General relativity. Problem set 2.

1. Jacobi identity

i) Let X, Y, Z be vector fields on a manifold M. Verify that the commutator satisfies the Jacobi identity:

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

ii) Let Y_{1}, \ldots, Y_{n} be vector fields on an n-dimensional manifold M such that at each $p \in M$ they form a basis of the tangent space $T_{p}(M)$. Then, at each point, we may expand each commutator $\left[Y_{\alpha}, Y_{\beta}\right]$ in this basis, thereby defining functions $C^{\gamma}{ }_{\alpha \beta}=-C^{\gamma}{ }_{\beta \alpha}$ by

$$
\begin{equation*}
\left[Y_{\alpha}, Y_{\beta}\right]=C^{\gamma}{ }_{\alpha \beta} Y_{\gamma} . \tag{1}
\end{equation*}
$$

Use the Jacobi identity to derive an equation satisfied by $C^{\gamma}{ }_{\alpha \beta}$.

2. About the Lie derivative

In class the Lie derivative $L_{X} R$ of a tensor field R was defined in 'absolute terms', i.e. without reference to charts or to components. It was then shown that, for the case of R being of type $\binom{1}{1}$, the components of $L_{X} R$ are

$$
\begin{equation*}
\left(L_{X} R\right)_{j}^{i}=R_{j, k}^{i} X^{k}-R_{j}^{k} X_{, k}^{i}+R_{k}^{i} X_{, j}^{k} . \tag{2}
\end{equation*}
$$

By contrast adopt here the point of view according to which R is simply given by its components $R^{i}{ }_{j}$ together with the transformation law

$$
\begin{equation*}
\bar{R}_{\beta}^{\alpha}=R_{j}^{i} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \bar{x}^{\beta}} \tag{3}
\end{equation*}
$$

under any change $x \mapsto \bar{x}$ of coordinates. Then take (2) as a definition of $L_{X} R$. Make sure it is well-defined by showing that $\left(L_{X} R\right)^{i}{ }_{j}$ also obeys (3).
Hint: Find first the transformation law of $R_{j, k}^{i}$ (it is not that of a tensor). Be ready for a lengthy computation.

