General relativity. Problem set 4.

HS 14

Due: Tue, October 14, 2014

1. Affine connections

Let an affine connection ∇ on the manifold M be given. Show that $\tilde{\nabla}:(X, Y) \mapsto \tilde{\nabla}_{X} Y$ is an affine connection too iff the difference $B(X, Y):=\nabla_{X} Y-\tilde{\nabla}_{X} Y$ has the property that

$$
\begin{equation*}
(\omega, X, Y) \longmapsto\langle\omega, B(X, Y)\rangle \tag{1}
\end{equation*}
$$

is a tensor field of type $\binom{1}{2}$.
We observe a restatement of this fact: Affine connections on M form an affine space over the linear space of tensor fields of that type. (Essentially, a set is an affine space if its elements differ by vectors.)

What does (1) imply for the Christoffel symbols? Show also the application: For any two affine connections $\nabla, \tilde{\nabla}$ the combination $(1-\alpha) \nabla+\alpha \tilde{\nabla}$ is one, too.

2. A second look at parallel transport

The goal of this exercise is to give a definition of parallel transport not referring to charts. A number of definitions (a-c) alternate with problems (i-iv) which can be solved almost independently.
a) The tangent bundle of a manifold M is the disjoint union of all its tangent spaces, (see left figure)

$$
T M=\bigcup_{p \in M} T_{p}(M)
$$

Let π be the projection $\pi: T M \rightarrow M, X \mapsto \pi(X)=p$ if $X \in T_{p}(M)$.

The tangent bundle becomes a differentiable manifold of its own by means of charts defined as follows: If $K: U \rightarrow \mathbb{R}^{n}, \quad p \mapsto x=\left(x^{1}, \ldots, x^{n}\right)$ is a chart for the patch $U \subset M$, then a chart for the patch $\pi^{-1}(U):=\bigcup_{p \in U} T_{p}(M) \subset T M$ is given by

$$
\begin{aligned}
\tilde{K}: \pi^{-1}(U) & \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \\
X & \longmapsto(x, \underline{X}),
\end{aligned}
$$

where $\underline{X}=\left(X^{1}, \ldots X^{n}\right)$ are the components of $X \in T_{p}(M)$ w.r.t. the coordinate basis.
i) Let $\bar{x} \mapsto x$ be a coordinate change on $U \cap \bar{U} \subset M$. Compute the induced coordinate change on $\pi^{-1}(U \cap \bar{U})$. What is the matrix of its partial derivatives?
b) The linear operations on $T_{p}(M)$ (multiplication by $\lambda \in \mathbb{R}$, addition +) induce maps on TM

$$
\begin{equation*}
\lambda: T M \rightarrow T M, X \mapsto \lambda X, \quad a: T M \boxtimes T M \rightarrow T M,\left(X_{1}, X_{2}\right) \mapsto X_{1}+X_{2} \tag{2}
\end{equation*}
$$

where $T M \boxtimes T M:=\bigcup_{p \in M} T_{p}(M) \times T_{p}(M)=\left\{\left(X_{1}, X_{2}\right) \in T M \times T M \mid \pi\left(X_{1}\right)=\pi\left(X_{2}\right)\right\}$.
Consider a curve $\gamma(t) \in M$ having tangent vectors $\dot{\gamma}(t) \in T_{\gamma(t)}$. In class the property that a family of vectors $X(t) \in T_{\gamma(t)}(M)$ is parallel transported along it was formulated by means of a chart K : If $\gamma(t)$ has coordinates $x(t)$ and $X(t)$ has components $\underline{X}(t)$, then

$$
\begin{equation*}
\dot{X}^{i}(t)=-\Gamma^{i}{ }_{l k}(x(t)) \dot{x}^{l}(t) X^{k}(t) . \tag{3}
\end{equation*}
$$

In order to find an intrinsic formulation, note that $\underline{X}=\left(\dot{X}^{1}, \ldots \dot{X}^{n}\right)$ are not the components of a vector. Rather, $X(t) \in T_{\gamma(t)}$ is a curve in $T M$, whence $\dot{X}(t) \in T_{X(t)}(T M)$ has components $(\dot{x}(t), \underline{X}(t))$ relative to the chart \tilde{K}.

A parallel transport can be viewed as a map

$$
\sigma_{X}: T_{\pi(X)}(M) \longrightarrow T_{X}(T M), \quad Y \longmapsto \sigma_{X}(Y),(X \in T M)
$$

which is linear in Y and satisfies (see right figure)

$$
\begin{equation*}
\pi_{*} \sigma_{X}(Y)=Y \tag{4}
\end{equation*}
$$

Moreover it depends on X compatibly with (2): Setting $\tilde{\sigma}(X)=\sigma_{X}(Y)$ for fixed Y,

$$
\begin{equation*}
\lambda_{*} \tilde{\sigma}(X)=\tilde{\sigma}(\lambda X), \quad a_{*}\left(\tilde{\sigma}\left(X_{1}\right), \tilde{\sigma}\left(X_{2}\right)\right)=\tilde{\sigma}\left(a\left(X_{1}, X_{2}\right)\right) . \tag{5}
\end{equation*}
$$

ii) Write a vector $\mathcal{X} \in T_{X}(T M)$ in components ($\underline{V}, \underline{W}$) w.r.t. the chart \tilde{K}; for short $\mathcal{X} \rightsquigarrow(\underline{V}, \underline{W})$. Show that

$$
\sigma_{X}(Y) \rightsquigarrow(\underline{Y},-\Gamma(x, \underline{Y}, \underline{X}))
$$

with Γ linear in $\underline{Y}, \underline{X}$, i.e. $\Gamma(x, \underline{Y}, \underline{X})^{i}=\Gamma^{i}{ }_{l k}(x) Y^{l} X^{k}$. The $\Gamma^{i}{ }_{l k}$ may be called Christoffel symbols.
c) Say a vector $X(t)$ is parallel transported along a curve $\gamma(t)$ in M if

$$
\pi(X(t))=\gamma(t), \quad \dot{X}(t)=\sigma_{X(t)}(\dot{\gamma}(t))
$$

iii) Show that this is equivalent to (3).
iv) Components of $\mathcal{X} \in T_{X}(T M)$ transform tensorially by means of the matrix found in (i). Derive from that the non-tensorial transformation law for the Christoffel symbols.

