
General relativity. Problem set 4.

HS 14 Due: Tue, October 14, 2014

1. Affine connections

Let an affine connection ∇ on the manifold M be given. Show that ∇̃ : (X, Y ) 7→ ∇̃XY
is an affine connection too iff the difference B(X, Y ) := ∇XY − ∇̃XY has the property
that

(ω,X, Y ) 7−→ 〈ω,B(X, Y )〉 (1)

is a tensor field of type
(
1
2

)
.

We observe a restatement of this fact: Affine connections on M form an affine space over
the linear space of tensor fields of that type. (Essentially, a set is an affine space if its
elements differ by vectors.)

What does (1) imply for the Christoffel symbols? Show also the application: For any two
affine connections ∇, ∇̃ the combination (1− α)∇+ α∇̃ is one, too.

2. A second look at parallel transport

The goal of this exercise is to give a definition of parallel transport not referring to charts.
A number of definitions (a-c) alternate with problems (i-iv) which can be solved almost
independently.

a) The tangent bundle of a manifold M is the disjoint union of all its tangent spaces, (see
left figure)

TM =
⋃
p∈M

Tp(M) .

Let π be the projection π : TM →M , X 7→ π(X) = p if X ∈ Tp(M).
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The tangent bundle becomes a differentiable manifold of its own by means of charts
defined as follows: If K : U → Rn, p 7→ x = (x1, . . . , xn) is a chart for the patch U ⊂M ,
then a chart for the patch π−1(U) :=

⋃
p∈U Tp(M) ⊂ TM is given by

K̃ : π−1(U) −→ Rn × Rn

X 7−→ (x,X) ,



where X = (X1, . . . Xn) are the components of X ∈ Tp(M) w.r.t. the coordinate basis.

i) Let x̄ 7→ x be a coordinate change on U ∩ Ū ⊂ M . Compute the induced coordinate
change on π−1(U ∩ Ū). What is the matrix of its partial derivatives?

b) The linear operations on Tp(M) (multiplication by λ ∈ R, addition +) induce maps on
TM

λ : TM → TM,X 7→ λX , a : TM � TM → TM, (X1, X2) 7→ X1 +X2 , (2)

where TM � TM :=
⋃
p∈M Tp(M)× Tp(M) = {(X1, X2) ∈ TM × TM | π(X1) = π(X2)}.

Consider a curve γ(t) ∈M having tangent vectors γ̇(t) ∈ Tγ(t). In class the property that
a family of vectors X(t) ∈ Tγ(t)(M) is parallel transported along it was formulated by
means of a chart K: If γ(t) has coordinates x(t) and X(t) has components X(t), then

Ẋ i(t) = −Γilk(x(t))ẋl(t)Xk(t) . (3)

In order to find an intrinsic formulation, note that Ẋ = (Ẋ1, . . . Ẋn) are not the com-
ponents of a vector. Rather, X(t) ∈ Tγ(t) is a curve in TM , whence Ẋ(t) ∈ TX(t)(TM)

has components (ẋ(t), Ẋ(t)) relative to the chart K̃.

A parallel transport can be viewed as a map

σX : Tπ(X)(M) −→ TX(TM) , Y 7−→ σX(Y ) , (X ∈ TM)

which is linear in Y and satisfies (see right figure)

π∗σX(Y ) = Y . (4)

Moreover it depends on X compatibly with (2): Setting σ̃(X) = σX(Y ) for fixed Y ,

λ∗σ̃(X) = σ̃(λX) , a∗(σ̃(X1), σ̃(X2)) = σ̃(a(X1, X2)) . (5)

ii) Write a vector X ∈ TX(TM) in components (V ,W ) w.r.t. the chart K̃; for short
X  (V ,W ). Show that

σX(Y )  
(
Y ,−Γ(x, Y ,X)

)
with Γ linear in Y ,X, i.e. Γ(x, Y ,X)i = Γilk(x)Y lXk. The Γilk may be called Christoffel
symbols.

c) Say a vector X(t) is parallel transported along a curve γ(t) in M if

π
(
X(t)

)
= γ(t) , Ẋ(t) = σX(t)(γ̇(t)) .

iii) Show that this is equivalent to (3).

iv) Components of X ∈ TX(TM) transform tensorially by means of the matrix found in
(i). Derive from that the non-tensorial transformation law for the Christoffel symbols.


