0. Comparison
with the one from (6.21) yields

k = −sgnΩk , R0 = |Ωk|−1/2H−1 . (6.24)

Eq. (6.22) formally corresponds to the conservation of the energy Ωk of a non-relativistic
particle of mass 2/H2 moving in 1-dimension and in the potential U(a) = −(ΩΛa

2 +
Ωma

−1). Changing H affects the motion a(t) only through a linear reparametrization of
t. Different types of motion occur depending on Ωm,ΩΛ. We distinguish cases by the sign
of ΩΛ (or Λ).

a
U(a)

Λ = 0

a
U(a)

Λ < 0

a
U(a)

Λ > 0

Most motions begin or end at a = 0: a “Big Bang” or a “Big Crunch”. This is a true
singularity, since the scalar curvature diverges there: R+4Λ = −T = −ρ = −3C/a3 → ∞
for t→ 0.

• Λ = 0:
Ωm < 1: unbounded expansion a(t) with positive asymptotic velocity;
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Ωm = 1: unbounded expansion with vanishing asymptotic velocity;
Ωm > 1: bounded expansion, then recollapse.

• Λ < 0: bounded expansion, then recollapse.

• Λ > 0: the potential U(a) has a maximum −3Ω
1/3
Λ (Ωm/2)

2/3 at a = (Ωm/2ΩΛ)
1/3. If it

is located to the right of the present day value a = 1, i.e.,

Ωm > 2ΩΛ , (6.25)

then the expansion is slowing down. A motion which is bounded above or below requires

1− ΩΛ − Ωm < −3Ω
1/3
Λ (Ωm/2)

2/3 .

This can occur only for ΩΛ + Ωm > 1 and, if this inequality is barely satisfied, only if
either ΩΛ or Ωm is small. In the first case, i.e. for small (Ωm − 1)/Ωm > 0 we have

ΩΛ

Ωm

< 4
(Ωm − 1

3Ωm

)3

+ . . . .

Since there (6.25) applies, the motion is bounded above. In the second case, i.e. for small
(ΩΛ − 1)/ΩΛ > 0 we have

Ωm

ΩΛ

< 2
(ΩΛ − 1

3ΩΛ

)3/2

+ . . . .

This corresponds to a motion bounded below: No Big Bang, but a contraction followed
by an expansion.
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In the models with (6.25) one has ä(t) < 0 in the past, whence a(t) is concave, s. figure
below on the left. The age t0 of the universe is then bounded by t0 < H−1. In general we
have by (6.22)

t0 = H−1

∫ 1

0

da
1√

Ωk − U(a)
,
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which cannot be evaluated in closed form. In the figure on the right t0 is represented by
level sets in units of the Hubble time H−1.

t0 t

ȧ(t0) = H

1

a

0.5 1

-0.5

0.5

1

ΩΛ

Ωm

0.7

0.8
0.9

1

Special cases: The time dependence of a(t) can be determined explicitely for (i) C = 0,
Λ > 0 or (ii) Λ = 0. We use the equations of motion in the form (6.18, 6.17). (The
replacement of (6.14) produces spurious solutions with ȧ ≡ 0, which are to be rejected.)
Solutions:

(i) Set α2 = Λ/3.

a(t) = α−1





chαt , (k = +1) ,

eαt , (k = 0) ,

shαt , (k = −1) .

In the exponentially expanding universe with k = 0 (de Sitter 1917), space is invariant
under translations of time, because t 7→ t − t0 amounts to a rescaling of the coordinates
of M0, cf. remark on p. 51.

(ii) (a = 0 at t = 0)

k = +1 :





a =
C

2
(1− cos η) ,

t =
C

2
(η − sin η) ,

(0 < η < 2π) , (6.26)

k = 0 : a =
(9C

4

)1/3

t2/3 (0 < t <∞) ,

k = −1 :





a =
C

2
(ch η − 1) ,

t =
C

2
(sh η − η) ,

(0 < η <∞) . (6.27)

The case k = 0 is known as Einstein–de Sitter universe. Proof: By explicit computation
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( ′ = d/dη). For k = +1:

ȧ =
a′(η)

t′(η)
=

sin η

1− cos η
,

ȧ2 − C

a
+ k =

sin2 η

(1− cos η)2︸ ︷︷ ︸
1+cos η

1−cos η

− 2

1− cos η
+ 1 = 0 .

Für k = 0:

ȧ =
(9C

4

)1/32

3
t−1/3 ,

ȧ2 =
(4
9

)1/3

C2/3t−2/3 = C/a .

For k = −1: analogous to k = +1. �

a

t

k = +1

k = 0

k = −1

6.4. Which universe?

Astrophysical observations allow to determine the parameters in eq. (6.22), i.e. H and
more recently also ΩΛ, Ωm. The following account is simplified.

The Hubble constant H = ȧ(t0)/a(t0) is determined by the redshift z of light of distant
galaxies, which is emitted at ts and received at t0. We expand (6.9) in powers of the time
of flight t0 − ts, which is assumed small in comparison to the age of the universe. With

a(ts) = a(t0)− ȧ(t0)(t0 − ts) +
1

2
ä(t0)(t0 − ts)

2 + . . .

= a(t0)
(
1−H · (t0 − ts)−

1

2
H2q · (t0 − ts)

2 + . . .
)
,

where q := −a(t0)ä(t0)ȧ(t0)−2 is the dimensionless deceleration parameter, we obtain

1 + z =
a(t0)

a(ts)
= 1 +H · (t0 − ts) +H2

(
1 +

1

2
q
)
(t0 − ts)

2 + . . . .

The distance d between receiver and sender at time t0 is by (6.8)

d = a(t0)R0

∫ r

0

dr′

w(r′)
= a(t0)

∫ t0

ts

dt

a(t)
= (t0 − ts) +

1

2
H · (t0 − ts)

2 + . . . .
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After eliminating t0 − ts from the two equations we end up with the distance-redshift
relation:

z = Hd+
1

2
(1 + q)(Hd)2 + . . . .

The lowest order corresponds to a Doppler shift of z = ḋ(t0) = Hd(t0), see (6.7). A set of
data (z, d) would yield H and, if suffiently accurate, q. This is of indirect usefulness, since
today’s distance d between source and observer is not directly accessible to observation,
but can be so determined. In a Minkowski spacetime the flux of light f (energy per
unit time and area; apparent magnitude) coming from a source of intensity L (absolute
luminosity) at a fixed distance d from the observer is

f =
L

4πd2
.

In a Friedmann universe this remais true at leading order, where d = z/H. In higher
orders the correction are described by the magnitude-redshift relation (see exercises):

f =
LH2

4πz2
(
1− (1− q)z +O(z2)

)
, (z → 0).

Data (f, L, z) are available, because of some stars of known absolute luminosity (standard
candles: Cepheids, Supernovae of type Ia). Fitting them to the relation yields H =
70.4±1.4 (km/s)/Megaparsec, (1 Megaparsec = 3.26 ·106 light years), or H−1 = 13.7 ·109
years, at lowest order, but also q = −0.55 at higher ones. That in turn determines a
combination of ΩΛ, Ωm: Differentiating (6.22), resp. (6.19), shows 2q = Ωm − 2ΩΛ.

The cosmic microwave background (CMB) is electromagnetic radiation with the spec-
tral distribution of that emitted by a black body of temperature 2.73 K. It reaches us
with nearly isotropic intensity and originates from a time ts (time of last scattering),
when nuclei and electrons became cool enough (∼ 3000 K) to bind to neutral H- and
He atoms. As a result matter became transparent, radiation decoupled and has since
then been redshifted by a factor 1 + z ≈ 3000 K/2.7 K ≈ 1100. From (6.22) we get
H(ts)

2 ≈ H2Ωm(1 + z)3 and 1 + z ≈ z. Deviations from isotropy in the intensity distri-
bution (∼ 10−5) have a characteristic correlation length

∆s ≈ 2H(ts)
−1 , (6.28)

which corresponds to the radius of the horizon at time ts (see (6.32) below) and spans
today an angle ∆ϕ ≈ 1◦ on the sky (as seen e.g. with WMAP). Now z,∆s, ∆ϕ allow to
infer the geometry k of the universe: Two directions, which for us at ~x = 0 are separated
by ∆ϕ, differ by the same angle also in the chart B. Hence ∆s = a(ts)r∆ϕ, cf. (6.3),
with a(ts) = z−1. We conclude

r

R0

= 2
( |Ωk|
Ωm

)1/2

z−1/2(∆ϕ)−1 (6.29)

by using the above for r and (6.24) for R0. Setting r/R0 = sinnχ, cf. (6.4), we have
dχ = dr/w(r) and by (6.8)

χ = R−1
0

∫ t0

ts

dt

a(t)
= R−1

0

∫ 1

a(ts)

da

a(t)ȧ(t)
= |Ωk|1/2

∫ 1

(1+z)−1

da

a
√
Ωk − U(a)

. (6.30)
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The equations (6.29, 6.30) constrain a further combination of ΩΛ, Ωm: ΩΛ +Ωm = 1.02±
0.02. Recently the intensity of the anisotropy at ∆s has been measured, from which also
Ωm can be determined:

Ωm = 0.27± 0.02 , ΩΛ = 0.73± 0.02 ,

resp. ρ(t0) = 2.6 · 10−27 kgm−3, Λ = 1.3 · 10−52 m−2 from (6.23). From the figure on p. 59
the age of the universe can then be read off as t0 = (13.7±0.1) ·109 years. One should add
that baryonic matter only contributes 0.04 to Ωm, the rest being dark matter of unknown
kind.

6.5. The causality and flatness problems

In the metric (6.6) we trade t for conformal time η according to dt = R0a(t)dη (cf. the
special cases (6.26, 6.27)). Then, by (6.5),

g = R2
0a

2(t)
(
dη2 − (dχ2 + sinn2 χ(dθ2 + sin2 θdϕ2)

)
. (6.31)

The range of η has a lower bound, which may be normalized at η = 0 by

η = R−1
0

∫ t

0

dt′

a(t′)
,

provided the integral is convergent at t′ = 0. For the case of a fluid with equation of
state p = wρ, this amounts to w > −1/3; in fact in the limit a → 0 eq. 6.13 reduces to
ȧ2 ∝ a−(1+3w) by (6.16). It has solution a ∝ tα, (t→ 0) with α = (2/3)(1 + w)−1 and the
condition for convergence, α < 1, is as stated. Moreover,

η ≈ 2

1 + 3w
(R0ȧ)

−1 (t→ 0) .

Geodesics ending at χ = 0 come in radially (dθ = dϕ = 0) and for them the metric is
conformally equivalent to the Minkowski metric dη2 − dχ2. In particular, null geodesics
run at ±45◦ in the (η, χ)-plane.

The particle horizon at P separates world lines that
can be seen at P from those that can not. By the
time η, the comoving matter at χ = 0 is causally
connected to that at χ only for χ ≤ η (or, indirectly,
χ ≤ 2η), which then is at distances at most

d = R0a(t)η =
2

1 + 3w

a(t)

ȧ(t)
=

2

1 + 3w
H(t)−1 .

(6.32)
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η

P

big bang (η = 0) χ

That distance with t = ts (time of last scattering) is seen as a characteristic correlation
length in the CMB radiation, see (6.28) for w = 0. However that radiation is nearly
homogeneous on all of the sky and hence over regions which had no common past. This
causality problem of Friedmann cosmologies can be evaded by assuming that the earliest
phase of the evolution is dominated by w ≈ −1 (inflation), by which the range of η
becomes unbounded below, or at least provides a scale (6.32) extending over the whole
universe (accessible today) by the time inflation ends.
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A further difficulty is seen from the flatness parameter, see (6.24),

Ωk = − k

R2
0ȧ(t0)

2
,

as expressed in terms of present day properties. In the past the corresponding quantity
was Ωk(t) = −k/R2

0ȧ(t)
2, whence

Ωk(t)

Ωk

=
ȧ(t0)

2

ȧ(t)2
=
H2

ȧ2
=

1

Ωk + ΩΛa2 + Ωma−1

by (6.22). Moving backward in time, a(t) → 0, we have Ωk(t)/Ωk → 0 because of Ωm > 0:
the universe must even have been a lot flatter than it is today (Ωk = 0.02 ± 0.02).
This looks like an exceptional initial condition (flatness problem). Here too inflation
provides a remedy: By the same equation, that initial condition could in fact be the end
of a forward evolution with ΩΛ > 0 (and hence growing a(t)) out of a an even earlier,
generic condition. That ΩΛ, coming from a conjectured fluid with w ≈ −1 (inflaton field),
is different from the cosmological constant and much larger than the latter.

6.6. Redshift and symmetries

Out of symmetries one can sometimes determine ν2/ν1 without having to determine null
geodesics. Geodesics are determined by the variational principle

δ

∫ (2)

(1)

Ldλ = 0 , L =
1

2
g(ẋ, ẋ)

with fixed endpoints (x(i), λ(i))i=1,2. If only the λ(i) are fixed we have

δ

∫ (2)

(1)

Ldλ = (p, δx)

∣∣∣∣
(2)

(1)

, (6.33)

with

pµ =
∂L

∂ẋµ
= gµν ẋ

ν = ẋµ .

This follows from the Euler-Lagrange equation d(p, δx)/dλ = δL.

For null geodesics (L = 0) we then find with δx(i) = u(i)δτ (i) (cf. figure on p. 52) and u =
4-velocity of sender/receiver.

ν2
ν1

=
δτ (1)

δτ (2)
=

(u(2), p)

(u(1), p)
. (6.34)

Let now ϕs be a 1-parameter group of isometries of M , cf. (6.1). The generating vector
field K of ϕt is called a Killing field:

LKg = 0 .

We then have along any geodesic

(K, p) = konstant. (6.35)
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Proof: (This is Noether’s theorem from Mechanics.) By assumption, L is invariant under

variations xt = ϕt(x). For those, δx = K and (6.33) reads 0 = (p,K)
∣∣(2)
(1)

. �

We shall henceforth consider the situation, where at (1) and (2) the Killing vectors lies
in the plane spanned by u and p:

K = αu+ βp . (6.36)

From βp = −αu+K, as well as from (u, u) = 1, (p, p) = 0 we get

0 = (βp, βp) = α2 − 2α(K, u) + (K,K) ,

i.e.

α = (K, u)±
√
(K, u)2 − (K,K) . (6.37)

Together with (K, p) = α(u, p) and (6.34, 6.35) we obtain

ν2
ν1

=
(K, p)2
(K, p)1

· α1

α2

=
α1

α2

.

Special cases:

i) K ‖ u: In this case β = 0 and (K,K) = α2 (or (6.37)) implies

ν2
ν1

=
(K,K)

1/2
1

(K,K)
1/2
2

ii) K ⊥ u: In this case α = ±[−(K,K)]1/2 and

ν2
ν1

=
[−(K,K)1]

1/2

[−(K,K)2]1/2
. (6.38)

Applications:

1) Cosmological redshift in the homogeneous isotropic universe (6.6). Given a null
geodesic (t(λ), x(λ)) ∈ I ×M0 = M we claim that x(λ) is a geodesic, though not one
with an affine parameterization. To see this we vary x(λ) with fixed endpoints in M0

and promote that family to one of spacetime curves with L = 0 by setting dt/dλ =
a(t)[g0(ẋ, ẋ)]

1/2. For that one, one can only require δt(1) = 0. The same follows for the
other endpoint, δt(2) = 0, because of (6.9) and of (p, δx)|(i) = p0δt|(i). This then extends
to δη(i) = 0 for any function η(t). Defining it by dη = dt/a(t), we get

0 = δη

∣∣∣∣
(2)

(1)

= δ

∫ (2)

(1)

dη

dλ
dλ = δ

∫ (2)

(1)

[g0(ẋ, ẋ)]
1/2dλ .

Let ϕs :M0 →M0 be a 1-parameter group of isometries (ϕ∗
sg0 = g0) with generating field

K. They become isometries M →M with corresponding Killing field on M by means of

ϕs(t, q) = (t, ϕs(q)) , K(t,q) = (0, Kq) ,
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M0

(1)
(2)

(q ∈M0). Let q1, q2 ∈M0 be the positions of the sender, resp. of
the receiver at rest. Because of the symmetry ofM0, the geodesic
x(λ) is the orbit of a Killing field Kq, with Kq ‖ ẋ and hence
(6.36). Moreover we are in case ii), so that (6.38) applies. Now,

g(K,K) = −a(t)2g0(K,K) , g0(K,K)2 = g0(K,K)1 ,

the latter holding true because of

d

ds
g0(K,K)ϕs(q)

∣∣
s=0

= Kg0(K,K) = LKg0︸ ︷︷ ︸
=0

(K,K) + 2g0([K,K]︸ ︷︷ ︸
=0

, K) = 0 .

Hence
ν2
ν1

=
a(t1)

a(t2)
,

as in (6.9).

2) Gravitational redshift in a stationary metric. In suitable coordinates we have

gµν,0 = 0 , (∂/∂x0 timelike) .

Then, the vector field K = ∂/∂x0 = (1, 0, 0, 0) is Killing:

(LKg)µν = Kλgµν,λ︸ ︷︷ ︸
gµν,0=0

+gλν K
λ
,µ︸︷︷︸

=0

+gµλK
λ
,ν︸︷︷︸

=0

= 0 . (6.39)

For observers at rest we have i):

ν2
ν1

=
g00(~x1)

1/2

g00(~x2)1/2
,

as in (4.21).

3) Longitudinal Doppler effect in SR: receiver at rest, sender with velocity ~β, whence

u(1) = γ(1, ~β), which is directed (a) towards or (b) away from the receiver. For the metric
gµν = ηµν any constant vector field is Killing. For K = (1, 0, 0, 0) we have (6.36) and
α2 = 1, (K, u(1)) = γ,

ν2
ν1

= α1 = γ ±
√
γ2 − 1 = γ(1± β) =

√
1± β

1∓ β
,

depending on the cases (a,b).
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7. The Schwarzschild-Kruskal metric

7.1. Stationary and static metrics

Let ϕs be a 1-parameter group of isometries of M . Its generating vector field K is then
called a Killing field. By (1.18) this is tantamount to

LKg = 0 .

A metric is called (locally) stationary, if relatively to a suitable chart

gµν,0 = 0 , (∂/∂x0 timelike) . (7.1)

Then K = ∂/∂x0 is a Killing field by (6.39).

Converse: g is stationary, if there exists a timelike Killing field K:

LKg = 0 ; (K,K) > 0 .

p0

pt

spacelike surface N

Proof: By construction of a chart, where (7.1) applies.
Let ϕt be the flow generated by K; x1, x2, x3 arbitrary
coordinates of p0 ∈ N ; and

(t, x1, x2, x3)

the coordinates of pt = ϕt(p0). Thus K
µ = (1, 0, 0, 0) in

this chart, whence LKg = 0 equivalent to gµν,0 = 0 (cf.
(6.39)). �

A metric is called (locally) static, if in a chart (~x = (x1, x2, x3))

gµνdx
µdxν = g00(~x)(dx

0)2 +
3∑

i,k=1

gik(~x)dx
idxk

with g00 > 0. Then Kµ = (1, 0, 0, 0) is a Killing field. Let K̂ = gK be the corresponding

1-form Kµ = (g00, 0, 0, 0). Then K̂ = g00dx
0, implying dK̂ = dg00 ∧ dx0 and

K̂ ∧ dK̂ = 0 . (7.2)

Converse: A metric is static, if there exists a timelike Killing field K with K̂ ∧ dK̂ = 0
(proof, see below).

The significance of (7.2) arises from the following: a preliminary remark, a question, and
a theorem. Let a vector field X with Xp 6= 0, (p ∈ M) be given on M ; then Vp = {λXp |
λ ∈ R} ⊂ TpM is a linear subspace of dimension 1. Manifestly, there is a family of curves
γ such that γ̇p ∈ Vp; indeed, the integral curves of X. Let now instead a 1-form ω with
ωp 6= 0, (p ∈M) be given on M . Then Vp = {Xp ∈ TpM | ωp(Xp) = 0} ⊂ TpM is a linear
subspace of codimension 1. Is there a foliation of M in submanifolds N ⊂M so that

TpN = Vp ? (7.3)
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If so, N is called an integral surface of Vp.

Theorem (Frobenius). Let ω be a 1-form. The following properties are equivalent:

i) ω ∧ dω = 0.

ii) for any vector fields X, Y one has the implication: ω(X) = ω(Y ) = 0 ⇒ ω([X, Y ]) = 0.

iii) ω is locally of the form
ω = λdf

with λ, f ∈ F .

Remarks. 1) Let ωp 6= 0. Then (iii) implies that the level sets N = {p ∈ M | f(p) =
const } satisfy Eq. (7.3). Conversely, if there is a foliation in integral surfaces N , then
ω(X) = ω(Y ) = 0 means that X, Y are vector fields in N . Hence [X, Y ] are too, and (ii)
holds true.

2) The theorem can be generalized to integral surfaces of lower dimension.

3) The theorem does not rely on a metric. The factorization in (iii) is not unique.

Remark. Let a metric g with Killing field K be given, and ω = K̂. Then λ in (iii) can
be chosen as λ = (K,K):

K̂ = (K,K)df , (7.4)

where Kf = 1.

The converse of (7.2) now follows by choosing N as a level set of f , e.g. f = 0 in the
construction on p. 66. The flow ϕt then maps N to the level set f = t, whence f,i = 0
(i = 1, 2, 3). Thus

g0i =
(
K,

∂

∂xi
)
= Ki = (K,K)f,i = 0 .

Proofs. One may assume that ωp 6= 0. We show (i) ⇔ (ii) in that both are equivalent to

dω = ω ∧ θ (7.5)

for some 1-form θ. Let e1 = ω, e2, . . . en be a local basis of 1-forms and dω = ωije
i ∧ ej

(sum over i < j).

i) Clearly (7.5) implies (i). Conversely, if the expression

ω ∧ dω = ωije
1 ∧ ei ∧ ej

vanishes, then ωij = 0 for 1 < i < j. Thus dω = ωije
i ∧ ej = ω ∧ θ for θ = ωije

j.

ii) By (1.28)
dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]) . (7.6)

Given ω(X) = ω(Y ) = 0 the conditions dω(X, Y ) = 0 and ω([X, Y ]) = 0 become equiv-
alent. Since in dω(X, Y ) = ωij(X

iY j − XjY i) the components X i = ei(X), Y i can be
chosen at will up to X1 = Y 1 = 0, we again conclude ωij = 0 for 1 < i < j.

67



The implication (iii) ⇒ (i) is immediate from dω = dλ ∧ df . As (i) ⇒ (iii) is concerned,
we prove only the special case of the remark and maintain that

dK̂(X,K) = X(K,K) = dλ(X) , (7.7)

where λ = (K,K). Indeed, we have

0 = (LKg)(X,K) = K(X,K)− ([K,X], K)− (X, [K,K]︸ ︷︷ ︸
=0

) ,

and then by (7.6) with ω = K̂

dK̂(X,K) = XK̂(K)−KK̂(X)− K̂([X,K])

= X(K,K)−K(K,X)− (K, [X,K])︸ ︷︷ ︸
=0

,

proving (7.7). By (i)

0 = (K̂ ∧ dK̂)(K,X, Y )

= K̂(K)dK̂(X, Y ) + K̂(X)dK̂(Y,K) + K̂(Y )dK̂(K,X)

= λdK̂(X, Y ) + K̂(X)dλ(Y )− K̂(Y )dλ(X)

i.e. λdK̂ + K̂ ∧ dλ = 0, and hence

d(λ−1K̂) = λ−2(λdK̂ − dλ ∧ K̂) = 0 .

By the Poincaré lemma (see p. 13) we have λ−1K̂ = df . That implies (7.4) and then

(K,K) = K̂(K) = (K,K)Kf , whence Kf = 1. �

7.2. The Schwarzschild metric

Ansatz: Static metric of the form

ds2 = e2adt2 −
[
e2bdr2 + r2

(
dθ2 + sin2 θdϕ2

)]
(7.8)

on R × R+ × S2 with coordinates t ∈ R, r ∈ R+, (θ, ϕ) polar coordinates on S2. Here
a = a(r), b = b(r) are unknown functions, which are to be determined by the field
equations (5.12) in vacuum.

Remarks: 1) The metric (7.8) is invariant under rotations of S2. Without proof: It
is the most general static metric which is spherically symmetric: By this we mean that
R ∈ SO(3) : M ∋ p 7→ R(p) ∈ M acts on spacetime M as an isometry, i.e R∗g = g,
and that for each p ∈ M the orbit {R(p) | R ∈ SO(3)} ⊂ M is a spacelike 2-dimensional
surface. The coordinate r in (7.8) is then chosen in such a way that the surface area is
4πr2.

2) The coordinate transformation t 7→ t̃ = e−ct (r, θ, ϕ fixed) corresponds to the replace-
ment

a 7→ ã = a+ c (7.9)
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in (7.8): a and ã describe the same spacetime.

The Ricci tensor Rµν can be computed by means of (a) the Cartan calculus or (b) the
above chart.

a) Basis of 1-forms:

e0 = eadt
e1 = ebdr
e2 = rdθ
e3 = r sin θdϕ





g = gµνe
µ ⊗ eν , gµν =




1 0
−1

−1
0 −1


 . (7.10)

(e2, e3 are equivalent in view of the spherical symmetry). We have

de1 = 0

de0 = a′eadr ∧ dt = e1 ∧ (a′ea−bdt)

de2 = dr ∧ dθ = e1 ∧ (e−bdθ)

de3 = sin θdr ∧ dϕ+ r cos θdθ ∧ dϕ
= e1 ∧ (e−b sin θdϕ) + e2 ∧ (cos θdϕ)

The structure equations (3.20, 3.21) for the connection 1-forms ωµν are:

ωµν + ωνµ = dgµν = 0 ,

deµ = eν ∧ ωµν .

Solution: The only non-vanishing ωµν 6= 0 are

−ω2
3 = ω3

2 = cos θdϕ ,

−ω1
3 = ω3

1 = e−b sin θdϕ ,

−ω1
2 = ω2

1 = e−bdθ ,

ω1
0 = ω0

1 = a′ea−bdt.

Curvature 2-forms: Ωµ
ν = dωµν + ωµσ ∧ ωσν .

Result: (i = 2, 3), 6= 0 are

Ω0
1 = Ω1

0 = (a′b′ − a′′ − a′2)e−2b e0 ∧ e1 ,

Ω0
i = Ωi

0 = −a
′

r
e−2b e0 ∧ ei ,

−Ω1
i = Ωi

1 = −b
′

r
e−2b e1 ∧ ei ,

−Ω2
3 = Ω3

2 = − 1

r2
(1− e−2b)e2 ∧ e3 .

Computation:

Ω1
0 = dω1

0 = (a′(a′ − b′) + a′′)ea−bdr ∧ dt ,
Ω2

0 = ω2
1 ∧ ω1

0 = a′ea−2bdθ ∧ dt ,
Ω2

1 = dω2
1 = −b′e−bdr ∧ dθ ,

Ω3
2 = dω3

2 + ω3
1 ∧ ω1

2 = − sin θ(1− e−2b)dθ ∧ dϕ.
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Ricci tensor:
Rµν = Rα

µαν = Ωα
µ(eα, eν)

is diagonal because of Ωα
µ ∼ eα ∧ eµ. One finds

R00 = −(a′b′ − a′′ − a′2)e−2b +
2a′

r
e−2b ,

R11 = (a′b′ − a′′ − a′2)e−2b +
2b′

r
e−2b ,

R22 = R33 = −a
′

r
e−2b +

b′

r
e−2b +

1

r2
(1− e−2b).

b) The non-vanishing Christoffel symbols are (′ = d/dr)

Γttr = Γtrt = a′ ,

Γrtt = a′e2(a−b) , Γrrr = b′ , Γrθθ = −re−2b , Γrϕϕ = −r(sin2 θ)e−2b ,

Γθrθ = Γθθr = r−1 , Γθϕϕ = − sin θ cos θ ,

Γϕrϕ = Γϕϕr = r−1 , Γϕθϕ = Γϕϕθ = cot θ .

The Ricci tensor is diagonal and

Rtt = −(a′b′ − a′′ − a′2)e2(a−b) +
2a′

r
e2(a−b) ,

Rrr = (a′b′ − a′′ − a′2) +
2b′

r
,

Rθθ = r(b′ − a′)e−2b + 1− e−2b ,

Rϕϕ = (sin2 θ)Rθθ .

(7.11)

Field equations (5.12) in vacuum:

Rµν = 0 .

From (a) R00 + R11 = 0 or (b) Rtte
−2(a−b) + Rrr = 0 it follows that a′ + b′ = 0, and by

using the freedom (7.9):
a+ b = 0 .

From (a) R22 = R33 = 0 or (b) Rθθ = Rϕϕ = 0 it then follows that

1 = e−2b − 2rb′e−2b =
(
re−2b

)′
(7.12)

re−2b = r − 2m , (m : integration constant) ,

e2a = e−2b = 1− 2m

r
.

Thereby also the last remaining equation (a) R00 = 0, resp. (b) Rrr = 0 is satisfied: it
reads

((2b′2 − b′′)r − 2b′)e−2b = 0

and follows by differentiation of (7.12).
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Schwarzschild metric:

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (7.13)

For r → ∞ (7.13) is asymptotic to the flat metric of SR. It describes the gravitational
field outside of a spherically symmetric mass distribution. Meaning of m: By (4.18) the
Newtonian potential for r → ∞ is

ϕ =
c2

2
(g00 − 1) = −mc

2

r
= −G0M

r

for a central body of mass M . The constant m turns out to be

m =
G0M

c2
(> 0) .

At the Schwarzschild radius r = 2m the metric (7.13)
is singular in the coordinates employed: as r → 2m
the opening angle of the light cones tends to zero. The
region of spacetime described by (7.13) is shown in
the figure. We shall see that at r = 2m only the chart
fails, without the metric becoming singular: there is
a chart in which spacetime has an extension.

r

t

2m

7.3. Geodesics in the Schwarzschild metric

Geodesics are orbits determined by the Lagrangian L = (ẋ, ẋ), cf. (3.8),

L =
(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 − r2(θ̇2 + (sin2 θ)ϕ̇2)

(· = d/dτ , τ : affine parameter; c = 1). The equation for θ

−(r2θ̇)̇ + (rϕ̇)2 sin θ cos θ = 0

is identically satisfied by θ = π/2, a value which we will now assume (orbit in the equatorial
plane). Then

L =
(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 − (rϕ̇)2 .

The variables t, ϕ are cyclic. The corresponding conservation laws are

r2ϕ̇ = l , (angular momentum)
(
1− 2m

r

)
ṫ = E . (7.14)

Moreover L itself is conserved. That implies the radial equation

L =
(
1− 2m

r

)−1

(E2 − ṙ2)− l2

r2
;

i.e.
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ṙ2 + V (r) = E2 ,

V (r) =
(
1− 2m

r

)(
L+

l2

r2

)
. (7.15)

It is convenient to use the variable u = 1/r. From u̇ = −u2ṙ and ϕ̇ = lu2 we have for
u′ = du/dϕ

u′
2
=

( u̇
ϕ̇

)2

=
E2 − V

l2
=

E2

l2
− (1− 2mu)

(L
l2

+ u2
)
,

which after deriving in ϕ (and dividing by 2u′) becomes

u′′ + u− Lm
l2

= 3mu2 . (7.16)

i) Perihelion advance
We consider timelike geodesics (4.7, 4.8) (free falling bodies) and normalize

L = 1 , i.e. τ = proper time .

Then (7.16) reads

u′′ + u− m

l2
= 3mu2 . (7.17)

Comparison with the non-relativistic equation for the radial motion (see Classical Me-
chanics)

ṙ2 − 2m

r
+
l2

r2
= 2E ,

resp.

u′′ + u− m

l2
= 0 , (7.18)

shows that (given the identification E2 − 1 = 2E) the term ∼ r−3 in (7.15), resp. ∼ u2 in
(7.17), describes the correction due to GR. Any (non-relativistic) solution of (7.18),

u0 =
1

d
(1 + ε cosϕ) , d =

l2

m

with 0 < ε < 1 represents an ellipse: The azimuth has been chosen so that the perihelion
is at ϕ = 0, 2π, . . .. We write the solution of (7.17) as u = u0 + v and obtain (to 1st order
in m) that the perturbation v solves the linear inhomogeneous equation

v′′ + v =
3m

d2
(1 + 2ε cosϕ+ ε2 cos2 ϕ) .

Given the initial conditions v = v′ = 0 at ϕ = 0, the three equations

v′′ + v =





A1

A2 cosϕ
A3 cos

2 ϕ
(7.19)

have the solutions

v =





A1(1− cosϕ)
1
2
A2ϕ sinϕ

1
3
A3(2− cosϕ− cos2 ϕ)

.

72



Only the 2nd term is not periodic, because the frequency of the forcing cosϕ matches that
of the homogeneous equation (resonance). It is also the only one that yields a contribution
to u′(2π) = v′(2π); indeed

u′(2π) = A2π =
6πmε

d2
.

Due to u′′(2π) = −ε/d (0th order) the perihelion ad-
vance (i.e. the shift of the zero of u′(ϕ)) is

∆ϕ = − u′(2π)

u′′(2π)
=

6πm

d
=

6πm

a(1− ε2)
,

u′

2π

slope u′′u′0

ϕ∆ϕ

where a is the major semi-axis of the ellipse. For Mercury one obtains ∆ϕ ≈ 43′′ per
century (′′ = arc seconds), which is observationally confirmed to about 1%. (Other per-
turbations are about 10 times larger!)

ii) Light deflection at the Sun
We consider lightlike geodesics (4.10): L = 0. Then (7.16) reads

u′′ + u = 3mu2 . (7.20)

By contrast the equation u′′ + u = 0 describes a straight light ray u0 = b−1 sinϕ, i.e.
r sinϕ = b (choice of azimuth: perihelion at ϕ = π/2):

rb
ϕ

We solve (7.20) perturbatively by u = u0 + v. The equation

v′′ + v =
3m

b2
sin2 ϕ

with v = v′ = 0 at ϕ = π/2 correspond to the third case (7.19) under the replacement
cosϕ❀ sinϕ (including initial conditions). It has the solution

u =
1

b
sinϕ+

3m

b2
1

3
(2− sinϕ− sin2 ϕ)

=
ϕ

b
+
m

b2
(2− ϕ) +O(ϕ2) , (ϕ→ 0) ,

i.e. the zero ϕ = 0 of u0 is shifted to ϕ∞ = −2m/b in 1st order in m. The total deflection
δ = 2|ϕ∞| amounts to

δ =
4m

b
≈ 1, 75′′

b/R⊙

(R⊙: Sun radius) and can be observed during a total solar eclipse:
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����

����O

S1

S ′
1

δ

δ
S2

S ′
2

(O: observer; S, S ′: true and appar-
ent position of a star; b ≈ R⊙). The
angle ∠(S ′

1, S
′
2) is greater by 2δ than

in absence of the Sun. The agree-
ment with observation is about 1%.
(Other effects: refraction in the solar
corona.)

7.4. The Kruskal extension of the Schwarzschild metric: Black Hole

We discuss the (apparent) singularity of the metric at r = 2m > 0 in the chart (7.13).
The scalar quantity (hence independent of the chart)

RαβγδR
αβγδ =

48m2

r2
(7.21)

does not exhibit any singularity at r = 2m. A particle which falls radially (l = 0) has by
(7.15)

ṙ = −
(
E2 − V (r)

)1/2
, V (r) = 1− 2m

r
,

( ˙ = d/dτ). The particle thus falls with increasing rate |ṙ| towards the Schwarzschild
radius r = 2m, where it arrives after finite proper time. The coordinate time however
diverges. We have

ṫ = E/V (r) ,

and thus

− dt

dr
= − ṫ

ṙ
=

E
(
1− 2m

r

)√
E2 −

(
1− 2m

r

) ≈ 1

1− 2m
r

→ ∞

for r → 2m. Setting r =: 2m+ ρ, we find

dρ

dt
= − ρ

2m

to 1st order in ρ. The orbit
r = 2m+ const e−t/2m

thus reaches r = 2m only at t = +∞. This and (7.21) are hints that the singularity at
r = 2m of the Schwarzschild metric only reflects a failure of the coordinate system — as
it is confirmed by a change of coordinates:

Kruskal transformation

u =
( r

2m
− 1

)1/2

er/4mch
t

4m
,

v =
( r

2m
− 1

)1/2

er/4msh
t

4m
.

This transformation (t, r) ↔ (u, v) is to be supplemented by unchanged θ, ϕ. We then
have

u2 − v2 =
( r

2m
− 1

)
er/2m =: g

( r

2m

)
, (7.22)

v/u = th
t

4m
.
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t = t0

v

r0

t0

t

2m ru

t = +∞
r = 2m

r = 2m
t = −∞

r = r0 > 2m

The chart domain −∞ < t < +∞, r > 2m is mapped onto the sector u > |v| in the
(u, v)-plane:

In the new coordinates the metric reads

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 =
32m3

r
e−r/2m(dv2 − du2) (7.23)

(+ angular part: −r2(dθ2 + sin2 θdϕ2)). On the r.h.s. r = r(u, v) is to be understood as
the solution of (7.22).

Proof: We set 4m = 1. By

d

dr
(2r − 1)1/2er = 2r(2r − 1)−1/2er

we have

du = 2r(2r − 1)−1/2erch t dr + (2r − 1)1/2ersh t dt ,

dv = 2r(2r − 1)−1/2ersh t dr + (2r − 1)1/2erch t dt ,

dv2 − du2 = (2r − 1)e2rdt2 − 4r2(2r − 1)−1e2rdr2

= 2re2r
[(
1− 1

2r

)
dt2 −

(
1− 1

2r

)−1
dr2

]
.

We now revert to r → r/4m, t→ t/4m. �

The extension: The function g(x), (0 < x < ∞) increases
monotonically from −1 to +∞, since

(
(x− 1)ex

)′
= xex > 0 .

Thus, r(u, v) is uniquely determined by (7.22) in the region

v2 − u2 < 1 . (7.24)

0.5 1

-1

-0.5

0.5

1

x

g(x)
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u

v

IIII II

IV

v
2 −

u
2 =

1

v 2−
u 2
=
1

In the so extended (u, v)-chart we define the metric by (7.23). The field equations (5.12)
remain satisfied, since (7.23) is real analytic for u, v as in (7.24). We partition the extended
chart in 4 regions, I–IV:

I is the region of the original Schwarzschild metric. The regions III, IV result by reflection
(u, v) 7→ (−u,−v) from I, II. We thus discuss region II only. There too we can introduce
“Schwarzschild coordinates” t and r < 2m by

u =
(
1− r

2m

)1/2

er/4msh
t

4m
,

v =
(
1− r

2m

)1/2

er/4mch
t

4m
.

Because of

v2 − u2 =
(
1− r

2m

)
er/2m , u/v = th

t

4m
region II (0 < v2 − u2 < 1, v > 0) is mapped onto the strip 0 < r < 2m, −∞ < t <
+∞, and the metric takes there the form (7.23). But: Because of 1 − (2m/r) < 0, t
has now become a spatial coordinate and r a temporal one! In the (u, v)-chart, where
ds2 ∼ du2 − dv2, the light cones are given by lines at 45◦; in the (t, r)-chart, they are
given by curves dr/dt = ±

(
1− (2m/r)

)
,

u

v

r2m

t

ho
riz
on

1

P

are positioned vertically for r > 2m (resp. horizontally for r < 2m), and degenerate at
r = 2m. The causal structure of this spacetime is manifest in the (u, v)-chart. Future
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oriented time- or lightlike curves through an event P located beyond the horizon never
reach this side: For an exterior observer the opposite portion II of spacetime remains
hidden (black hole). Trajectories there actually end after finite proper time in the
singularity v2 − u2 = 1, i.e. at r = 0. In contrast to r = 2m, this singularity is truly one
of the manifold. For instance (7.21) is singular at r = 0. For reversed reasons, region IV
is called a white hole.

We conclude the section with a result showing that the ansatz (7.8) can be relaxed.

Theorem (Birkhoff). Any spherically symmetric solution g of the field equations in
vacuum (g does not need to be assumed static) is locally isometric to a part of the
Schwarzschild-Kruskal spacetime.

Remark. This is in analogy with Newtonian gravitation: The potential in the exterior
of a spherically symmetric, possibly time-dependent mass distribution is given by ϕ =
−G0M/r and is hence static, since the total mass M is conserved.

Sketch of proof. The metric is of the form (7.8), though with a = a(t, r), b = b(t, r).
The transformations which preserve the ansatz (cf. Remark 2 on p. 68), get generalized to
t 7→ t̃ =

∫ t
e−c(s)ds, which is tantamount to replacing (7.9) by c = c(t). A computation,

which parallels that of the static case, yields the non-vanishing components of the Ricci
tensor

Rtt = R
(0)
tt − f , Rrr = R(0)

rr + e2(b−a)f ,

Rθθ = R
(0)
θθ + e2(b−a)f , Rϕϕ = (sin2 θ)Rθθ ,

Rtr = Rrt =
2ḃ

r
,

where (0) stands for the static quantities (7.11) and f = ḃ2 − ȧḃ + b̈. This time the
field equations yield b = b(r), whence f = 0, and still a′ + b′ = 0. Together with the
aforementioned replacement (7.9) this again yields a + b = 0. Hence the Schwarzschild
metric (7.13) results again. �

Application: Spherically symmetric collapse of a star. Exterior spacetime.

The radius of very massive stars can become < 2m.
Region II of the Kruskal metric then becomes relevant.
A horizon appears at r = 2m outside of the star and its
collapse into the singularity is now unavoidable, since
the worldlines of particles on its surface are timelike.

u

v

ho
riz
on

I

II

?

interior of star

surface of star

Remark. Complementary to the above proposition is the following Theorem (Israel):
Any static black hole (g does not need to be assumed spherically symmetric) is given by
the Schwarzschild metric.
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7.5. The Kerr metric and rotating black holes

The exterior of a rotating black hole or (steady) star is described by a stationary metric,
rather than by a static one.

Coordinates (Boyer-Lindquist): t ∈ R, r > 0, θ, ϕ spherical coordinates

Parameters: m, a

Notations:

∆ = r2 − 2mr + a2

ρ2 = r2 + a2 cos2 θ

Σ2 = (r2 + a2)2 − a2∆sin2 θ

Identity:
ρ4∆− 4m2r2a2 sin2 θ = Σ2(ρ2 − 2mr) (7.25)

Metric (Kerr 1963)

ds2 = (1− 2mr

ρ2
)dt2 + 4

mar

ρ2
sin2 θdϕdt− Σ2

ρ2
sin2 θdϕ2 − ρ2

∆
dr2 − ρ2dθ2 (7.26)

Alternate expression: completing the square in dϕ gives

ds2 =
ρ2

Σ2
∆dt2 − Σ2

ρ2
sin2 θ(dϕ− Ωdt)2 − ρ2

∆
dr2 − ρ2dθ2 (7.27)

with

Ω = a · 2mr
Σ2

.

Indeed, that expression yields the same gϕϕ, gϕt as in (7.26) and, by (7.25),

gtt =
ρ2

Σ2
∆− Σ2

ρ2
sin2 θ · Ω2 =

1

ρ2Σ2
(ρ4∆− 4m2r2a2 sin2 θ) = 1− 2mr

ρ2
.

Remarks. 1) The special case a = 0 is the Schwarzschild metric (7.13), because ρ2 = r2,
Σ2 = r4.

2) The Kerr metric solves the vacuum equation Rµν = 0. It is the most general stationary
solution which is axisymmetric: A space-time on which SO(2) acts as isometries under
which each orbit is a closed space-like curve.

3) Any just axisymmetric solution is given by Kerr or some extension thereof (cf. Birkhoff’s
thm.). Any stationary black hole is given by Kerr (cf. Israel’s thm.). This is known as
the ”no hair” theorem: Black holes have no property other than m, a (or charge, if an
electromagnetic field, rather than vacuum, is allowed outside).

4) The metric (7.26) tends to Minkowski in polar coordinates at r → ∞.

5) Meaning of parameters: m mass (from Newtonian limit r → ∞); J = am angular
momentum (without proof).
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The metric has a singularity at ∆ = 0, i.e., at

r = r± = m±
√
m2 − a2 .

It exists (and with it the black hole) only for |a| ≤ m (and hence |J | ≤ m2). We restrict
to r > r+.

The metric has the Killing fields Φ = ∂/∂ϕ, K = ∂/∂t:

• Φ is space-like:
g(Φ,Φ) = gϕϕ < 0 .

• K is time-like,

g(K,K) = gtt =
1

ρ2
(r2 + a2 cos2 θ − 2mr) > 0 ,

for
r > r0(θ) = m+

√
m2 − a2 cos2 θ (≥ r+) .

side view top view

r

r0(θ)

r+

θ

p

p2

p2

p

p1
p1

Figure 1: See page 80 for trajectories

The shaded region r+ < r < r0(θ) is the ergosphere. Its physical meaning will emerge
from considering various observers. As such, their 4-velocity uµ = (ṫ, ṙ, θ̇, ϕ̇) is time-like,
(u, u) = +1.

i) A static observer has fixed coordinates r, θ, ϕ: uµ = (ṫ, 0, 0, 0) ∝ K. It can exist for
r > r0(θ). For r < r0(θ) any observer is dragged w.r.t. infinity.

ii) A stationary observer has fixed r, θ, and ω ≡ dϕ/dt = ϕ̇/ṫ. It has uµ = (ṫ, 0, 0, ωṫ)
∝ (1, 0, 0, ω) and, see (7.27),

(u, u) ∝ ρ2

Σ2
∆− Σ2

ρ2
sin2 θ(ω − Ω)2 ;

uµ is time-like if

|ω − Ω| < ρ2

Σ2
· ∆

1/2

sin θ
.
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The bound on the r.h.s. is < Ω iff r < r0(θ), since that is when ω = 0 is not contained in
the interval, see (i).

iii) Observer freely falling from infinity. Note: V Killing field, x(τ) geodesic. Then (V, ẋ)
is constant in τ by Noether’s theorem. Indeed, L = 1

2
ẋαẋ

α has constant Vα · ∂L
∂ẋα

= V αẋα.

Take V = Φ and u = ẋ. At infinity, (Φ, u) = 0; at a finite position along the geodesic

0 = (Φ, u) = −Σ2

ρ2
sin2 θ(ϕ̇− Ωṫ) :

the freely falling observer rotates with angular velocity

dϕ

dt
=
ϕ̇

ṫ
= Ω = a · 2mr

Σ2
,

being dragged by the rotating mass inside.

ω, free fall

static observers

ω
stationary observers

r
ergosp

h
ere

r+
0

ΩH

r(θ)

The angular velocity at r = r+,

ΩH = Ω|r+ = a · 2mr
Σ2

∣∣∣
r+

=
a

2mr+
,

(use Σ|r+ = r2+ + a2 = 2mr+), is the angular velocity of the black hole.

Energy extraction (Penrose 1969). A freely falling particle of 4-momentum p = mẋ has
conserved “energy” E = (K, p) (take V = K above). Wherever K is time-like, E > 0.
In particular, for an observer resting near infinity, where the metric is ∼ ηµν and t is its
time, E = pt is indeed the energy. Let the particle decay,

p = p1 + p2 ,

inside the ergosphere (s. fig. on p. 79), after which free fall carries particle 1 across the
horizon r = r+ inside the black hole and particle 2 back to infinity. While E2 = (K, p2) > 0
as explained, one may have E1 = (K, p1) < 0, because K is space-like along the fall of 1.
Hence

E = E1 + E2 < E2 :

energy has been extracted from the black hole! However, particle 1 reduces the angular
momentum of the black hole, whereby the ergosphere decreases and the process can not
be repeated indefinitely.
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7.6. Hawking radiation

Energy emission is possible even from a static black hole, provided quantum effects are
taken into account. Suppose a pair of particles is created from nothing,

0 = p1 + p2 .

Then
0 = 〈K, p1〉+ 〈K, p2〉 ≡ E1 + E2

with K = ∂/∂t and E1, E2 conserved from then on. They cannot be created outside of
the horizon, since then E1, E2 > 0 as explained at the end of the previous section. If they
are created inside, E1, E2 may have opposite signs, but the particles never get outside.
A vacuum fluctuation, however, may create a pair with particle 1 inside and 2 outside of
the horizon. As particle 2 reaches a distant observer with energy E2 > 0 it is part, with
many others, of the Hawking radiation. A detailed discussion requires Quantum Field
Theory on a curved spacetime.

a) Classical Klein-Gordon field. The action for a scalar field of mass µ is

S =

∫
d4x

√
|g| · 1

2
(∂µϕ∂

µϕ− µ2ϕ2)
︸ ︷︷ ︸

L

,

where ∂µϕ = gµν∂νϕ. It is invariant under coordinate transformations x 7→ x̃, with ϕ
transforming as a scalar, ϕ(x) = ϕ̃(x̃). The equation of motion,

∂ν
∂(
√
|g|L)

∂(∂νϕ)
− ∂(

√
|g|L)
∂ϕ

= 0 , (7.28)

is
∂ν(

√
|g|gµν∂µϕ) + µ2

√
|g|ϕ = 0 , (7.29)

i.e.
(✷g + µ2)ϕ = 0 , (7.30)

where ✷g = |g|−1/2∂ν(|g|1/2gµν∂µ) is the Laplacian for the metric g. Canonical quantiza-
tion rests on equal time commutators. This requires a foliation of spacetime in space-like
3-surfaces Σ, which without loss may be taken as surfaces of constant x0. The conjugate
momentum is

π(x) =
√
|g|gµ0∂µϕ(x)

and the Hamiltonian is

H =

∫

x0=0

d3x(π∂0ϕ−
√

|g|L) =
∫

x0=0

d3x
√

|g|(gµ0∂µϕ∂0ϕ− L) .

The initial data ϕ(x) = ϕ(x)|x0=0, π(x) = π(x)|x0=0 make up the phase space

Γ = {(ϕ(x), π(x))x∈R3}

with Poisson brackets

{π(x), ϕ(y)} = δ(3)(x− y) , {ϕ(x), ϕ(y)} = 0 , {π(x), π(y)} = 0 .
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They determine the solution through the canonical equations of motion

∂ϕ

∂t
(t, x) = {H,ϕ(t, x)} , ∂π

∂t
(t, x) = {H, π(t, x)} ,

which, as usual, are equivalent to (7.28) or (7.30).

Let f , h be any complex solutions of (7.30) and let

jµ = igµν(f∂νh− (∂νf)h) .

Then, see (5.24),

jµ;µ ·
√
|g| = (

√
|g|jµ),µ = 0

by the equation of motion (7.29). As a result,

〈f, h〉 :=
∫

Σ

ijη

=

∫

Σ

√
|g|jµdσµ =

∫

x0=t

d3x
√
|g|j0 ,

where ij is the inner product (1.39) and dσµ the coordinate normal to Σ, is independent
of the slice Σ, resp. of t. This follows by Gauss’ theorem if jµ decays fast enough in
space-like directions. We denote the space of solutions equipped with the inner product
〈f, h〉 by K. It satisfies

〈f, h〉 = −〈f, h〉 = 〈h, f〉 ;
in particular

〈f, f〉 = 0

and 〈f, f〉 is real. Note that it is not positive definite, since 〈f, f〉 = −〈f, f〉; however it
is nondegenerate (〈f, h〉 = 0, (h ∈ K) ⇒ f = 0), as seen from

〈f, h〉 = i

∫

x0=0

d3x
(
f(
√
|g|g0ν∂νh)− (

√
|g|g0ν∂νf)h

)
,

where h(x) and the corresponding momentum
√
|g|g0ν(∂νh)(x) may be chosen at will.

Taking for h the field itself, we define functions on Γ by

a(f) := 〈f, ϕ〉 = i

∫

x0=0

d3x(f(x)π(x)− (
√
|g|g0ν∂νf)(x)ϕ(x)) . (7.31)

Since f(x) and the corresponding momentum may be chosen arbitrarily, the complex data
a(f) determine the real data ϕ(x), π(x). However, they are not independent:

a(f) = −a(f) . (7.32)

Their Poisson bracket is
{a(f), a(h)} = i〈f, h〉 , (7.33)

which by (7.32) also implies

{a(f), a(h)} = −i〈f, h〉 , (7.34)

{a(f), a(h)} = −i〈f, h〉 . (7.35)

82



b) Quantization. Canonical quantization of a Hamiltonian system is, at least in a first
step, a map

F(Γ) → A (7.36)

from classical to quantum observables, i.e. from (complex) functions a = a(q, p) on Γ
into an algebra with involution ∗ (technically a C∗-algebra), such that

a 7→ A ⇒ a 7→ A∗ .

Moreover for a distinguished set of canonical coordinates a, b, . . . we have (~ = 1)

{a, b} 7→ i[A,B] .

States ω are linear maps ω : A → C, A 7→ ω(A), where ω(A) has the meaning of the
expectation value of the observable A in the state ω. They should satisfy

ω(1) = 1 , ω(A∗A) ≥ 0 . (7.37)

In particular, we have the Cauchy-Schwarz inequality

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) . (7.38)

In a second step, a Hilbert space may be constructed and expectation values computed
in the way known from bra-ket Quantum Mechanics. This is accomplished abstractly by
the GNS construction:

Theorem (Gelfand, Naimark, Segal). Let ω be a state on A. Then there are

• a Hilbert space H,

• a vector Ω ∈ H,

• a representation π of A on H,

such that
ω(A) = (Ω, π(A)Ω)

and {π(A)Ω|A ∈ A} is dense in H. For given ω, these objects are unique up to isomor-
phisms.

Of course, any normalized vector ψ ∈ H defines a state by ωψ(A) = (ψ, π(A)ψ), and so
does any density matrix on H. However the states so obtained from a given ω do not
exhaust all states on A. In this sense the algebra A is more fundamental than a Hilbert
space H on which it is represented.

In the context of the Klein-Gordon equation we denote the same way both kinds of
observables in (7.36) (a(f) 7→ a(f)) and obtain from (7.32 - 7.35)

a∗(f) = −a(f) ,
[a(f), a∗(h)] =〈f, h〉 , (7.39)

[a(f), a(h)] = −〈f, h〉 ,
[a∗(f), a∗(h)] = −〈f, h〉 ,
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(one could have stated these equations in terms of ϕ(x), π(x) instead.) The algebra A is
generated by a(f), (f ∈ K).

A particular class of states on A (quasi-free states) is specified by (i)

ω(a∗(f)a(h)) = 〈h, ρf〉 , (7.40)

where ρ is a positive semidefinite operator on K, cf. (7.37),

〈f, ρf〉 ≥ 0 , (f ∈ K) ,

and (ii) the use of Wick’s lemma (sum over contractions) to compute expectations of any
products of a∗(f)’s and a(h)’s. Eq. (7.39) implies

ρ+ ρ = −1 , (7.41)

where ρ = CρC and C : f 7→ f is the complex conjugation.

Examples of this kind may be constructed as follows. Let H ⊂ K be a subspace such that

K = H⊕H

with H = CH, and

〈f, f〉 ≥ 0 , (f ∈ H) , (7.42)

〈f, h〉 = 0 , (f ∈ H , h ∈ H) . (7.43)

Solutions f ∈ H (resp. H) may be seen abstractly as single particle (resp. antiparticle)
states. Then

ρ = N ⊕ (−1−N) (7.44)

with 〈f,Nf〉 ≥ 0, (f ∈ H) defines an operator with (7.37). Indeed, by the block form
of (7.44) it suffices to verify that property for f ∈ H (which is the hypothesis) and for
f ∈ H: Since (7.41) holds by construction,

〈f, ρf〉 = 〈f, ρf〉 = −〈f, ρf〉
= 〈f, (1 + ρ)f〉 = 〈f, (1 +N)f〉 ≥ 0 ,

because f ∈ H.

In the case N = 0 the GNS Hilbert space can be realized as the bosonic Fock space F
over H: F is the span of

a∗(f1) · · · a∗(fn)Ω , (fi ∈ H) (7.45)

with
a(f)Ω = 0 , (f ∈ H) . (7.46)

c) Quantization of the Klein-Gordon field in Minkowski space. Solutions f ∈ K
of (✷+ µ2)f = 0 are superpositions of positive and negative frequency states

ei(
~k·~x∓ωt)
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with ω = ω(~k) =

√
~k2 + µ2. Let H be the subspace of positive frequency solutions.

Writing f = f+ ⊕ f− with f+ ∈ H, f− ∈ H one finds by the Parseval identity

〈f, h〉 =
∫
d3k

2ω
(f+(~k)h+(~k)− f−(~k)h−(~k)) ,

where f±(~k) define the wave packets:

f±(x) = (2π)−3/2

∫
d3k

2ω
f±(~k)e

i(~k·~x∓ωt) .

In particular, (7.42, 7.43) hold true.

This choice of H is Lorentz invariant. Indeed ~k · ~x ∓ ωt = −kµxµ with kµ = (±ω(~k), ~k)
on the upper, resp. lower mass shell: those are invariant under orthochronous Lorentz
transformations (time-reversal flips H and H). Equivalently, along the worldline xµ(τ) =
uµτ + bµ, ((u, u) = 1) of an inertial observer the phase

ei(
~k·~x−ωt) = e−i(kµbµ)e−i(kµuµ)τ

remains of positive frequency because kµu
µ = ωu0−~k ·~u ≥ ωu0−|~k||~u| > 0. Quantization

in QFT usually proceeds by defining the vacuum state through (7.44) with N = 0 on H
(Minkowski vacuum, again a manifestly Lorentz invariant choice); this produces the Fock
space (7.45, 7.46). However one may also consider positive temperature states, specified

in momentum space by N = (eβω(
~k) − 1)−1, i.e.,

ω(a∗(f)a(h)) =

∫
d3k

2ω(~k)

1

eβω(~k) − 1
h(~k)f(~k) , (f, h ∈ H) . (7.47)

In particular, the expected number of particles in a single particle state f (occupation
number) is obtained by setting h = f . In the limit where the normalized wave packet f

concentrates around a wave vector ~k0 we obtain the thermal spectrum

ω(a∗(f)a(f)) → 1

eβω(~k0) − 1
. (7.48)

Note that (7.47) is not Lorentz invariant, since ω(~k) is not.

Remark. In a curved spacetime with a time-like Killing field the solutions of (7.30) have
a definite frequency or are superpositions of such. Thus one might pick H as the positive
frequency subspace and define the vacuum by N = 0 on H (Boulware vacuum). It may
though not be the physically correct choice, see (e) below.

d) Regge-Wheeler coordinates. New coordinates (t, r∗, θ, ϕ) are introduced on the
Schwarzschild spacetime (7.13) with r > 2m by the transition function

r∗ = r + 2m log
( r

2m
− 1

)

with t, θ, ϕ fixed. It maps r ∈ (2m,∞) 7→ r∗ ∈ (−∞,∞) (tortoise coordinate). Since

dr∗
dr

= 1 +
( r

2m
− 1

)−1
=

(
1− 2m

r

)−1
,
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the metric reads

ds2 =
(
1− 2m

r

)
(dt2 − dr2∗) + r2(dθ2 + sin2 θdϕ2) (7.49)

with r = r(r∗).

Consider a radially infalling particle crossing the horizon r∗ → −∞, t → +∞ at proper
time τ = 0. There r = 2m, whence, see (7.14, 7.15),

ṙ2 ∼= E2 ,
r − 2m

2m
ṫ ∼= E .

Thus r − 2m = −Eτ and ṫ = −2m
τ
, i.e.,

t = −2m log(−τ) + const . (7.50)

In particular,

r∗ = 2m log
(
− Eτ
2m

)
+ 2m . (7.51)

Finally, we write the Klein-Gordon equation in Regge-Wheeler coordinates. After sepa-
rating the angular part,

f(t, r∗, θ, ϕ) =
∞∑

l=0

l∑

m=−l

flm(t, r∗)

r
Ylm(θ, ϕ) ,

it reads (without proof)
(∂2t − ∂2r∗ + Vl)flm = 0 ,

where the effective potential

Vl(r) =
(
1− 2m

r

)(2m
r3

+
l(l + 1)

r2
+ µ2

)

has limits

Vl(r) →
{
0 , (r∗ → −∞, i.e. r → 2m) ,

µ2 , (r∗ → +∞, i.e. r → +∞) .

Thus, as r∗ → −∞, solutions are of the form

flm(t, r∗) = fin(t− r∗) + fout(t+ r∗) (7.52)

with fin, fout describing the part of the wave incoming from the white hole, resp. outgoing
to the black hole.

e) The expected number of outgoing particles. Consider a wave packet f solving
the Klein-Gordon equation in the Schwarzschild metric (7.49), which

• consists of positive frequencies ≈ ω and

• is outgoing at r∗ → ∞ at late times.
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T

t
f

r∗

R

Since for r∗ → +∞ the metric is Minkowski, f represents a particle state at late times.
The goal is to compute its occupation number

n = ω(a∗(f)a(f)) .

What is ω? The equivalence principle (see postulate 4 on p. 34) suggests: On states
incoming from either r∗ = −∞, (r = 2m) or r∗ = +∞, (r = +∞) and to an observer in
free fall there, ω is the Minkowski vacuum (Unruh vacuum).

The wave f is not of this form (it is outgoing) but can be split into such,

f = T +R ,

where T , R are the parts incoming at r∗ = ∓∞. They are determined ”by scattering f
backwards in time”, see figure.

An observer with r∗ = r0, (r0 → ∞) is in free fall; and R, being of positive frequency, is
a particle state. Thus

ω(a∗(R)a(R)) = 0

and, by (7.38),
ω(a∗(T )a(R)) = 0 , ω(a∗(R)a(T )) = 0 .

Hence
n = ω(a∗(T )a(T )) .

By (7.52),
T ∝ e−iω(t−r∗) , (ω ≥ µ)

87



(or narrow superpositions thereof). For a freely falling observer approaching the horizon
r∗ = −∞

t− r∗ ≈ −4m log(−τ) + const .

by (7.50, 7.51); hence

T (τ) ∝
{
e4imω log(−τ) , (τ < 0),

0 , (τ > 0),
(7.53)

which is not of positive frequency. Let

T = T+ + T− (7.54)

be its decomposition into positive/negative frequencies w.r.t. τ . Then, based on the
Unruh vacuum,

ω(a∗(T+)a(T+)) = 0 ,

we obtain
n = ω(a∗(T−)a(T−)) = 〈T−, ρT−〉 = −〈T−, T−〉 ,

see (7.40, 7.44) with N = 0. It remains to compute the decomposition (7.54) and to
this end we may temporarily replace proportionality in (7.53) by equality. The positive
frequency part

T+(τ) =

∫ ∞

0

T̂+(w)e
−iwτdw

is analytic in the lower complex half-plane, and T−(τ) in the upper one. By analytically
continuing

T0(τ) := e4imω log(−τ) = e4imω log |τ |e−4mω arg(−τ)

from τ < 0 to τ > 0 through the lower half-plane we get T0(−τ)e−4mωπ, whence we
tentatively set

T+(τ) = c+

{
T0(τ) , (τ < 0),

T0(−τ)e−4mωπ , (τ > 0) .

Similarly, continuing through the upper half-plane,

T−(τ) = c−

{
T0(τ) , (τ < 0) ,

T0(−τ)e4mωπ , (τ > 0) .

Comparison with (7.53) yields

c+ + c− = 1 , c+e
−4mωπ + c−e

4mωπ = 0 ,

for τ < 0 and τ > 0 respectively, i.e.

c± =
1

1− e∓8πmω
.

Finally,
T−(τ) = c−(T (τ) + e4πmωT̃ (τ)) (7.55)

with T̃ (τ) = T (−τ). Since

〈T, T̃ 〉 = 0 , 〈T̃ , T̃ 〉 = −〈T, T 〉
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(T , T̃ are non-overlapping, time-reversal changes sign of 〈·, ·〉), we obtain

〈T−, T−〉 = |c−|2(1− e8πmω)〈T, T 〉 = 〈T, T 〉
1− e8πmω

,

and hence

n =
〈T, T 〉

e8πmω − 1
.

Apart from the ”grey-body” factor 〈T, T 〉, which depends on f and hence on ω, this is,
cf. (7.48), black-body radiation of temperature

β−1 =
1

8πm
=

~c3

8πG0M

(Hawking temperature). The radiation will cause a loss of mass. Since the intensity of
black-body radiation is ∝ β−4, black holes of very small mass M evaporate fast.

Note that (7.55) indicates that T−, which determines the particle content of T , does so
through T̃ , which is supported beyond the horizon. This is in agreement with the informal
interpretation given at the beginning.
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8. The linearized theory of gravity

8.1. The linearized field equations

We discuss spacetimes that are nearly flat. In suitable coordinates their metric reads

gµν = ηµν + hµν (8.1)

ηµν =




1 0
−1

−1
0 −1


 , hµν = hνµ , |hµν | ≪ 1 .

In linear approximation in h we then have

Γαµν =
1

2
ηαβ

(
hµβ,ν + hβν,µ − hµν,β

)
=

1

2

(
hαµ,ν + hαν,µ − hµν

,α
)
, (8.2)

where indices are raised and lowered by means of ηµν . Moreover,

Rα
µβν = Γανµ,β − Γαβµ,ν ,

Rµν = Rα
µαν =

1

2

(
−�hµν − h,µν + hαµ,αν + hαν,αµ

)
,

where h = hαα. It is convenient to introduce the perturbation with reversed trace (use
ηµµ = 4)

γµν = hµν −
1

2
ηµνh , γ = γαα = −h .

By

hµν = γµν −
1

2
ηµνγ

we get

Rµν =
1

2

(
−�γµν +

1

2
ηµν�γ + γαµ,αν + γαν,αµ

)
,

R =
1

2

(
�γ + 2γαβ,αβ

)
,

Gµν = Rµν −
1

2
ηµνR =

1

2

(
−�γµν − ηµνγ

αβ
,αβ + γαµ,αν + γαν,αµ

)
. (8.3)

In this approximation the field equations (5.11) are

−�γµν − ηµνγ
αβ

,αβ + γαµ,αν + γαν,αµ = 2κTµν . (8.4)

Remarks. 1) Eq. (8.3) implies the linearized, contracted 2nd Bianchi identity (3.17)

Gµν
,ν = 0 (8.5)

and thus
T µν,ν = 0 . (8.6)
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2) The field equations (8.4) are Lorentz covariant, provided γµν (resp. hµν) transform as
tensor fields, whereby ηµν retains the form diag(1,−1,−1,−1). This latter transformation
law follows from that of gµν by linearization.

3) Eq. (8.4) does not provide a gravitational theory which is compatible with Special
Relativity as well as with the Equivalence Principle (EP). Rationale: Let the metric
relations be given either by (a) ηµν or by (b) gµν = ηµν + hµν . (a) For free falling dust
T µν = ρuµuν eq. (8.6) and the continuity equation (ρuν),ν = 0, cf. (5.2), imply

uµuν ,µ = 0 , (8.7)

i.e. the trajectories of dust particles are geodesics of the flat metric ηµν : matter does not
experience any gravity. In case (b) the EP requires

T µν ;ν = 0

(covariant derivative w.r.t. gµν), which however is incompatible with (8.6); indeed, both
equations together imply that the Christoffel symbols vanish, in contradiction with (8.2).
In more detail: For dust, T µν ;ν − T µν,ν = 0 implies 0 = uµuαΓννα + uαuνΓµνα =
uαuβ(Γνναδβ

µ+Γνβαδν
µ). Here u is timelike; yet four linearly independent vectors can be

inserted, whence the bracket vanishes once it is symmetrized in α, β:

Γνναδβ
µ + Γννβδα

µ + 2Γνβαδν
µ = 0 .

The βµ-trace yields (4 + 1 + 2)Γννα = 0 and thus Γµβα = 0.

8.2. Gauge transformations and gauges

The linearized field equations (8.4) are gauge covariant, reflecting the general covariance
of the field equations. Infinitesimal gauge transformations are g → g + Lξg, where ξ

µ

is an arbitraty vector field. In connection with (8.1) they read h → h + Lξη (gauge
transformations), where Lξh is neglected as a 2nd order term:

hµν → hµν + ξµ,ν + ξν,µ ,

γµν → γµν + ξµ,ν + ξν,µ − ηµνξ
α
,α (8.8)

and in particular

γ → γ − 2ξα,α . (8.9)

Moreover T µν → T µν , since the change is of higher order. The claimed covariance of (8.4)
follows from

Γαµν → Γαµν + ξα,µν , Rα
µβν → Rα

µβν + ξα,νµβ − ξα,βµν︸ ︷︷ ︸
=0

. (8.10)

The latter once more, but without use of coordinates: Let R[g] be the Riemann tensor of
g. The linearized Riemann tensor R(1)[g] is characterized by

R[g + f ] = R[g] +R(1)[g](f) +O(f 2) (f → 0) ,
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where R(1)[g](f) is linear in f . Let ϕs be the flow generated by ξ. From ϕ∗
sR[g] = R[ϕ∗

sg]
we have

LXR[g] = R(1)[g](LXg)

= R(1)[g](h+ LXg)−R(1)[g](h) .

For g = η we have R[η] = 0 and (8.10) is seen to be gauge invariant,

R(1)[η](h+ LXη) = R(1)[η](h) .

We shall reduce the gauge freedom (8.8) step by step by means of ever more special
gauges.

i) Hilbert gauge (cf. Lorenz gauge in Electrodynamics)

γµν,ν = 0 . (8.11)

Starting from γ̄µν , it can be achieved by solving

γ̄µν,ν + ξµ,ν ,ν + ξν,µν − ηµνξα,αν︸ ︷︷ ︸
=0

= 0

i.e.
�ξµ = −γµν,ν .

This inhomogeneous wave equation can be solved, cf. retarded or advanced Green’s func-
tions in Electrodynamics. We are left with redidual gauge transformations satisfying

�ξµ = 0 . (8.12)

No longer can the whole field ξµ(x) be chosen freely, but only the initial conditions ξµ,
ξµ,0 at time x0 = 0, which uniquely determine the solution of (8.12).

The field equations (8.4) take in this gauge (8.11) the simpler form

−�γµν = 2κTµν . (8.13)

Remarks: 1) The integrability condition T µν,ν = 0 now follows from (8.11).
2) It is manifest from (8.13) that gravitational waves propagate at the velocity of light.

ii) In vacuum (T µν = 0) or more generally if T µµ = 0 we have �γ = 0. In addition to
(8.11) one can enforce the traceless gauge

γ = 0 . (8.14)

Starting from γµν in the gauge (8.11), one can achieve it by solving (cf. (8.9))

ξα,α =
1

2
γ (8.15)

together with (8.12). This is doable: Any solution of the latter equation has �ξα,α = 0,
and �γ = 0 holds true anyhow. Hence (8.15) follows as soon as the initial conditions at
x0 = 0 of the following two equations agree:

ξα,α ≡ ξ0,0 + ξi,i =
1

2
γ , (8.16)

∂0ξα,α ≡ △ξ0 + ξi,0,i =
1

2
γ,0 . (8.17)
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These equations can be solved for ξµ and ξµ,0 , though not uniquely. There thus still
remain residual gauge transformations with (8.12) and

ξα,α = 0 (8.18)

(volume preserving coordinate transformations). In the gauge (8.14) we also have

hµν = γµν .

iii) Radiation gauge or TT (Transverse Traceless) gauge (cf. Coulomb gauge for jµ = 0
in Electrodynamics). One requires in addition

h0µ = 0 . (8.19)

In this gauge (resp. coordinates) the metric deformation (8.1) occures only in spatial
directions, but not in the time direction. Moreover

Ri
00j = Γij0,0 − Γi00,j︸ ︷︷ ︸

=0

=
1

2
hij,00 = −1

2
hij,00 . (8.20)

Starting from h
µν

with (8.11, 8.14) one can achieve (8.19) by solving (8.12, 8.18) as well
as

h00 ≡ h
00
+ 2ξ0,0 = 0 , (8.21)

h0i ≡ h
0i
+ ξ0,i + ξi,0 = 0 . (8.22)

This too is doable: Solutions of (8.12), or rather their initial conditions ξµ, ξµ,0 at time
x0 = 0, need to satisfy besides of (8.21, 8.22) also

h
00
,0 + 2△ξ0 = 0 , (8.23)

h
0i
,0 + ξ0,i,0 +△ξi = 0 , (8.24)

as well as (8.16, 8.17) with γ = 0. Eqs. (8.21, 8.23) determine the initial conditions ξ0,0

and ξ0; then ξi,0 follows from (8.22), which is seen to satisfy (8.17):

△ξ0 − h
0i
,i − ξ0,i,i = △ξ0 + h

00
,0 +△ξ0 = 0 .

There remain the eqs. (8.24, 8.16) for ξi. They are of the form △ξi = ai, div ~ξ = b, which
is solvable, provided the compatibility condition div~a = △b holds true. In the present
case

ai = −h0i,0 −
1

2
h
00
,i , b = −1

2
h
00
,

div~a = −h0i,0i −
1

2
h
00
,ii , △b = 1

2
h
00
,ii ,

that condition is satisfied because of (8.11).
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8.3. Gravitational waves

In the radiation gauge we have

hµ0 = 0 , hii = 0 ,

hij ,j = 0 (8.25)

and the field equations in vacuum read

�hij = 0 .

Plane waves are solutions of the form

hij = hij(s) , |~e| = 1

with functions hij(s) of the variable s = ~e · ~x− t. The gauge (8.25) states

dhij
ds

ej = 0 , (8.26)

and even hij(s)e
j = 0 if the wave is of finite duration.

Motion of test particles: Let uµ = (1,~0) be the 4-velocity of a particle which at
proper time τ = 0 is at rest in the TT coordinate system. In free fall one always has
uµ(τ) = (1,~0), since this solves the geodesic equation duµ/dτ + Γµνσu

νuσ = 0, because
of Γµ00 = 0, cf. (8.2, 8.19). The worldline is xµ(τ) = (τ, ~x0); nearby particles have fixed
coordinate differences nµ = (0, ~n), yet variable distance since by (8.1) we have

(n, n) = −~n 2 + hij(s)n
inj.

Alternatively the same follows by the eq. (4.22) of geodesic deviation

d2

dt2
(n, n) = ∇2

u(n, n) = 2(∇2
un, n) + 2 (∇un,∇un)︸ ︷︷ ︸

O(h2)

= 2(R(u, n)u, n) = −2Ri
00jn

jni =
1

2

d2hij
ds2

ninj ,

by (8.20). Or still put differently: In the coordinates

x̃µ = xµ +
1

2
hµνx

ν

(note x̃0 = x0) the metric reads g̃µν = ηµν + O(h2) + O(~x/λ), where λ is a characteristic
length scale of the wave. This follows from

∂x̃µ

∂xσ
= δµσ +

1

2
hµσ +

1

2

∂hµi
∂xσ

xi = δµσ +
1

2
hµσ +O(~x/λ) ,

ηµνdx̃
µdx̃ν = ηµν

(
δµσ +

1

2
hµσ

)(
δνρ +

1

2
hνρ

)
dxσdxρ = (ησρ + hσρ)dx

σdxρ +O(h2) .
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In a small neighborhood of the geodesic x̃µ(τ) = (τ, 0) the coordinates x̃µ do have the
meaning of distances in space and time, cf. p. 34. The deviation between nearby particles
is now time-dependent:

∆ñi(t) = −1

2
hij(s)ñ

j .

This vanishes for ñj = ej by (8.26): There are no oscillations in the direction of propa-
gation, meaning that gravitational waves are transversal. For monochromatic waves we
have

hij(s) = εije
iωs , (ω > 0),

where the physical field is actually the real part of it. The complex amplitude εij is
arbitrary in the 2-dimensional complex vector space

{
εij ∈ C

2 | εij = εji, ε
i
i = 0, εije

j = 0
}
.

By choosing e = e3 in the 3-direction, only the components

ε =

(
ε11 ε12
ε12 ε−11

)
= Re ε+ i Im ε

are non-zero. Re ε and Im ε are symmetric matrices. The polarization of the wave is
represented by the displacement ~n + ∆~n(t), (˜ omitted) of test particles with ~n on the
unit circle in the plane ⊥ ~e (see figure):

∆~n(t) = −1

2
[(Re ε)~n cosωt+ (Im ε)~n sinωt] .

Special cases:

1) linear polarization:
Re ε ‖ Im ε

(i.e. Re ε, Im ε equal up to a factor). Relatively to the eigenbasis e1⊥e2 of ε we have

ε = A

(
1 0
0 −1

)
, (A ∈ C) ,

∆~n(t) =
1

2

(
−u1
u2

)
((ReA) cosωt+ (ImA) sinωt) .

2) right/left circular polarization:

Im ε = ±R(Re ε)RT = ±Re

(
−ε12 ε11
ε11 ε12

)

where R is a rotation by π/4. In the eigenbasis e1 ⊥ e2 of Re ε we have

ε = A

(
1 ±i
±i −1

)
, (A ∈ R) ,

∆~n(t) =
1

2
A

[(
−n1

n2

)
cosωt∓

(
n2

n1

)
sinωt

]
.
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right circular

π/2

0

ωt

linear

π

3π/2

Under a rotation Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
the polarization ε transforms to

RϕεR
T
ϕ = e∓2iϕε .

One says the wave has helicity ±2 (cf. electromagnetic waves: ±1).

Remark. Particles that are not in free fall experience further forces besides of tidal ones.
Application: Gravitational wave detectors (LIGO, VIRGO, GEO). Mirrors oscillate with
the forcing frequency of the gravitational wave.

8.4. Emission of radiation

The energy-momentum tensor of gravitation. The linearized Einstein tensor
G(1)[η](h), cf. (8.3), is the term linear in h in the expansion

G[η + h] = G(1)[η](h) +O(h2) , (h→ 0) .

The full field equations (5.10) may be written as

G(1)[η](h) = κT −
(
G[η + h]−G(1)[η](h)

)

= κ(T + t) , (8.27)
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where
t = −κ−1

(
G[η + h]−G(1)[η](h)

)
.

From the viewpoint of the full theory, the splitting G = G(1) + (G − G(1)) is arbitrary,
which is e.g. reflected in that η = diag(1,−1,−1,−1) (and hence G(1)[η](h) and t) are not
tensors under general coordinate transformations. From the point of view of the linearized
theory, where G(1)[η](h) is the relevant curvature, the full equations (8.27) state that the
gravitational field is a source of its own curvature, besides of matter. One can therefore
regard tµν as energy-momentum tensor of the gravitational field. This is further justified
by (T µν + tµν),ν = 0, cf. (8.5, 8.27): Energy and momentum of matter and gravitation
are jointly conserved. Note that this is exact, in contrast to (8.6) valid in the linearized
theory. To lowest order, tµν is quadratic in h,

κt = −1

2
G(2)[η](h, h) ,

resp. after a longer computation

4κtµν = γαβ,µγ
αβ

,ν −
1

2
γ,µγ,ν −γαβ,βγαµ,ν − γαβ,βγαν,µ︸ ︷︷ ︸

=0

, (8.28)

where the underbrace applies to the Hilbert gauge (8.11). Thus: Even though t is ne-
glected in the linearized field equations, it can be computed from their solution γµν .

Emission of gravitational waves. A spatially localized source T µν with (8.6) generates
the retarded solution of the field equations (8.13):

γµν(x) = −2κ

∫
d4yDret(x− y)T µν(y) ,

where Dret(x) = δ(x0 − r)/4πr, (r = |~x|) is the Green’s function of the wave equation
(s. Electrodynamics), and thus

γµν(~x, t) = −2κ

4π

∫
d3y

T µν(~y, t− |~x− ~y|)
|~x− ~y| .

The Hilbert gauge (8.11) is satisfied, but γ 6= 0 as a rule. The retardation entails that
γµν,α decays as r−1, and tµν as r−2: The energy flow in a fixed solid angle attains a limit
as r → ∞ (emission). We compute the terms ∼ r−1 of γµν under the assumption

r ≫ λ≫ d ,

where d the extension of the source and λ is a characteristic length (≈ wavelength), e.g.
λ = 2π/ω, (c = 1). We then have to leading order in r−1

γµν(~x, t) = − κ

2πr

∫
d3y T µν(~y, t− |~x− ~y|) (8.29)

and likewise for its derivatives. Using |~x− ~y| = r + O(d) this is further expanded in d/λ
as

γµν(~x, t) = − κ

2πr

∫
d3y T µν(~y, t− r)

︸ ︷︷ ︸
εµν(t−r)

+
1

r
O(d/λ) , (8.30)
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The components εµν(s) are functions of the variables s = t − r and can be expressed by
T 00

ε00(t) =

∫
d3y T 00(~y, t) , εi0(t) =

d

dt

∫
d3y T 00(~y, t)yi , (8.31)

εij(t) =
1

2

d2

dt2

∫
d3y T 00(~y, t)yiyj . (8.32)

Relatively to ε00, we thus have εi0 = O(d/λ) since yi ∼ d and d/dt ∼ ω ∼ λ−1; likewise
εij = O((d/λ)2) As for eq. (8.32): For arbitrary ~u,~v ∈ R

3 (with scalar product denoted
(~u,~v)) we have

1

2
(uivj + ujvi) = ∂i∂j

1

2
(~u, ~y)(~v, ~y) ,

εijuivj =

∫
d3y T ijuivj =

1

2

∫
d3y T ij ,ji(~u, ~y)(~v, ~y)

=
1

2

d2

dt2

∫
d3y T 00yiyjuivj ,

where we used (8.6): T ij ,ji = −T i0,0i = −T 0i
,i0 = T 00

,00. The components (8.31), which
are established similarly, are actually constant (· = d/dt),

ε̇µ0(t) = 0 , (8.33)

since

ε̇µ0 =

∫
d3y T µ0,0 = −

∫
d3y T µi,i = 0 .

Remark (informal). Let us view T 00 as a (non-relativistic) mass distribution. The
components (8.31) stand for its total mass and for the center of mass (or total) momentum;
their conservation is expressed by (8.33). This is to be contrasted with Electrodynamics,
where the total charge e =

∫
d3y ρ(~y, t) of a distribution is conserved, but ~̇p is not,

pi =
∫
d3y ρ(~y, t)yi being its dipole moment. Recall that an electric monopole does not

radiate (ė = 0), but a dipole does according to ~̈p. We anticipate by analogy that the
lowest order contribution to gravitational radiation comes from the quadrupole, and in
fact according to

...
Q.

Differentiating (8.30) yields to leading order in d/λ

γij ,0 = − κ

2πr
ε̇ij , (8.34)

this being O((d/λ)2) on the scale of (rλ)−1 and not vanishing as a rule. Proceeding
likewise with γµ0,0 produces a vanishing leading term by (8.33), formally of order O(1) or
O(d/λ) on that same scale. This means that a subleading term takes over which, though
down by O(d/λ) or more, remains comparable in size to (8.34). To compute γµ0,0 we
better return to (8.29): We have

γµν,i = −γµν,0ei , (~e = ~x/r) (8.35)

since the leading contribution arises through the retardation by ∂i|~x − ~y| = ei + O(r−1).
From the gauge condition (8.11) we have γµ0,0 = −γµi,i and in particular

γµ0,0 = γµi,0e
i , γ00,0 = γij ,0e

iej .
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The energy current density t0iei = −t0iei in direction ~e is by (8.28, 8.35)

4κt0iei = (γ̇αβ γ̇
αβ − 1

2
γ̇2)

3∑

i=1

(ei)2

︸ ︷︷ ︸
=1

.

Denoting by γ = (γij) the space-space components of γµν we have

γ̇αβ γ̇
αβ = tr γ̇2 − 2

3∑

i=1

(γ̇i0)2 + (γ̇00)2

= tr γ̇2 − 2(γ̇~e, γ̇~e) + (~e, γ̇~e)2 ,

γ̇ = γ̇α;α = − tr γ̇ + γ̇00 = − tr γ̇ + (~e, γ̇~e)

and after a short computation

γ̇αβ γ̇
αβ − 1

2
γ̇2 = tr ˙̂γ2 − 2( ˙̂γ~e, ˙̂γ~e) +

1

2
(~e, ˙̂γ~e)2 ,

where γ̂ is the traceless part of γ. Using (8.34) it is expressed by ε̂ similarly defined:

ε̂ = ε− 1

3
(tr ε)id =

1

6
Q̈ ,

where, cf. (8.32),

Qij(t) =

∫
d3y T 00(~y, t)(3yiyj − δij~y 2)

is the quadrupole tensor of the mass distribution. The power radiated in the solid
angle de,

dI = r2t0ieide ,

is
dI

de
=

κ

576π2

(
tr
...
Q

2 − 2(~e,
...
Q

2
~e) +

1

2
(~e,

...
Q

2
~e)2

)
.

Using that ∫
de(~e,Q2~e) =

4π

3
trQ2 ,

∫
de(~e,Q~e)2 =

8π

15
trQ2

the total emitted power is computed as (Einstein 1917)

I =
κ

360πc5
tr
...
Q

2
(8.36)

(where c is again 6= 1).

Application to binary stars: Shortening of the orbital period as a result of radiation
losses (units: G = κ/8π = c = 1). The orbit of the two stars around their common center
of mass can be described within Newton’s theory. Summary:

• dynamical parameters: m1,m2 masses of the two bodies; M = m1 + m2 total mass;
m = m1m2/M reduced mass; E < 0 energy; T period.
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• geometric parameters: a semi-major axis of ellipse; ε excentricity; p = a(1 − ε2) “pa-
rameter”.

• Newton’s law:

~̈r = −M
r3
~r , (~r = ~r1 − ~r2) .

• Kepler’s law of the orbit (r, ϕ):

i) u ≡ 1

r
=

1 + ε cosϕ

p

ii) r2ϕ̇ = (pM)1/2

iii) T =
2πa3/2

M1/2
.

Moreover,

− E =
mM

2a
. (8.37)

Relatively to the center of mass one has ~r1 = (m2/M)~r, ~r2 = −(m1/M)~r. The moment
of inertia of the system is thus

θ =

∫
d3x ρ(~x)~x⊗ ~x =

1

M2
(m1m

2
2 +m2m

2
1︸ ︷︷ ︸

m1m2M

)~r ⊗ ~r = m~r ⊗ ~r .

We shall compute ...
θ = m

(...
~r ⊗ ~r + 3~̈r ⊗ ~̇r + 3~̇r ⊗ ~̈r + ~r ⊗

...
~r
)
.

Let ~er, ~eϕ be unit vectors in radial, resp. tangential directions. By means of

~r = r~er , ~̇r = ṙ~er + rϕ̇~eϕ ,

~̈r = −M
r2
~er ,

...
~r =M

( 3

r4
ṙ~r − ~̇r

r3

)
=M

(2ṙ
r3
~er −

ϕ̇

r2
~eϕ

)

we obtain
...
~r ⊗ ~r =M

( 2

r2
ṙ~er ⊗ ~er −

ϕ̇

r
~eϕ ⊗ ~er

)
,

~̈r ⊗ ~̇r = −M
( ṙ
r2
~er ⊗ ~er +

ϕ̇

r
~er ⊗ ~eϕ

)
,

...
θ = −mM

(
2
ṙ

r2︸︷︷︸
−u̇

~er ⊗ ~er + 4
ϕ̇

r
(~er ⊗ ~eϕ + ~eϕ ⊗ ~er)

)
,

as well as
tr
...
θ = 2mMu̇ , tr

...
θ
2
= 4(mM)2(u̇2 + 8u2ϕ̇2) .

For the quadrupole tensor
Q = 3θ − (tr θ)id

one then finds

tr
...
Q

2
= 3

(
3 tr

...
θ
2 − (tr

...
θ )

2
)

= 12(mM)2(2u̇2 + 24u2ϕ̇2)

= 24
(mM

p

)2(
ε2 sin2 ϕ+ 12(1 + ε cosϕ)2

)
ϕ̇2 .
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The energy loss is given by the radiative power (8.36):

−dE
dt

=
1

45
tr

...

Q2 .

Averaged over a period it amounts to

−
〈dE
dt

〉
=

1

T

∫ T

0

(
−dE
dt

)
dt =

1

T

∫ 2π

0

(
−dE
dt

)dϕ
ϕ̇

=
1

T
· 8

15

(mM
p

)2 (pM)

p2

1/2 ∫ 2π

0

(ε2 sin2 ϕ+ 12(1 + ε cosϕ)2)(1 + ε cosϕ)2dy

︸ ︷︷ ︸
24π

(
1+ 73

24
ε2+ 37

96
ε4
)

,

where the last equality uses the Kepler laws (i, ii) to express ϕ̇. The law (iii) and (8.37)
imply

−ET = πm(Ma)1/2 ,

as well as the shortening of the period

Ṫ

T
=

3

2

ȧ

a
= −3

2

Ė

E

= −96

5

mM2

a4
(1− ε2)−7/2

(
1 +

73

24
ε2 +

37

96
ε4
)
.

This prediction has been experimentally confirmed (Hulse and Taylor 1975, Nobel prize
1993) on the basis of the binary star consisting of the pulsar PSR 1913 + 16 and of an
invisible partner (both neutron stars):

Theory:
Ṫ = (−2.40247± 0.00002)× 10−12

Observation:
Ṫ = (−2.4086± 0.0052)× 10−12 .

The agreement is within 0.5%.
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