General relativity. Problem set 12.

HS 14
Due: Tue, December 9, 2014

1. Schwarzschild solution with cosmological term

In class the Schwarzschild metric was found as the static, rotationally invariant solution to the Einstein field equations in vacuum, $R_{\mu \nu}=0$.
i) Do the same for the case that a cosmological term is included,

$$
\begin{equation*}
R_{\mu \nu}=-\Lambda g_{\mu \nu} \tag{1}
\end{equation*}
$$

cf. solution to Problem 8.3. Show that the metric is (de Sitter 1917)

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right) d t^{2}-\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \tag{2}
\end{equation*}
$$

Hint: The ansatz (7.8) is still valid.
ii) Let $m>0$. For which values of Λ, m is t a time-like coordinate for suitable values of r ?
iii) Compute the Newtonian gravitational potential resulting in the weak field limit and compare it with the expression in Problem 8.3 (ii).

2. Time delay in the Schwarzschild metric

Consider a ray passing near the Sun at minimal distance r_{0}.

Non relativistically it takes light a time $t=\sqrt{r^{2}-r_{0}^{2}},(c=1)$ to reach radius r_{0} from r (or vice versa).
i) Show that in Schwarzschild coordinates this time is

$$
\begin{equation*}
t=\int_{r_{0}}^{r} \frac{d r}{1-\frac{2 m}{r}}\left(1-\frac{1-2 m / r}{1-2 m / r_{0}}\left(\frac{r_{0}}{r}\right)^{2}\right)^{-1 / 2} \tag{3}
\end{equation*}
$$

Hint: Use the radial eq. $\dot{r}^{2}+V(r)=\mathcal{E}^{2}$ and express $\dot{r}=d r / d \tau$ by $d r / d t$ using the conservation of \mathcal{E}. Establish a relation between l / \mathcal{E} and r_{0}.
ii) Compute (3) for small m / r_{0} and conclude that the time delay $\Delta t=t-\sqrt{r^{2}-r_{0}^{2}}$ (Shapiro delay, 1964) is

$$
\Delta t(r)=2 m \log \left(\frac{r+\sqrt{r^{2}-r_{0}^{2}}}{r_{0}}\right)+m\left(\frac{r-r_{0}}{r+r_{0}}\right)^{1 / 2}+O\left(m^{2}\right) .
$$

iii) Let the ray join two planets, e.g. Earth and Venus, at radii r_{1} and r_{2} on opposite sides of r_{0}. The round trip delay,

$$
\Delta t=2\left(\Delta t\left(r_{1}\right)+\Delta t\left(r_{2}\right)\right)
$$

of a radar signal is measurable. Compute it for $r_{1}, r_{2} \gg r_{0}$.

